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1. Introduction and summary. In recent years, certain varieties of semigroups with
unary operations (of "inversion") have received considerable attention. Generally speak-
ing, these have been contained in one or other of the two classes of completely regular
semigroups (that is, semigroups that are unions of groups) and inverse semigroups. For
instances of the former see [1], [2], [3], [6], [10], [14] and [15], and for instances of the
latter see [7], [8], [12] and [13].

The varieties of all completely regular semigroups and of all inverse semigroups have
relatively little in common, in that their intersection is simply the variety of all semilattices
of groups. As a result, the investigations have been conducted independently with no
interplay between the two theories.

The purpose of this note is to move towards viewing completely regular semigroups
and inverse semigroups as members of the variety of unary semigroups and to study
classes of unary semigroups with larger intersections with completely regular semigroups
and inverse semigroups than merely semilattices of groups. As a first step in this
programme, we consider here the join of the variety of rectangular bands and the variety
of inverse semigroups generated by Brandt semigroups (that is, the variety of strict inverse
semigroups) as varieties of unary semigroups. Equivalently (as we shall show) we consider
the join of the variety of orthodox normal bands of groups and the variety of strict
combinatorial inverse semigroups.

In this way we break out from the lattices of varieties of completely regular
semigroups and of inverse semigroups and initiate the investigation of the joins of their
subvarieties. This study opens up new vistas in the theory of varieties of unary semi-
groups.

The second section brings together important background information. In Section 3,
we define the variety of strict *-semigroups if*', develop some of its elementary properties
and give relevant examples. Section 4 introduces two important equivalence relations T
and T' on strict ^-semigroups which are subsequently used to derive structurally important
rectangular bands from any strict ^-semigroup. The intersection of T, T' and the minimum
inverse semigroup congruence y is also studied here.

In Section 5, it is shown that any strict *-semigroup is a subdirect product of
rectangular bands, groups and 0-direct products of rectangular bands with Brandt semi-
groups. From this representation theorem is derived the main result: 5̂ * = 9iS9vS8v^,
where 9?39, 98 and 'S denote, respectively, the varieties of rectangular bands, combinatorial
strict inverse semigroups and groups.
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The lattice of subvarieties of ?f* is considered in Section 6 and shown to be
isomorphic to the direct product of the lattices of subvarieties of £%38, 38 and (S.

A structure theorem is given for strict ^-semigroups in Section 7 and the paper
concludes in Section 8 with an example to show that, in general, the unary operation on a
strict *-semigroup is not unique.

2. Background. Throughout we adopt the notation and terminology of Howie [5],
to which the reader is referred for all undefined terms and notation. We adopt the
following notation:

9~—the variety of all trivial semigroups,
—the variety of all left zero semigroups,
—the variety of all right zero semigroups,
—the variety of all rectangular bands,

Sf—the variety of all semilattices,
f*£—the variety of all semilattices of groups,
B2—the five element Brandt semigroup of rank 2,
38—the variety of all inverse semigroups generated by B2,

—the lattice of all subvarieties of the variety Y.

Recall that a semigroup S is said to be completely regular if it is a union of groups.
The class *<££% of completely regular semigroups is a variety of semigroups with unary
operation defined by the identities

xx~'x = x, (x~')~1 = x, xx~l = x~1x.

Various subvarieties of ^91 have been extensively studied and certain parts of the
lattice g($9l) are well understood: see [3], [6], [10], [14] and [15].

On the other hand the variety of inverse semigroups $ has also been the object of
much interest. As semigroups with a unary operation } is defined by the identities

xx~1x = x, (x"')"'=x, xx^yy"1 = yy~'xx~', (xy)~1 = y~'x~'.

For further information see [7], [8], [12] and [13].
It is well known and easily seen that the intersection of these two varieties "<?3$ and 3

is precisely the variety S^S. Our objective is to find varieties of unary semigroups which
overlap more extensively than &"$ with "#0? and $. The most natural approach would
appear to be to take small varieties from !£{$<3l) and ££($), such as 9£38 and 38, and to
study their join as varieties of unary semigroups. This is basically our approach except that
we consider 3?38v38v^, since it is equally amenable to our techniques.

It is well known that <S?(£%38) is the four element lattice consisting of 3~, !£2L, 9I2£ and
£%S8 and that if(38) is the three element chain consisting of ST, if and 38.

Varieties of inverse semigroups generated by Brandt semigroups were examined in
[8] and [12], from which the next three lemmas are drawn.
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LEMMA 2.1. Let Y be a variety of inverse semigroups which is not a variety of groups.
Then Zf^Y. Moreover, the following are equivalent:

(i) every element of Y is a group or a semilattice of groups,
(ii) the identity xx~' =x~lx holds in Y,
(iii) Y = 9>va)l, where % is the variety of groups YH'S,
(iv) SfcVc

Since the variety 89 has an important role in our discussions, we provide some
alternative characterizations of it.

DEFINITION 2.2. A semigroup is said to be combinatorial if it contains no non-trivial
subgroups.

LEMMA 2.3. For an inverse semigroup S, the following are equivalent:
(i) Sem,

(ii) S satisfies the identity (xyx ')2 = xyx \
(iii) S is a subdirect product of combinatorial Brandt semigroups or is a one element

group.

We shall also require some information regarding varieties generated by more
general Brandt semigroups.

LEMMA 2.4. Let V be a variety of inverse semigroups which is not a variety of
semilattices of groups. Then 5/b^Y. Moreover, the following are equivalent:

(i) every member of Y is a subdirect product of groups and/or Brandt semigroups,
(ii) the identity (xyx^Xxy*"')"1 = (xyx~^)~\xyx~^) holds in Y,

(iii) Y = ^\z% where % is the variety of groups YC\<&,
(iv) SSsrcgsv'S.

DEFINITION 2.5. An inverse semigroup S is said to be strict if it is a subdirect product
of groups and/or Brandt semigroups, that is, if and only if SeSSv'S.

The elements of 38 could be characterized now as combinatorial strict inverse
semigroups.

DEFINITION 2.6 [11]. A semigroup S is said to satisfy 3>-majorization if, for any e e Es

such that there exists an idempotent feDa with / < c , there is a maximum such idempo-
tent.

The importance here of the concept of S-majorization lies in the next two results due
to Lallement [9] (see also [11]).

LEMMA 2.7. Let Da, Db (a, beS) be 3)-classes of a completely semisimple semigroup S.
Let feDa be an idempotent such that there exists exactly one idempotent g e Db with g </.
Then for every idempotent eeDa there is a unique idempotent eeDb with e < e. Let the
function (pab : Da—>Db be defined by

cpa.b : x -» ex = xf (XE Da)
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where e0ix and x5£f. Then cpa,b is well defined and, for any x e Da, yeDb,
(i) xyeD b =>xy = (x<pa,b)y, yxe Db => yx = y(x<Pa.b),

(ii) If Dc<Db< Da, then <pa,b<pb,c = cpa,c.
Furthermore, the mapping <pb : S —> J(b)/I(b) defined by

x<pa,b if

0 otherwise

is a homomorphism which is one-to-one on Jb.

It should be noted that, in Lemma 2.7, if a 3) c and b 3) d, then cpa b = <pc d. The first
condition in the next theorem provides the most convenient test for 5)-majorization.

THEOREM 2.8. The following two conditions on a regular semigroup S are equivalent:
(i) for any e, f, g e Es, if e > / , e > g and f3) g then f=g,

(ii) S is completely semisimple and satisfies 3)-majorization.

Whenever (i) and (ii) hold, the mapping x of S into the product Yi J(a)U(a) of the
J(a)

principal factors of S defined by

X-x^Xx where Xx (Ha)) = x<pa

embeds S as a subdirect product.

NOTATION 2.9. We shall consistently use the notation cpab, <pa and x t o denote the
mappings introduced in Lemma 2.7 and Theorem 2.8. In addition, since the mappings (pah

and cpa depend only on the 3)-classes of a and b, we shall also write cpae = cpa b = <pcd and
<pa = cpa = cpc whenever a 2) c, b 9) d, a = Da and /3 = Db.

3. Strict *-semigroups. We introduce here the semigroups in the title and establish
some of their properties which will be needed later.

DEFINITION 3.1. A semigroup S with a unary operation * is a strict ^-semigroup if it
satisfies the following identities:

(I) x - xx*x,
(II) x = (x*)*,

(III) xx*x*x = x*xxx*,
(IV) (xyx*)(xyx*)* = (xyx*)*(xyx*),
(V) x(yz)*w = xz*y*w,

(VI) (xy)* = (x*xy)*(xyy*)*.

We denote by Sf* the variety of all strict ^-semigroups.

NOTE. The above identities do not include and do not imply the identity

(xy)* = y*x*.
This identity together with (I) and (II) defines the class of regular *-semigroups. Conse-
quently the semigroups considered here are not, in general, regular *-semigroups.
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VARIETIES OF SEMIGROUPS 63

Several of the identities (I)-(VI) are modelled on identities that figure prominently in
the studies of varieties of completely regular or inverse semigroups. For instance, (I) and
(II) hold in both completely regular and inverse semigroups, with (I) implying regularity.
Identity (III) is a weakened form of commutativity of idempotents in inverse semigroups
as well as the identity xx~1=x~'x in completely regular semigroups, Identity (IV) is
important in the study of varieties of inverse semigroups (see Lemma 2.4) while identities
(V) and (VI) are weakened forms of the inverse of a product rule (xy)-1 = y~'x-1 in
inverse semigroups.

We now develop some basic properties of strict *-semigroups.

LEMMA 3.2. If e is an idempotent of a strict *-semigroup, then e* = e.

Proof. Indeed, using identities (I), (II) and (III), we obtain

e* = e*ee* = e*eee* = ee*e*e = e(ee*e*e)e = e(e*eee*)e = (ee*e)2 = e2-e.

NOTE. A semigroup S is a generalized inverse semigroup (Yamada [16]) if it is
orthodox and the idempotents of S form a normal band. It follows immediately from
Lemma 3.2 and identity (V) that any strict *-semigroup is a generalized inverse semi-
group.

LEMMA 3.3. Every strict *-semigroup S is orthodox and satisfies the identities:
(VII) (xyx)* = x*y*x*,

(VIII) xyy * zz * w = xzz * yy * w,
(IX) (xy)(xy)* = (xyy*)(xyy*)*,
(X) (xy)*(xy) = (x*xy)*(x*xy).

Proof. Let e,feEs. Using identities (I) and (V) and Lemma 3.2, we get

and S is orthodox.

Let x, y e S. Using identities (VI), (I) and (IV), we obtain

(xyx)* = [(xy)x]* = [(xy)*xyx]*(xyxx*)*

= [(xy)*xyx]*(xyxx*)*(xyxx*)(xyxx*)*

= [(xy)*xyx]*[(xyxx*)*]2(xyxx*),
whence (xyx)* = (xyx)*xx*; symmetrically (xyx)* = x*x(xyx)*.

We now use identities (V) and (I) to obtain

(xyx)* = x*x(xyx)*xx* = x*x(x*y*x*)xx* = x*y*x*.

Hence S satisfies identity (VII).

Since efsEs, by Lemma 3.2 we obtain, for any x,weS,

xefw = x(ef)*w = xf*e*w = xfew,

which proves identity (VIII). For any x,yeS, using identities (VII), (V), (VIII) and (I), we
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obtain

(xy)(xy)* = xy(x*xy)*(xyy*)*

= xyy*x*x(xyy*)*

= xx*xyy*(xyy*)*

= (xyy*)(xyy*)*,

giving identity (IX). The argument for identity (X) is similar.

LEMMA 3.4. In a strict ̂ -semigroup S, we have
(i) a<£b<$a = ab*b and b = ba*a,

(ii) a$kb<$$ a = bb*a and b = aa*b.

Proof. If aS£b, then a = ub for some ueS, so that a = ub = ubb*b = ab*b. The rest
follows just as easily.

COROLLARY 3.5. In a strict "^-semigroup,
(i) adea2e>a = a*a2=a2a*,
(ii) aWa2^ a* = a~\ the inverse of a in the group Ha.

Proof, (i) By Lemma 3.4 and identities (V), (III) and (I), we obtain

*a2 = a2(a2)*a and a2 = a2a*a = aa*a2

a = aa*a*aa = aaa*a*a

a = a*aaa*a = aa*aaa*

(ii) Of course, a 96 a2 is equivalent to saying that Ha is a subgroup of S and then, by
(i), aa~xa* = a*aaa~la* = a*aa* = a* and similarly a* = a*a~la. From this and (i) it
follows that a* Ma so that, by (I), a* = a~\

COROLLARY 3.6. In a strict ̂ -semigroup S, we have aba* %£ (aba*)2, for all aeS.

Proof. From (IV), with u = aba*, we have uu* = u*u and so, multiplying on the right
by u, u = u*u2. By Corollary 3.5(i), this implies that u%tu2.

LEMMA 3.7. Every strict *-semigroup S is completely semisimple and satisfies @-
majorization.

Proof. We verify condition (i) of Theorem 2.8. Let e,f,ge Es be such that e > / , e > g
and fdb g. Then fXa and a 01 g, for some a e S , so that f=ba, a = cf, g = ad, a = gt, for
some b,c,d,t&S and a = af=ga. Thus a = ae = ea, whence a = eae^€(eae)2 = a2 by
Lemma 3.2 and Corollary 3.6. Therefore a is contained in a maximal subgroup of S with
identity u, say. Then

f = ba = bau =fu = efue = eufe = uf=u

and analogously g = u, which proves that / = g, as required.
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It follows from Lemma 3.7 that 3)=$> in any strict *-semigroup and that we may
consider the set of 2)-classes ($-classes) as a partially ordered set.

LEMMA 3.8. Let S be a strict *-semigroup. In the notation of Lemma 2.7, if Db ^Da

and xeDa then x*<pa,b = (xcpa-b)*.

Proof. If e = xx*, then e9£x and e£?x*. Let e be the unique idempotent in Db with
e s e . Then x<pab = ex and x*<pab = x*e so that, by (V), (VII) and Lemma 3.2, we have

(x<Pa.b)* = (£*)* = (xx*ex)* = x*(x*e)*x* = x*exx* = x*e = x*<pa_b.

The following is a simple but important consequence of these preliminary observa-
tions.

PROPOSITION 3.9. Every strict ^-semigroup is a subdirect product of completely 0-simple
and/or completely simple strict *-semigroups.

Proof. This follows immediately from Lemmas 3.7 and 3.8 and Theorem 2.8.

Some elementary examples of strict *-semigroups are the following.
(i) Groups: the *-operation is just the usual inverse operation,

(ii) Rectangular bands: the *-operation is just the identity operation,
(iii) Rectangular groups: the *-operation gives the inverse within each subgroup.
(iv) Brandt semigroups: the *-operation is the usual inverse operation.
In all of these cases, the *-operation is unique.
The class of examples that we are about to describe is central to the whole discussion.

We first require a certain construction.

DEFINITION 3.10 [4]. Let A and B be semigroups and let B have a zero. Let
I = {(a, 0) | a s A}. Then I is an ideal of A X B and the 0-direct product A xoB of A and B
is the Rees factor semigroup (A X-B)II. Strictly speaking I is now the zero of A XOB but it
is notationally convenient to identify any element of the form (a, 0) with / and to denote
this element by 0.

Note that any variety is closed under the formation of 0-direct products.

LEMMA 3.11. Let A be a rectangular band and B be a Brandt semigroup. Then A x0B
is a strict ^-semigroup where (a, b)* = (a, b"1).

Proof. Straightforward.

The *-operation in the class of strict *-semigroups introduced in Lemma 3.11 is not,
in general, the only unary operation satisfying the identities (I)-(VI). An example to
illustrate this will be considered in Section 8.

Whenever a semigroup A XOB as in Lemma 3.11 is being considered as a strict
*-semigroup, we shall mean this with respect to the unary operation in Lemma 3.11.

4. Some basic equivalence relations. In this section we introduce two equivalence
relations on strict *-semigroups and investigate their basic properties, particularly in
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relation to the minimum inverse semigroup congruence. This provides the foundations for
the representations developed later.

LEMMA 4.1. Let S be a strict *-semigroup. Define the relations T = TS and T' = TS on S
by

xTy O there exists zeS with x0iz and z* 01 y,

xT' y O there exists zeSwithxgz and z*Xy.

Then r and r' are equivalence relations on S with the following properties:
(i) « c T c 3 , i ? c T ' c 3 ;

(ii) x(TnT')x*, for all xeS.

Proof. By duality, it suffices to consider r. Clearly T S 3 , S O let x, y, z be elements of a
single 5l-class D. Then x0lxx* and (xx*)* = xx* 01 x so that XTX and T is reflexive. If
XTy then, for some UGS, x0tu and u* 0£ y. Hence ySfcu* and (u*)* = uS?x. Thus yrx
and T is symmetric. If XTy and yrz, then there exist u, veS with xSku, u*0ly, yi%i),
u* S& z. It follows that u*<%u and U*MU = U S D , SO that utieD. Since S is completely
semisimple, this implies that u0tuv so that x9? u 0t uv. Using identity (X), we get

(uv)*(uv) = (u*uv)*(u*uv) = v*v

whence (uv)* 01 v* $1 z and XTZ. Thus T is transitive.
If x£%y, then x£%xx*S?y so that xSftxx* and (xx*)* = xx* 01 y, by Lemma 3.2; thus

XTy and (i) holds for T. Finally, x<%x and x*0tx* so that XTX*. This completes the
proof of the lemma.

LEMMA 4.2. Let S and T be unary semigroups satisfying (I), (II) and (III). Let T be
such that there exists only one unary operation satisfying (I), (III) and x* = x*xx*. Let
6 : S-+T be a semigroup homomorphism. Then 6 is also a ^-semigroup homomorphism.

Proof. For any xeS, we have

x6 = (xx*x)0 = (x0)(x*0)(x0), x*8 = (x*xx*)8 = (x*0)(x0)(x*0),

(x0)(x*0)(x*0)(x0) = (xx*x*x)0 = (x*xxx*)0 = (x*0)(x0)(x0)(x*0).

By the uniqueness of * in T, we have x*0 = (x0)*.

COROLLARY 4.3. Let S by a unary semigroup satisfying (I), (II) and (III) and let
0 : S^T be a semigroup homomorphism. If T is an inverse semigroup or a completely
regular semigroup, then 6 is also a *-semigroup homomorphism.

Recall [5] that on any orthodox semigroup there is a minimum congruence such that
the quotient is an inverse semigroup. To describe this, we require the following notation.

NOTATION 4.4. For any element x in a semigroup S, let

V(x) = {y € S | xyx = x and yxy = y},

that is, let V(x) denote the set of inverses of x. Also let 7 denote the relation defined on S
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by
x 7 y O V ( x ) = V ( y ) .

Note that in a strict ^-semigroup we always have x*e V(x).

LEMMA 4.5 [5]. Let S be an orthodox semigroup. Then y is the smallest congruence on S
such that S/y is an inverse semigroup. Moreover, y £ Q) and y D 2£ is the identity relation on
S.

LEMMA 4.6. Let S be a strict *-semigroup. Then TC\T'C\y is the identity relation on S.

Proof. Let (x, y) e r C\ T'C\ y. Since ( x j ) e i , we have xSJy and there exists an
element z with x£%z and z*5£y. Then, by (V),

z2 = zz*zz = zz*(z*)*z = zz*(yy*z*)*z = zz*z(yy*)*z = zyy*z = zyy*xx*z.

Since Sly is an inverse semigroup and X7 = y7, it follows from Corollary 4.3 that

(yy*xx*)7 = (yT)(y*Y)0tY)U*7) = M M " W t o ) " 1

= (y7)(yy)~ WCy?)"1 = (yyXyT)"' = (yy*h-
But 7 £ 2) and so yy*xx* % yy* 3) z. Now y = z*zy and z = xx*z so that zy, yy*xx* and
x*z are all 2)-equivalent (to z). Since S is completely semisimple, it follows that
z2= zyy*xx*z is also Si-equivalent to z and therefore zfflz2. By Corollary 3.5(ii), z 3if z*
from which we obtain x£%z $fz* S%y. Thus x0ly. Similarly, (x, y ) e r ' n 7 implies that
xiBy. Hence T D T T I Y C ^ ? . But, by Lemma 4.5, y!~)df( is the identity relation and so the
result follows.

LEMMA 4.7. Let S be a strict *-semigroup and a, b, c be 2>-equivalent elements of S.
Then there exists an element z eS with ZT = ax, ZT' = in' and zy = cy.

Proof. We first show that arr\cy^0. Let e = aa*, f=cc* and xeS be such that
e 9? x and x££f. Then xf = x and, for some x'eS, x'x=f. Let x" = fx'. It is routine to
verify that x"e V(x) and that x"x-f. Since x"e V(x), X"Y = (xy)~i =x*y, so that

(X*XC)Y = (X"XC)Y = (fc)y = cy

while x*xc0lx* and a0lx. Thus x*xceaTflc7.
Similarly, bj'C\cyi=0. So let uearPlcy and uebi-'DcY- Then

(HU*)Y = (CC*)Y = (UU*)Y = (UU*UI)*)Y.

Hence
uu*u3 uu*vv* y uu* 3)uycyv

and, since y^2, we have that uu*v, u and u are 3-equivalent elements. Since S is
completely semisimple, this implies that uu*v$lu and uu*v!£v so that uu*ve UT(~\VT' =
arf)tn', by Lemma 4.1(0, while (uu*v)y = vy = cy. Therefore uu*v ea
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5. The variety of strict *-semigroups. We now wish to establish that the variety of
strict *-semigroups is the join of the varieties of rectangular bands, of combinatorial strict
inverse semigroups and of groups. To do so we develop a representation of strict
*-semigroups as subdirect products of rectangular groups and 0-direct products of
rectangular bands with Brandt semigroups.

PROPOSITION 5.1. Let S be a completely 0-simple strict ^-semigroup. Let I (respectively,
A) denote the set of non-zero r (respectively, T') classes of S. Consider I (respectively, A) as
a left zero (respectively, right zero) semigroup. Let B = S/y. Then the mapping x '• S —* R =
(JxA)x0B defined by

\((XT, XT'), xy) if x^O

[o otherwise

is a *-isomorphism.

Proof. By Lemma 4.6, TDT' Dy is the identity relation on S and so it is clear that x
is one-to-one. From Lemma 4.7, it follows easily that x maps S onto R.

For x, y e S, we have

(xx) (yx) = ((XT, XT'), xy) ((yT, yr'), y7)

= ((XT, yT'), (x7)(y7)) = ((XT, yT'), (xy)7) (1)

while

(xy)x = (Uy)T, (xy)T'), (xy)7). (2)

If xy = 0, then (xy)7 = 0 and so the elements in (1) and (2) are both zero. If xy^O,
then x9?xy, so that XTxy, and yZBxy, so that y T xy. Thus the elements in (1) and (2) are
again equal and x is a homomorphism.

Furthermore, using Lemma 4.1(ii) and Corollary 4.3, we get

X*X = ((X*T, X*T'), X * 7 ) = ((XT, XT'), ( X 7 ) - ' )

= ((XT, XT'), X 7 ) * = I

so that ^ is a *-homomorphism and therefore a *-isomorphism.

Forgetting the unary operation for the moment, the semigroup ( I X A ) X 0 B of
Proposition 5.1 is a special case of a construction introduced by Yamada [17] to study
what he called generalized Brandt semigroups. Proposition 5.1 tells us, in effect, that
completely 0-simple strict ^-semigroups are, as semigroups, generalized Brandt semi-
groups. The converse does not hold.

PROPOSITION 5.2. A completely simple strict *-semigroup is a rectangular group and
conversely.

Proof. The direct part follows immediately from the fact that a strict *-semigroup is
orthodox (Lemma 3.3) while the converse is obvious.
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Combining Propositions 3.9, 5.1 and 5.2, we arrive at the following subdirect product
representation for strict *-semigroups.

THEOREM 5.3. Every strict ^-semigroup is a subdirect product of rectangular bands,
groups and/or 0-direct products of rectangular bands with Brandt semigroups.

We are now ready for the main result of this section.

THEOREM 5.4. ^ *

Proof. We have seen that every rectangular band, every Brandt semigroup and every
group is a strict *-semigroup. Thus SftSSvSBv'Sc^'*. Now let SeSf*. By Theorem 5.3,
S is a subdirect product of rectangular bands, groups and/or 0-direct products of
rectangular bands and Brandt semigroups. All rectangular bands and all groups lie in
9?S9vS8v^. So let Ax0B be a 0-direct product of a rectangular band A and a Brandt
semigroup B. By Lemma 2.4, BeSSv'S. Hence A xB e9£38vS8v'S and so
A x()fi€^S8vS8v«. Consequently, ^* c^S8vS8v« and the result follows.

Since y* contains 9?S9, ^(£38) and <3, it also contains the variety ©JV38<S of orthodox
normal bands of groups (see [10] for details). Thus OJf®<g A 38 s y*. Conversely, GWS8<S A 38
contains S$28, 38 and <& and therefore $f* so that we obtain an alternative characterization
of the variety Sf*.

COROLLARY 5.5. <f* = CXtmv®.

6. The lattice of subvarieties of &*. In this section we describe completely the
lattice of subvarieties of if* modulo group varieties.

THEOREM 6.1. The mapping

i/f: % -»(°u n s$38, % nss, °u n«)

is an isomorphism of <£(</*) onto the lattice i?($98)xi?(98)x.S?(<S).

Proof. Clearly 4> is order preserving. Let % VeiBiSF*) be such that %(//<r^ and let
Se°U. By Theorem 5.3, S is a subdirect product of rectangular bands Ra (ae A), groups
G3 (/3 e B) and/or 0-direct products of rectangular bands R, (yeC) with Brandt semi-
groups By (yeC). Since %<|/<yt/(, we see immediately that the Ro, G0 and R, lie in V.
Let By = M°(I,H, I; A). Then B7/3i? e % n SB £ r n 98 c r and H e 1 ( n « c r n 8 c y . But
By is isomorphic to the 0-direct product Hxo(B7/3i?). Therefore B7 is also in V.
Consequently, SeY and K e y if and only if ^^Yijj. To prove that i/> is a lattice
isomorphism it will suffice to show that it is an epimorphism.

Let (%Y, W)eie{m.^)xie(^)x5e{<S). Clearly (°UvYvW)(p>(%Y, W). To estab-
lish equality, it suffices to provide identities satisfied by M=SIL\/Y\/'W which imply that
Mr\S/l®^% M.r\0&<^Y and ̂ n ^ c W. It will follow that the identities given constitute a
basis for M and also that every element of i?(5^*) is of the form M = SU\/Y\/W for
{% Y, W) e <£{m®) x #(ffl) x
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We shall only consider one representative case in detail and then provide a table of
identities for the other cases.

Let "U = 3%£, f = £k and let F b e a group variety. By Lemma 3.2, the variety of strict
*-semigroups given by the identity xx*=yy* is clearly the variety "S of groups and
consequently the group variety W has a basis of identities of the form xx* = yy* and
ui=ua (aeA).

Consider the set of identities

(i) xx*yy*zz* = xx*zz*yy*, (ii) ul=ul(aeA).

These identities are clearly valid in % T and W. (Note that x3 = x2 is an identity that
holds in S3 from which (ii) follows.) Hence the identities (i) and (ii) are valid in
M — SU\/'V\/W. However, any rectangular band satisfying (i) is necessarily a left zero
semigroup so that MC\0l3ftc.33£, while any group satisfying (ii) must clearly lie in W so
that Mn<gcW. Trivially ^nS8g98 = r and so M<p = (%Y, W) as required.

In Table 1 we tabulate suitable collections of identities for all possible cases involving
a variety W of groups given by the identities xx* = yy*, u^ = ua (a e A). The first column

gives °IL ei?(3$38) while the first row gives Ye<£(3&) for the triple (% V, W). In every case
we require the identities u^ = u\ and the identities for strict *-semigroups, so we list only
the additional identities required.

5" .9" 33

XX

xyy

XX*

xyy*

*

*

y

z

= yy*

= X

= y

= xz

XX

xyy

XX*

*yy*
XX*

*22*

XX*
yy*2

XX*

XX*

= yy*xx*
= x*x
= xz2*yy*
= x*x
= yy*xx*2
= x*x
= x*x

xx*yy*

xyy*2Z*

xx*yy*2

= yy*xx*

= xzz*yy*

= yy*xx*z

0
Table 1

As remarked above, combining the identities in Table 1 with those for strict
*-se:migroups and ul = ul(a<= A) gives a basis for % vY v W. Thus a basis for @tS, vSS v W
within y* is xx*yy*z = yy*xx*z, ul = u%

We illustrate our findings in Figure 1. In it, y$ denotes the variety of strict inverse
semigroups and 9? stands for "combinatorial".

7. A structure theorem. In this section we develop a structure theorem for strict
*-semigroups in terms of rectangular bands and inverse semigroups. The construction
used is quite similar to that introduced by Yamada [16].

Let T be a strict inverse semigroup. Since %=$ there is a natural partial ordering of
the 2)-classes of T. For each a e T/3), let Ba be a rectangular band and, for |3 <a, let 0a 0

be a hornomorphism of Ba into B3 such that
(0 $a.a ' s the identity mapping on Ba,
(ii) 0a^y = 6a,y (7
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Figure 1

Let

S(T;Ba,6a^) = {(e,a)\eeBa, where a = Da and aeT},

define a binary operation on S(T; Ba, 0a e ) by

(where a = Da, /3 = Db, 7 = Dab) and define a unary operation on S(T; Ba, 8afi) by

(3)

(4)

THEOREM 7.1. With respect to the operations (3) and (4), S{T; Ba,6a3) is a strict
^-semigroup and, conversely, every strict ^-semigroup is *-isomorphic to one of this form.

Proof. The direct part of the proof follows from straightforward calculations. We
consider just one of the many requirements to be verified, the proof of which is fairly
typical. Consider identity (V). Let

(e, a), {f, b), (g, c), (h, d) e S(T; Ba, 0aS).

Tn order to simplify the notation, we write 6aJ> for 6DaOb (a,beT). Then, writing
u = ac~xb~xd, we have

and similarly

(e, a) ((/, b)(g, c))*(h, d) = (e, a) ((/^.JCg^.J, bc)*{h, d)

= (e, a) ((/0b, J (g0c ,a c-'b-1) (M)
(/0b,u) (ge£.u) (W4J, ")

(e, a) (g, c)*(/,
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The two first components here are equal, since in any rectangular band xuuy = xy = xuuy.
Thus the two elements are equal and identity (V) holds.

Conversely, let S be a strict *-semigroup. Let 7 be the minimum inverse semigroup
congruence on S and let T = Sly. For aeS and a = Da, let Sa denote the principal factor
J(a)/I(a). For the sake of simplicity, we will denote the restriction of T to any 2)-class also
by T. Let Ia = DJT (respectively, Aa = DJT') be endowed with the structure of a left
(respectively, right) zero semigroup and Ba denote the rectangular band Ia x Aa.

For j3 = Db (beS) and 0 < a , define 0 a 3 : Ba -»J33 by

(XT, yT')0a,B = (x<pa,0T, y<pa.B
T)

where <pafi is as in Notation 2.9. It follows from Lemmas 2.7 and 3.8 that 0a(3 is well
defined and it is then easily verified that 6a3 is a homomorphism. Since <paa is the identity
mapping, so also is Qaa and, since <pa%$(f>&%y = <pa,y when 7 < / 3 < a (Lemma 2.7(ii)), it also
follows that 0a,p0Qy = day. Thus we have all the necessary ingredients to construct
R = S(T; Ba, 6aP) and our next task is to show that S is isomorphic to R.

Define x '• S ~* -R by

x * = ((XT, XT') , X7).

From Lemma 4.6, we see that \ is one-to-one while, from Lemma 4.7, x maps S onto R.
To see that ^ i s a homomorphism, let x, y e S, a = Dx, /3 = Dy and 7 = Dxy. Then

(xx)(yx) = ((XT, XT'), XY)((yr, yT(),

= ((XT, XT')6ay(yT, yT')6

= ((xfa,yT, X(payT')(y(p0yT, ycp3yT'), (xy)7)

= ((xcpa_yT, y<pp,yT'), ( x y h ) (5)

while

(xy)x = ((xy)T, (xy)T1), (xy)7). (6)

Now xy = (x(pay)(y<ppy) 01 x<pay so that (xy)T = xcpa-yT. Similarly, (xy)r'= y<pB>7T' and the
expressions (5) and (6) are equal. Thus (xx)(yx)= (xy)x and the *-operation is clearly
preserved.

8. An example. We conclude with an example to show that the *-operation on a
strict *-semigroup need not be preserved under automorphisms. This also implies that a
semigroup can be a strict ^-semigroup with respect to two different unary operations.

Let / = {1}, / = {1,2} and S = (Ix J) x0B2, where / is a left zero semigroup and J is a
right zero semigroup. Then S is a strict *-semigroup relative to the unary operation of
Lemma 3.11. For jeJ define

2 if ; = 1,

if j = 2.

https://doi.org/10.1017/S0017089500005437 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500005437


VARIETIES OF SEMIGROUPS 73

If 6 : S -» S is defined by

{«H»*'» " ' - ' 0.-0.
l, j),(fc, 0) 'f ' = 2,

then it is straightforward to see that 6 is an automorphism of S. However,

((i; i), (i, 2))*e = (d, i), (2, i))e = ((i, i), (2, D)

while

((1,1), (1,2))0)* = ((1, 2), (1,2))* = ((1, 2), (2,1))

so that 6 does not respect the *-operation. If we now define a unary operation a —> a+ on
S by

we obtain a unary operation on S distinct from the *-operation and with respect to which
S is a strict ^-semigroup, as is easily verified.
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