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1. Introduction

The classical Bernoulli polynomials can be defined through the generating function

zezx

ez − 1
=

∞∑
k=0

Bk(x)
k!

zk,

B0(x) = 1, B1(x) = x − 1
2 , B2(x) = x2 − x + 1

6 , B3(x) = x3 − 1
23x2 + 1

2x, . . .

(see, for example, [1,5]). They appear naturally in the calculation of sums of powers of
the natural numbers Sk−1(n) = 1k−1 + 2k−1 + · · · + nk−1 in a simple way:

Sk−1(n) =
Bk(n + 1) − Bk

k
,

where Bk = Bk(0) are the Bernoulli numbers. All odd Bernoulli numbers except B1 = − 1
2

are known to be zero, so the odd Bernoulli polynomials (up to a multiple k) can be
thought of as an ‘analytic continuation’ of the sums of powers from natural argument n

to real (or complex) x.
In this paper we introduce a new class of polynomials, which can be considered as an

elliptic generalization of the odd Bernoulli polynomials B2k+1(x). They are related to
the quantum top and to the classical Lamé operator

Ls = − d2

dz2 + s(s + 1)℘(z).
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where ℘ is the Weierstrass elliptic function [5], satisfying the differential equation

(℘′)2 = 4℘3 − g2℘ − g3.

It is well known (see [10]) that the Lamé operator (considered on the real line shifted
by the imaginary half-period) for integer s has a remarkable property: its spectrum has
exactly s gaps. The ends of the spectrum Ej correspond to the doubly periodic solutions
of the Lamé equation (so-called Lamé functions). The corresponding polynomials

R2s+1(E) =
2s∏

j=0

(E − Ej(s))

will be called Lamé spectral polynomials. The computation of the polynomials R2s+1(E)
for given s = 1, 2, 3, . . . goes back to Hermite and Halphen [30]. In more recent times this
has been investigated within the finite-gap theory initiated by Novikov [20] (see [2,24,25]
for the latest results in this direction).

Here we consider a related but different problem: we would like to express the coefficient
bk of the spectral polynomial R2s+1(E) = E2s+1 + b1E

2s + b2E
2s−1 + · · · + b2s+1 as a

function of s (and thus for all values of parameter s). We will show that in this relation
there naturally appear some new polynomials which generalize the odd Bernoulli poly-
nomials.

The following remarkable relation between the Lamé equation and the quantum Euler
top, going back to Kramers and Ittmann [12, 13], will be crucial for us. Consider the
quantum mechanical Hamiltonian of the Euler top (see, for example, [16]):

Ĥ = a1M̂
2
1 + a2M̂

2
2 + a3M̂

2
3 ,

where the angular momentum operators M̂j satisfy the standard commutation relations
[M̂1, M̂2] = iM̂3, [M̂2, M̂3] = iM̂1, [M̂3, M̂1] = iM̂2 (we assume that � = 1 for simplic-
ity).

The operator Ĥ naturally acts in any representation of the Lie algebra so(3). In par-
ticular, it acts in the representation space with spin s of dimension 2s + 1 as a finite-
dimensional operator Ĥs. The claim is that if the parameters ai = ei are the roots
e1, e2, e3 of the equation 4℘3 − g2℘ − g3 = 0, then the characteristic polynomial of the
operator Ĥs coincides with the spectral Lamé polynomial:

det(λI − Ĥs) = R2s+1(λ). (1.1)

We discuss this in more detail in the next section.
The Weierstrass condition e1 + e2 + e3 = 0 is unnatural from this point of view (and,

moreover, contradicts the ‘physical’ condition of positivity of ai), so we consider the case
when the parameters ai are arbitrary. Let us introduce new parameters g1, g2 and g3,
which are symmetric functions of a1, a2 and a3 defined by the relation

4(z − a1)(z − a2)(z − a3) = 4z3 − g1z
2 − g2z − g3. (1.2)
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We define the elliptic Bernoulli polynomials B2k+1 as the coefficients in the expansion of
the trace of the resolvent of Ĥs at infinity,

tr(λI − Ĥs)−1 =
∞∑

k=0

B2k+1(s)
λk+1 , (1.3)

or, equivalently, by the relation

B2k+1(s) = tr Ĥk
s .

B2k+1 is a polynomial in s of degree 2k + 1 with coefficients, which are themselves
polynomials in g1, g2, g3 with rational coefficients. Strictly speaking we should write
B2k+1(s; g1, g2, g3) rather than B2k+1(s), but we will use both notations depending on
the context. When g2 = g3 = 0, these polynomials reduce, up to a factor, to the classical
odd Bernoulli polynomials:

B2k+1(s; g1, 0, 0) =
gk
1

(2k + 1)22k−1 B2k+1(s + 1).

The corresponding elliptic curve Γ given by the equation

y2 = 4x3 − g1x
2 − g2x − g3

degenerates to a rational curve in this case. If g1 = 0, we have the standard Weierstrass
form of an elliptic curve. The polynomials B2k+1(s; 0, g2, g3) are called reduced elliptic
Bernoulli polynomials and denoted as BW

2k+1(s; g2, g3):

BW
1 = 2s + 1,

BW
3 = 0,

BW
5 = 1

60g2s(s + 1)(2s − 1)(2s + 1)(2s + 3),

BW
7 = 1

280g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5),

BW
9 = 1

1680g2
2s(s + 1)(2s − 1)(2s + 1)(2s + 3)(4s4 + 8s3 − 11s2 − 15s + 21).

The coefficients of BW
2k+1 are homogeneous polynomials in g2, g3 of weight 2k if we

assume as usual that the weights of g2 and g3 are 4 and 6, respectively (in other words,
they are modular forms of weight 2k; see, for example, [17]). Two interesting special
cases, g2 = 0 and g3 = 0, are called lemniscatic and equianharmonic, respectively, and
correspond to elliptic curves with additional symmetries.

We will present some effective ways to compute the elliptic Bernoulli polynomials,
investigate their properties and then apply them to the calculation of the coefficients of
the Lamé spectral polynomials. In particular, we prove that the coefficient bk = bk(s) of
the Lamé spectral polynomial

R2s+1(E) =
2s∏

j=0

(E − Ej(s)) = E2s+1 + b1E
2s + b2E

2s−1 + · · · + b2s+1
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is a polynomial in s, g2, g3 with rational coefficients. It can be computed using the reduced
elliptic Bernoulli polynomials by the following recurrence relation with b0 = 1:

bk = −1
k

k∑
j=1

BW
2j+1(s)bk−j .

The first coefficients are

b1 = 0,

b2 = − g2

120
s(s + 1)(2s − 1)(2s + 1)(2s + 3),

b3 = − g3

840
s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5),

b4 =
g2
2

201 600
s(s − 1)(s + 1)(2s − 1)(2s + 1)(2s + 3)(56s4 + 76s3 − 94s2 + 201s + 630)

(more of them are given in § 5, below).
Note that once the coefficients bk(s) are known for k = 0, 1, . . . , 2s one can find the

eigenvalues of the quantum Euler top in the representation with spin s (integer or half-
integer) by solving the corresponding algebraic equation R2s+1(E) = 0.

We conclude with the discussion of possible relations and further developments.

2. The Lamé equation and the quantum Euler top

The observation that the Lamé equation is closely related to the quantum top was made
by Kramers and Ittmann in the early age of quantum mechanics [12,13] (see also [28,29]).
They showed that the corresponding Schrödinger equation is separable in the elliptic
coordinate system and that the resulting differential equations are of Lamé form. We are
going to re-derive this result here and reformulate it in modern terms.

Consider the Hamiltonian

Ĥ = a1M̂
2
1 + a2M̂

2
2 + a3M̂

2
3

acting in the space of functions on the unit sphere

q2
1 + q2

2 + q2
3 = 1, (2.1)

using the standard representation of the angular momenta as the first-order differential
operators:

M̂1 = −ı(q2∂3 − q3∂2),

M̂2 = −ı(q3∂1 − q1∂3),

M̂3 = −ı(q1∂2 − q2∂1).

Let us introduce the elliptic (or sphero-conical) coordinates u1, u2 on this sphere as
the roots of the quadratic equation

q2
1

a1 − u
+

q2
2

a2 − u
+

q2
3

a3 − u
= 0, (2.2)
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where the parameters a1, a2, a3 are the same as in the top’s Hamiltonian. We then have
the following expressions for the Cartesian coordinates in terms of u1, u2:

q2
1 =

(a1 − u1)(a1 − u2)
(a1 − a2)(a1 − a3)

,

q2
2 =

(a2 − u1)(a2 − u2)
(a2 − a1)(a2 − a3)

,

q2
3 =

(a3 − u1)(a3 − u2)
(a3 − a1)(a3 − a2)

.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.3)

The system has an obvious quantum integral M̂2 =
∑

M̂2
i , which is the Casimir oper-

ator:
[M̂2, M̂i] = 0, i = 1, 2, 3.

One can check that in the elliptic coordinate system the operators Ĥ and M̂2 have the
form

M̂2 = − 4
u1 − u2

[√
−P (u1)

∂

∂u1

(√
−P (u1)

∂

∂u1

)
+

√
P (u2)

∂

∂u2

(√
P (u2)

∂

∂u2

)]
,

(2.4)

Ĥ = − 4
u1 − u2

[
u2

√
−P (u1)

∂

∂u1

(√
−P (u1)

∂

∂u1

)
+ u1

√
P (u2)

∂

∂u2

(√
P (u2)

∂

∂u2

)]
,

(2.5)

where P (u) = (u − a1)(u − a2)(u − a3). Note that the operator M̂2 corresponds to the
standard Laplacian −∆ on the unit sphere.

Since M̂2 and Ĥ commute, one can look for joint eigenfunctions. The spectral problem
M̂2ψ = µψ is well known in the theory of spherical harmonics (see, for example, [19]).
It is known that the spectrum has the form µ = s(s + 1) for non-negative integer values
of s. The dimension of the corresponding eigenspace Vs is 2s + 1 and Vs is an irreducible
representation of dimension 2s + 1 of the rotation group SO3 called representation with
spin s.

It turns out that the joint eigenvalue problem

M̂2φ = s(s + 1)φ,

Ĥφ = Eφ

is separable in the elliptic coordinates u1, u2 (see [12,13,28,29]). Namely, if we substitute
φ(u1, u2) = φ1(u1)φ2(u2) into this system, we find that each of the functions φ1(u1),
φ2(u2) satisfies the same differential equation:(

4[P (u)]1/2 d
du

(
[P (u)]1/2 d

du

)
− s(s + 1)u + E

)
ψ = 0,

which can be rewritten as

d2

du2 ψ +
1
2

[
1

u − a1
+

1
u − a2

+
1

u − a3

]
d
du

ψ =
1
4

s(s + 1)u − E

(u − a1)(u − a2)(u − a3)
ψ. (2.6)
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A remarkable fact is that this is an algebraic form of the following slightly generalized
version of the Lamé differential equation:

− d2

dz2 ψ + s(s + 1)℘∗(z)ψ = Eψ, (2.7)

where ℘∗(z) is a solution of the differential equation

(℘′
∗)

2 = 4(℘∗ − a1)(℘∗ − a2)(℘∗ − a3). (2.8)

Indeed, after the change of variables u = ℘∗(z), equation (2.7) coincides with (2.6)
(see [30]). When the sum a1 + a2 + a3 = 0, equation (2.8) determines the Weierstrass
elliptic function ℘(z); otherwise, it differs from it by adding a constant.

It is well known (see, for example, [5]) that for φ to be a regular solution on the sphere
the corresponding ψ must be doubly periodic, which implies that s is integer and E must
have one of the 2s + 1 characteristic values Em(s). For each Em(s) there exists exactly
one (up to a factor) doubly periodic solution to the Lamé equation Em

s (u), which is called
the Lamé function. Therefore, the basis of the eigenfunctions of the operator Ĥ in the
invariant subspace Vs consists of 2s + 1 solutions φ(u1, u2) of the form Em

s (u1)Em
s (u2).

These are sometimes called ellipsoidal harmonics (see [30]).
Thus, we come to the following result (cf. [12,13,28,29]).

Theorem 2.1. The characteristic polynomial of the quantum top Hamiltonian Ĥs

in the representation space with integer spin s coincides with the spectral polynomial
R2s+1(λ) =

∏2s
j=0(λ − Ej(s)) of the generalized Lamé operator (2.7).

Remark 2.2. Turbiner [26] has discovered a similar but different relation between
the Lamé equation and certain quadratic elements of the universal enveloping algebra of
sl(2). The Lamé spectral polynomials are known to be factorizable and Turbiner’s result
gives an interesting interpretation for the factors in these terms.

Remark 2.3. The simple relationship between the quantum Euler top and the Lamé
equation mentioned above is a little misleading. Indeed, there are several spectral prob-
lems related to the Lamé equation. We have considered only the smooth real periodic
version related to real x shifted by the imaginary half-period. If we considered real x,
we would have a singular version (since ℘ has poles on the real line), whose spectrum
has nothing to do with the quantum top. In turn, the quantum Euler top in the rep-
resentation with half-integer spin s has eigenvalues which are just some special double
eigenvalues of the periodic Lamé operator, which in this case has infinitely many gaps.

3. Elliptic Bernoulli polynomials

Now we define the elliptic Bernoulli polynomials B2k+1(s) as the traces of the powers
of Ĥs, where Ĥs is, as before, the quantum top operator Ĥ in the representation with
spin s:

B2k+1(s; g1, g2, g3) = tr Ĥk
s , k = 0, 1, 2, . . . . (3.1)

Here the parameters g1 = 4(a1 +a2 +a3), g2 = −4(a1a2 +a2a3 +a1a3) and g3 = 4a1a2a3

are defined by the relation (1.2).
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Theorem 3.1. The trace tr Ĥk
s is a polynomial in s of degree 2k + 1 antisymmetric

with respect to s = − 1
2 , whose coefficients are polynomials in g1, g2, g3 with rational

coefficients. When g2 = g3 = 0, it reduces (up to a factor and shift) to the corresponding
classical odd Bernoulli polynomial:

B2k+1(s; g1, 0, 0) =
gk
1

(2k + 1)22k−1 B2k+1(s + 1). (3.2)

The first part essentially follows from the Harish-Chandra general results [9] (see also
[4, p. 268]), but here we give a direct proof.

Proof. Consider the standard basis in Vs consisting of the eigenvectors |j〉 of M̂3:
M̂3|j〉 = j|j〉, j = −s,−s+1, . . . , s−1, s. In this basis, the Hamiltonian Ĥ is a tri-diagonal
symmetric matrix H = Hs with the following elements (see, for example, [16, p. 417]):

〈j|H|j〉 = 1
2 (a1 + a2)[s(s + 1) − j2] + a3j

2,

〈j|H|j + 2〉 = 〈j + 2|H|j〉 = 1
4 (a1 − a2)

√
(s − j)(s − j − 1)(s + j + 1)(s + j + 2).

}

(3.3)
Note that both expressions are symmetric with respect to s = − 1

2 ; they are also homo-
geneous polynomials of degree 1 in a1, a2, a3. Now, consider any diagonal element of Hk;
it has the form

〈j|Hk|j〉 =
∑

i1,i2,...,ik−1

〈j|H|i1〉〈i1|H|i2〉 · · · 〈ik−1|H|j〉,

where the distance between two consecutive indices il, il+1 is either 0 or ±2. Since the
starting point and the ending point coincide, if the matrix element 〈il|H|il + 2〉 appears
along the path, the element 〈il + 2|H|il〉 also appears along the path. This proves that
the diagonal matrix elements of Hk are polynomials of degree 2k in both s and j. From
(3.3) they are symmetric with respect to s = − 1

2 and homogeneous symmetric poly-
nomials of degree k in a1, a2, a3. Now summing over j = −s,−s + 1, . . . , s − 1, s and
taking into account the fact that the sums of the odd powers of j are zero while the
sums of even powers 2l are the odd Bernoulli polynomials B2l+1(s + 1) (multiplied by
2/(2l+1)), we have the first statement of the theorem. The antisymmetry of B2k+1(s) with
respect to s = − 1

2 follows from the well-known property of the Bernoulli polynomials:
Bm(1 − s) = (−1)mBm(s). The symmetry in a1, a2, a3 is clear from the definition
of B2k+1.

In the case when a1 = a2 = 0, we have g2 = g3 = 0, g1 = 4a3 and Ĥ = a3M̂
2
3 . The

spectrum of Hs is then very simple: λj = a3j
2 for j = −s,−s + 1, . . . , s − 1, s. Since the

sum
s∑

j=1

j2k =
1

2k + 1
B2k+1(s + 1),

we thus obtain (3.2). This completes the proof of Theorem 2.1. �
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Note that from the point of view of the elliptic curve Γ given by the equation

y2 = 4x3 − g1x
2 − g2x − g3,

the case g2 = g3 = 0 corresponds to the limit when one of the periods goes to infinity
(the ‘trigonometric limit’). There are two more interesting special cases: the lemniscatic
case when g1 = g3 = 0 and the equianharmonic case when g1 = g2 = 0, corresponding
to the elliptic curves with additional symmetries.

It is natural also to consider the Weierstrass reduction g1 = 0; we will call the corre-
sponding polynomials BW

2k+1(s; g2, g3) = B2k+1(s; 0, g2, g3) the reduced elliptic Bernoulli
polynomials.

Theorem 3.2. The elliptic Bernoulli polynomial B2k+1 has the following properties:

(i) as a polynomial in g1, g2, g3, B2k+1 is homogeneous of weight 2k, where the weights
of g1, g2 and g3 are assumed to be 2, 4 and 6, respectively;

(ii) B2k+1 for k � 1 is divisible by s(s + 1)(2s + 1);

(iii) in the reduced case BW
2k+1 is divisible by s(s + 1)(2s − 1)(2s + 1)(2s + 3) for all k

and by s(s + 1)(2s − 1)(2s + 1)(2s + 3)(2s − 3)(2s + 5) for odd k;

(iv) in the lemniscatic case B2k+1(s; 0, g2, 0) = 0 for odd integer k;

(v) in the equianharmonic case B2k+1(s; 0, 0, g3) = 0 if k is not divisible by 3;

(vi) in the isotropic case a1 = a2 = a3 = a, i.e. g1 = 12a, g2 = −12a2, g3 = 4a3, we
have B2k+1(s) = ak(2s + 1)sk(s + 1)k.

Proof. The proof of the first two claims follows from the definition and the antisym-
metry property. To prove the third claim, consider the representation with spin s = 1

2 .
It is easy to check that Ĥ acts as the 2 × 2 scalar matrix 1

4 (a1 + a2 + a3) Id, which
is zero in the reduced case. Therefore, BW

2k+1(
1
2 ) = 0 for all k. By antisymmetry with

respect to − 1
2 we also have BW

2k+1(− 3
2 ) = 0. For half-integer s, we know from Kramers’s

theorem (see [16, Paragraph 60]) that the eigenvalues are no longer distinct but are
double roots. For the particular case in which s = 3

2 , these eigenvalues take the val-
ues ±

√
[3(a2

1 + a2
2 + a2

3)/2] (see [16, p. 419]). Therefore, for odd k, BW
2k+1(

3
2 ) = 0 and,

again by antisymmetry, BW
2k+1(− 5

2 ) = 0. The lemniscatic and equianharmonic cases fol-
low from the first claim. In the isotropic case Ĥs = as(s + 1) Id, which implies the last
statement. �

In the general case the elliptic Bernoulli polynomials are not zero and their highest
coefficients are described by the following theorem.

Theorem 3.3. The leading term of the elliptic Bernoulli polynomial B2k+1(s) =
A0s

2k+1 + A1s
2k + · · · + A2s can be written

A0s
2k+1 = 2

∫ s

0
Res ξ−1[γ(s2 − j2)ξ + (αs2 + βj2) + γ(s2 − j2)ξ−1]k dj, (3.4)

where α = 1
2 (a1 + a2), β = 1

2 (2a3 − a1 − a2), γ = 1
4 (a1 − a2).
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Indeed, for large s and j, the leading behaviour of the matrix elements of Ĥ is

〈j|Ĥ|j〉 = 1
2 (a1 + a2)[s2 − j2] + a3j

2 = αs2 + βj2,

〈j|Ĥ|j + 2〉 = 〈j + 2|Ĥ|j〉 = 1
4 (a1 − a2)(s2 − j2) = γ(s2 − j2).

Therefore, the leading term of the diagonal element 〈j|Ĥk|j〉 coincides with the constant
term of the Laurent polynomial [γ(s2 − j2)ξ + (αs2 + βj2) + γ(s2 − j2)ξ−1]k in auxiliary
variable ξ. Replacing the summation over j by the integration, which is fine in the leading
order, we come to our formula.

Note that the fact that the final result is a symmetric function of a1, a2, a3 (and thus
is a polynomial in g1, g2, g3) is not at all obvious from this formula.

Remark 3.4. From the quasi-classical arguments we can write the highest coefficient
A0 as the following integral over the unit sphere:

A0 =
1
2π

∫
|M |2=1

Hk dΩ =
1
2π

∫
|M |2=1

(a1M
2
1 + a2M

2
2 + a3M

2
3 )k dΩ, (3.5)

where dΩ is the area element on the unit sphere. Thus, formula (3.4) gives an expression
for this integral. It would be interesting to compare it with the calculation of this integral
using elliptic coordinates.

4. An effective way to compute the elliptic Bernoulli polynomials

Although the definition of the elliptic Bernoulli polynomials themselves gives a way to
compute them as traces of powers of the given matrices Hs, it does not seem to be as
effective as the following procedure, which is based on the fact that the matrix Hs is
tri-diagonal.

Indeed, in the standard basis |j〉 of the space Vs the eigenvalue problem Ĥψ = λψ

leads to the following difference equation:

cn−2ψn−2 + vnψn + cnψn+2 = λψn, (4.1)

where

cn = 1
4 (a1 − a2)

√
(s − n)(s − n − 1)(s + n + 1)(s + n + 2),

vn = 1
2 (a1 + a2)2[s(s + 1) − n2] + a3n

2.

For such an equation one can use the standard procedure (see, for example, [6]) from
the theory of solitons to find the local spectral densities, which are difference analogues
of the famous Korteweg–de Vries densities [21]. In our case it works as follows.

Let χn = cnψn+2/ψn. Then equation (4.1) becomes

c2
n−2 + (vn − λ)χn−2 + χnχn−2 = 0. (4.2)

We look for a solution in the form χn = λ −
∑∞

k=0 χn,kλ−k. Substitution of this expres-
sion into equation (4.2) gives χn,0 = vn, χn,1 = c2

n−2, χn,2 = c2
n−2vn−2 and, for general
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k � 1, the recurrence relation

χn,k+1 =
k∑

i=1

χn,iχn−2,k−i. (4.3)

Let X =
∑∞

k=0 χn,kλ−(k+1) so that χn = λ(1 − X) and log χn = log λ −
∑∞

i=1 Xi/i.
Thus, we have

log χn − log λ = −
∞∑

i=1

In,i

λi
, (4.4)

where In,1 = vn, In,2 = c2
n−2 + v2

n/2, In,3 = c2
n−2vn−2 + vnc2

n−2 + v3
n/3, . . . .

On the other hand, one can check that

∏
n

χn

λ
=

∏
m

(
1 − Em(s)

λ

)
,

where the Em(s) are the eigenvalues of Ĥs. Thus,

∑
n

(log χn − log λ) = −
∑

n

∞∑
i=1

λi
n

iλi
=

∞∑
i=1

tr Ĥi
s

iλi
.

Comparing this with (4.4), we obtain

tr Ĥk
s = k

∑
n

In,k = k

s∑
n=−s

In,k.

Theorem 4.1. The elliptic Bernoulli polynomials B2k+1 can be computed as

B2k+1 = k

s∑
n=−s

In,k, (4.5)

where In,k are the local densities determined by the relations (4.3), (4.4).

This gives a very effective way to compute the elliptic Bernoulli polynomials, since the
local densities are polynomials in c2

n and vn (and hence in n) and thus the summation
over n can be done with the use of the standard Bernoulli polynomials. We have applied
this procedure to find the first ten elliptic Bernoulli polynomials using Mathematica

(see eight of them in the appendix).

5. Application: coefficients of the Lamé spectral polynomials

We will again consider the generalized version of the Lamé operator (2.7). The coefficients
bk = bk(s) of the corresponding spectral polynomial

R2s+1(E) =
2s∏

i=0

(E − Ei) = E2s+1 + b1E
2s + b2E

2s−1 + · · · + bkE2s−k+1 + · · · + b2s+1
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up to a sign are the elementary symmetric functions of the eigenvalues: bk = (−1)kek,
where

e1 =
∑

Ei, e2 =
∑
i<j

EiEj , e3 =
∑

i<j<k

EiEjEk, . . . .

The elementary symmetric functions are related to power sums B2k+1(s) =
∑

Ek
i by the

following well-known relations:

kek =
k∑

j=1

(−1)j−1B2j+1ek−j

with e0 = b0 = 1 (see, for example, [18]). This implies the following.

Theorem 5.1. The coefficients bk of the Lamé spectral polynomial R2s+1(E) are
related to the elliptic Bernoulli polynomials B2j+1(s) by the recurrent relations

bk = −1
k

k∑
j=1

B2j+1(s)bk−j .

The coefficient bk is a polynomial in s, g1, g2, g3 with rational coefficients. As a poly-
nomial in s it has degree 3k and is divisible by (s + 1)s(s − 1) · · · (s − [(k − 2)/2]).

One can apply this result also to the case of half-integer spin s: in this case all the roots
of the polynomial R2s+1(E) are double and correspond to the doubly periodic solutions
of the Lamé equation.

In the reduced case (g1 = 0) the degree of bk drops to [5k/2] (for k > 1). Using the
explicit form of the elliptic Bernoulli polynomials given in the appendix, one can find the
first seven coefficients bk, which in the reduced case are

b1 = 0,

b2 = − g2

120
s(s + 1)(2s − 1)(2s + 1)(2s + 3),

b3 = − g3

840
s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5),

b4 =
g2
2

201 600
s(s − 1)(s + 1)(2s − 1)(2s + 1)(2s + 3)(56s4 + 76s3 − 94s2 + 201s + 630),

b5 = +
g2g3

1 108 800
s(s − 1)(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5),

× (88s4 + 68s3 − 302s2 + 663s + 1890),

b6 =
g2
3

201 801 600
(s − 2)(s − 1)s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (4576s5 + 12 944s4 − 20 720s3 + 48 312s2 + 597 150s + 779 625)

− g3
2

10 378 368 000
(s − 2)(s − 1)s(s + 1)(2s − 5)(2s − 3)(2s − 1)(2s + 1)(2s + 3)

× (16 016s6 + 89 232s5 + 197 160s4 + 544 280s3

+ 2 033 829s2 + 385 8813s + 2 619 540),
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b7 = − g2
2g3

24 216 192 000
(s − 3)(s − 2)(s − 1)s(s + 1)(2s − 5)(2s − 3)

× (2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (32 032s6 + 189 072s5 + 463 440s4 + 1 682 920s3

+ 7 301 418s2 + 15 249 213s + 11 351 340).

6. Concluding remarks

We have shown that for any given k the coefficient bk(s) of the spectral Lamé polynomial
R2s+1 can be computed effectively for all values of parameter s. In particular, for fixed s

it gives an alternative way to compute the whole polynomial. It would be interesting to
compare this approach with the classical one going back to Halphen and Hermite [30] and
recently developed further by Belokolos and Enolski [2] and Takemura [24,25] following
the work of Krichever [14].

However, we believe that the elliptic Bernoulli polynomials are of interest in themselves.
In particular, one can expect interesting relations with the arithmetic of the correspond-
ing elliptic curves and the representation theory. In this regard we mention the elliptic
generalization of the Bernoulli numbers: the so-called Bernoulli–Hurwitz numbers BH2k,
whose arithmetic was investigated in [11,22].

Another interesting possible relation is with the zeta function ζH(z) = tr Ĥ−z of the
quantum top and its special values. A lemniscatic case a3 = 1

2 (a1 + a2) could be partic-
ularly interesting from the arithmetic point of view.

Recall that the parameter s was originally integer or half-integer (spin). A natural
question is the role of these values in the theory of elliptic Bernoulli polynomials. We
conjecture that, as in the case of the usual Bernoulli polynomials (see, for example, [27]),
these values are the asymptotic positions of the real roots of the polynomials B2k+1 for
large k. More precisely, we conjecture that, for real s in the bounded interval, the ratio

B2k+1(s)
B′

2k+1(0)
→ sin 2πs

2π
as k → ∞.

Actually, we believe that this is true for each component of B2k+1, which is a coefficient
at monomial gp

1gq
2g

r
3.

It is interesting to look at the graphs. In Figure 1 we show the graphs of the coefficients
of the polynomial B15(s) at g7

1 , g3
1g2

2 , g2
1g2g3 and g2

2g3, respectively. We normalize each
polynomial by dividing it by its first derivative at zero and then multiplying it by 2π.
The sinusoidal behaviour for small s looks quite plausible.

We note that the even Bernoulli polynomials (or, more precisely, closely related Faul-
haber polynomials) also have elliptic versions related to the Lamé operator. They were
introduced in [8] motivated by [7] as certain complete elliptic integrals of the second kind
and have quite different properties. The fact that the theory of the Lamé equation leads
to two different classes of polynomials, both related to Bernoulli polynomials (one to
odd, another to even) seems to be remarkable. To make the picture even more intriguing
we note that the integrals in the definition of the elliptic Faulhaber polynomials come
from the formal expansion of the trace of the resolvent of the Lamé operator (cf. (1.3)).
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Figure 1. Coefficients of the polynomial B15(s) at (a) g7
1 , (b) g3

1g2
2 , (c) g2

1g2g3 and (d) g2
2g3.

Another interesting problem is to investigate the analogues of elliptic Bernoulli poly-
nomials related to the Sklyanin algebra. From [15] it is known that Sklyanin’s represen-
tation [23] gives a certain difference analogue of the Lamé equation, so one can consider
the traces of powers of the generator S0 as functions of the corresponding spin. We would
like to mention the very interesting paper [3], where traces on the Sklyanin algebra are
discussed. In particular, the formulae (2.20), (2.21) from [3] give an explicit expression
of the traces of S0 and S2

0 in terms of elliptic functions, which show that they are no
longer polynomials.

Finally, one can consider our results from the general point of view of the quantization
of integrable systems. One can usually find the spectrum in a closed form only if the
classical system is integrable in elementary functions. The Euler top is probably the most
natural classical problem integrable in elliptic functions. The question of the nature of
its integrability in the quantum case seems not to be as easy as it may look. We hope
that our paper adds something in this direction as well.
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Appendix A. The first eight elliptic Bernoulli polynomials

B1 = 2s + 1,

B3 = 1
12g1s(s + 1)(2s + 1),
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B5 = 1
240g2

1
1
60g2s(s + 1)(2s − 1)(2s + 1)(2s + 3),

B7 = 1
1344g3

1s(s + 1)(2s + 1)(3s4 + 6s3 − 3s + 1)

+ 1
1120g1g2s(s + 1)(2s − 1)(2s + 1)(2s + 3)(6s2 + 6s − 5)

+ 1
280g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5),

B9 = 1
11 520g4

1s(s + 1)(1 + 2s)(5s6 + 15s5 + 5s4 − 15s3 − s2 + 9s − 3)

+ 1
3360g2

1g2s(s + 1)(2s − 1)(2s + 1)(2s + 3)(5s4 + 10s3 − 5s2 − 10s + 7)

+ 1
840g1g3s

2(s + 1)2(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

+ 1
1680g2

2s(s + 1)(2s − 1)(2s + 1)(2s + 3)(4s4 + 8s3 − 11s2 − 15s + 21),

B11 = 1
33 792g5

1s(s + 1)(2s + 1)(s2 + s − 1)(3s6 + 9s5 + 2s4 − 11s3 + 3s2 + 10s − 5)

+ 1
50 688g3

1g2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (20s6 + 60s5 − 10s4 − 120s3 + 44s2 + 114s − 75)

+ 1
29 568g2

1g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (10s4 + 20s3 − 4s2 − 14s + 21)

+ 1
29 568g1g

2
2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (40s6 + 120s5 − 86s4 − 372s3 + 242s2 + 448s − 315)

+ 1
7392g2g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (8s4 + 16s3 − 34s2 − 42s + 63),

B13 = 1
5 591 040g6

1s(s + 1)(2s + 1)(105s10 + 525s9 + 525s8 − 1050s7 − 1190s6 + 2310s5

+ 1420s4 − 3285s3 − 287s2 + 2073s − 691)

+ 1
5 125 120g4

1g2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (525s8 + 2100s7 + 350s6 − 6300s5 − 70s4 + 12 810s3

− 4105s2 − 11 910s + 7601)

+ 1
2 842 840g3

1g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (350s6 + 1050s5 − 100s4 − 1950s3 + 1433s2 + 2583s − 1650)

+ 1
2 562 560g2

1g2
2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (1400s8 + 5600s7 − 1450s6 − 23 950s5 + 5438s4 + 57 326s3

− 24 627s2 − 58 215s + 41 481)

+ 1
320 320g1g2g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (200s6 + 600s5 − 670s4 − 2340s3 + 1922s2 + 3192s − 2475)

+ 1
960 960g3

2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (400s8 + 1600s7 − 1640s6 − 10 520s5 + 8193s4 + 35 786s3

− 28 282s2 − 48 195s + 43 659)

+ 1
160 160g2

3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (80s6 + 240s5 − 840s4 − 2080s3 + 4401s2 + 5481s − 7425),
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B15 = 1
737 280g7

1s(s + 1)(2s + 1)

× (3s12 + 18s11 + 24s10 − 45s9 − 81s8 + 144s7 + 182s6

− 345s5 − 217s4 + 498s3 + 44s2 − 315s + 105)

+ 1
1 597 440g5

1 g̃2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (42s10 + 210s9 + 105s8 − 840s7 − 364s6 + 2730s5 + 205s4

− 5540s3 + 1650s2 + 5078s − 3185)

+ 1
13 178 880g4

1g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (315s8 + 1260s7 + 140s6 − 3990s5 + 1265s4

+ 10 650s3 − 5152s2 − 11 352s + 9009)

+ 1
13 178 880g3

1g2
2s(s + 1)(2s − 1)(2s + 1)

× (2s + 3(2520s10 + 12 600s9 + 1750s8 − 68 600s7)

− 13 130s6 + 253 630s5 − 14 558s4 − 557 066s3

+ 206 601s2 + 542 619s − 360 360)

+ 1
1 098 240g2

1g2g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (280s8 + 1120s7 − 670s6 − 5930s5 + 3047s4 + 17 284s3

− 11 237s2 − 21 054s + 18 018)

+ 1
3 294 720g1g

3
2s(s + 1)(2s − 1)(2s + 1)(2s + 3)

× (1120s10 + 5600s9 − 2400s8 − 43 200s7 − 8814s6 + 201 162s5

− 60 127s4 − 517 124s3 + 256 797s2 + 557 766s − 405 405)

+ 1
274 560g1g

2
3s2(s + 1)2(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (80s6 + 240s5 − 840s4 − 2080s3 + 4401s2 + 5481s − 7425)

+ 1
274 560g2

2g3s(s + 1)(2s − 3)(2s − 1)(2s + 1)(2s + 3)(2s + 5)

× (80s8 + 320s7 − 600s6 − 2920s5 + 4037s4 + 13 314s3

− 16 959s2 − 24 156s + 27 027).
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