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A group will be called full if it is the Galois group of an algebraic closure
of a field. In this paper we first investigate full Abelian groups and classify them.
Then we examine full groups from the point of view of how we can operate on
them and still maintain the property of being full. Of course, by the fundamental
theorem of the infinite Galois theory, closed subgroups (with standard profinite
topology) of full groups are full. In general, products of full groups are not full
(for example, Z2 x Z2 is not full, by a theorem of Artin and Schreier (1927)); how-
ever we produce a set of groups which can always be attached as direct factors
to full groups and still retain full groups. For the definition and basic properties
of profinite groups we refer the reader to Cassels and Frohlich (1967). It has
been shown by Leptin (1955) and independently by the author that profinite
groups are Galois groups. The author (1971) has shown that if G is profinite, then
G = Gd\(k/L) where L may have any desired characteristic and contains all
primitive nth roots of unity, for all n. We will denote by Zp the pro-p-group which
is the inverse limit of cyclic p-groups. (This is the group of p-adic integers).

We begin with a lemma which actually can be dispensed with by a slight
alteration of the proof, but which we include for its independent interest.

LEMMA 1. If G is a profinite Abelian group, then G is reduced.

PROOF. Let D be the maximal divisible subgroup of G. Then by Theorem 3
of Kaplansky (1966), G = D® R where R is reduced. Now D = f|nez+ nG a n d

since G is closed each nG is closed. So D is closed and hence is itself a profinite
group Cassels and Frohlich (1967). Therefore D = 7.^ c Y[IFA Ty. Now D = nD
for all n e Z + and

nD^n n 7; = J] nTx.
a e A. at e A

So

Z)c I (f j nTa) = {0}

since T, is finite for all a. So G = R and hence is reduced.
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LEMMA 2. / / G is an. Abelian profinite group, then G s Y\e 6 t ^ where
A0 is finite cyclic or Ap = 2p/l, for all fieB.

PROOF. If G is an Abelian, profinite group, then G = G_a where we may
assume Ga is Abelian. By the fundamental theorem of finite Abelian groups each
Gt is the product of cyclic groups of prime power order. So f^e^G^ = f | i e / Z P i .
If Zp. appears a cofinal number of times in / , then we have that Zp. is a direct
factor of G. Otherwise, we get a product of Zps.

LEMMA 3. / / G is a full Abelian group and if G is not torsion-free, then
Z2 is a direct summand ofG, and G has no other finite groups as direct summand.

PROOF. By Lemma 1, G is reduced; hence if G is not torsion free we use
Theorem 9 of Kaplansky (1966) and obtain G = C © R, where C is a finite cyclic
group. Now C can be considered as a subgroup of G, and since all finite sets are
closed in the Krull (or profinite) topology, C is closed in G. Employing the
fundamental theorem of the infinite Galois theory, since G ~ Gal(/T//C) (R is
the algebraic closure of the field K), C corresponds to a subfield Kc, and
K £ X r c ^ ; C ; Gal(£/Kf). Now Rc = K; hence C is full. By a result of Artin
and Schreier (1927), the only full finite group is Z 2 , and therefore C = Z 2 . If D
were any other finite direct summand of G, then D + C would be a finite direct
summand, whence D + C = Z2 and so D = {0}.

THEOREM 1. If G is a full Abelian group, then

G ~ Z2 x Y[ Afi where e = 0 or 1 and
fie B

A,, = Zp/), pp a prime, for each fieB.

PROOF. It is well known that Galois groups are profinite groups, hence our
result follows from Lemmas 2 and 3 upon noting that if G is torsion free
then no finite group can be a direct summand.

The converse of Theorem 1 is also true as will be demonstrated later in this
paper. If we let {£, | / e 1} be a set of Galois extensions of a field k, all contained
in some field K, we will denote by rT(e , £ , the smallest subfield of K containing
all the £;. In what follows we will need to know that if, for an ordered set / ,
we have £, n(JT n S j £ n ) = k for all iel, then

Gal ( H E,/k) s fl Ga1(E,/fc).
iel iel

As usual, we shall define k((X)) as the field of power series over k in the indeter-
minate X. We shall need the following technical lemma, whose proof can be
found in Serre (1968), (chapter IV, §2, Proposition 8).

LEMMA 4. Let F be afield of characteristic zero. Then the algebraic clos-
ure
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WO) = F((X))({0,Xu\ w = 2,3,-•-,}),

where 0 is the set of algebraic elements over F.

THEOREM 2. Let F be a field of characteristic zero and containing all
nth roots of unity, for all n, and let SF = F((X))({Xl/H, (n,p) = 1}), for p a
prime. Then

= Gal(F/F)x2,,.
p.

PROOF. By Lemma 4,
";n = 2,3,-,}) = ^({f l ,* 1 ""^ = 1,2,-,}).

Let El=^(0) and E2 = ^(Xllp"; a = 1,2,-). Then £,(£2) = F and
£i n £2 = &. Clearly Gal^AF) ~ Gal(/"/F). To compute Gal^/J^) we note
that since IF is of characteristic 0 and contains all the nth roots of unity,

Since

E2 =» [

we obtain Gal(£2/.^) = 2p. Hence

COROLLARY. Lff F be as in the Theorem, and A any index set. For every
a € A let p, be a prime and define the tower of fields:

(n,pt+l) = 1})

and for limit ordinals FA = (Ja<*^«- Let & =
Then GtWI*) - Ga\(F/F) + \\xeA2p .

PROOF. Put £0 = &(0), with 0 as above, and Ex = .^({XlJn, n =2^3, •••}).
Then Ex n ( n«</»£/») = & f o r a11 a, i»e {0} u ^, and £0( n « e ^ £ J = ^ Now
Gal(£0/.^) ~ GaK/1, F), and as in the above theorem Gal EJ& = 2P. Hence
since

Gal(F/.^) ~ Gal(E0( n
£ . ) / - ^ ) - Gal(£0/^) x f ] Gal(£J^)

or e 4̂ a e A

our result follows.

COROLLARY. / / G is a full Galois group, so is G x YlmeA^p. for any index
set A.

PROOF. G may be considered as the Galois group of a field of characteristic
zero containing all primitive «th roots of unity. The construction above yields
the result.

https://doi.org/10.1017/S1446788700016864 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016864


[4] Galois groups of algebraic closures IS

REMARK. Since Z2 and {e} are full, this corollary provides a proof to the

converse of Theorem 1, namely, that Z | x H a e x ^ . , iS full Abelian for any

index set A.
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