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ON SLANT CURVES IN SASAKIAN 3-MANIFOLDS

JONG TAEK CHO, JUN-ICHI INOGUCHI AND JI-EUN LEE

A classical theorem by Lancret says that a curve in Euclidean 3-space is of constant
slope if and only if its ratio of curvature and torsion is constant. In this paper we
study Lancret type problems for curves in Sasakian 3-manifolds.

1. INTRODUCTION

In classical differential geometry of spatial curves, the following result is known (see
for example, [10, 19, 21]).

THEOREM 1 . 1 . (Bertrand-Lancret-de Saint Venant) A curve j(s) in Euclidean
3-space E3 is a curve of constant slope if and only if its ratio of curvature and torsion is
constant.

Here we recall that a curve in E3 is said to be a curve of constant slope (or cylindrical
helix [20]) if the tangent vector field of 7 has constant angle with a fixed direction (called
the axis of the curve). Moreover it is clear that for every curve 7 of constant slope, there
exists a cylinder on which 7 moves in such a way as to cut each ruling at a constant
angle. (See [20, pp. 72-73].)

Barros [1] generalised the above characterisation due to Bertrand-Lancret-de Saint
Venant to curves in 3-dimensional space forms. Corresponding results for 3-dimensional
Lorentzian space forms are obtained by Ferrandez [11]. Moreover Ferrandez, Gimenez
and Lucas [12, 13] investigated Bertrand-Lancret-de Saint Venant problem for null
curves in Minkowski 3-space. (See also [14, 18].)

As is well known, the unit 3-sphere S3 is a typical example of a Sasakian manifold.
In 3-dimensional contact metric geometry, Legendre curves play a fundamental role [2].
As a generalisation of Legendre curves, in this paper, we introduce the notion of a slant
curve.

A curve in a contact 3-manifold is said to be slant if its tangent vector field has
constant angle with the Reeb vector field. Slant curves appear naturally in differential
geometry of Sasakian 3-manifolds. In our recent paper [9], it is shown that biharmonic
curves in 3-dimensional Sasakian space forms are slant helices.
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In this paper we study Bertrand-Lancret-de Saint Venant type problems for slant

curves in Sasakian 3-manifolds.

Our result is

THEOREM. A curve in a SasaJrian 3-manifold is a slant curve if and only if its ratio

of "geodesic curvature" and "geodesic torsion ± 1 " is constant.

Moreover, we find the explicit parametric examples of proper slant curves which are
not helices in the Heisenberg group H3 (see Example 4.2).

2. PRELIMINARIES

2.1. Let 7 : / —»• M = (M3,g) be a Frenet curve parametrised by arc length in
a Riemannian 3-manifold M3 with Frenet frame field (T, N, B). Here T, N, B are the
tangent, principal normal and binormal vector fields, respectively. Denote by V the Levi-
Civita connection of (M, g). Then the Frenet frame satisfies the following Frenet-Serret

equations:

(2.1) VTT = KN, VTN = -KT + TB, V r 5 = -TN,

where K = |VrT| and r are the geodesic curvature and geodesic torsion of 7, respectively.
A Frenet curve is said to be a helix if both of K and T are constant.

2.2. Next, we recall the fundamental ingredients of 3-dimensional contact metric ge-
ometry. Our general reference is [3].

Let M be a 3-dimensional manifold. A contact form is a one-form 77 such that
dr\ A 77 7̂  0 on M. A 3-manifold M together with a contact form 77 is called a contact
3-manifold. The Reeb vector field £ is a unique vector field satisfying

On a contact 3-manifold (M, 77), there exists a structure tensor (<p,£,g) such that

(2.2) ^ = - / + 77®£, g(<pXt<pY)=g(X,Y)-r,(X)T1(Y),

(2.3) g(X,<PY) = dr1(X,Y), X,YeX(M).

The structure (ip, £,77, g) is called the associated contact metric structure of (M, 77).

A contact 3-manifold together with its associated contact metric structure is called a

contact metric 3-manifold. A contact metric 3-manifold M satisfies the following formula

([22]).

(2.4) (Vx(p)Y = g(X + hX,Y^-v(Y)(X + hX), X,YeX(M),

where h = £(<p/2.
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A contact metric 3-manifold (M, <p, £, 77, g) is called a Sasakian manifold if it satisfies

(2.5) {Vxip)Y = g(XtY)Z-rl(Y)X

forallX.y eX{M).
A plane section IIx at a point i of a contact metric 3-manifold is called a holomorphic

plane if it is invariant under <px. The sectional curvature function of holomorphic planes is
called the holomorphic sectional curvature. Sasakian 3-manifolds of constant holomorphic
sectional curvature are called 3-dimensional Sasakian space forms. Simply connected and
complete 3-dimensional Sasakian space forms are classified as follows:

PROPOSITI ON 2 . 1 . ([4]) Simply connected and complete 3-dimensional Sasakian
space forms M3{H) of constant holomorphic sectional curvature H are isomorphic to one
of the following unimodular Lie groups with left invariant Sasakian structures: the special
unitary group SU(2) for H > —3, the Heisenberg group H3 for H = - 3 , or the universal
covering group SL(2, K) of the special linear group SL(2, R) for H < —3. The Sasakian
space form M3(l) is the unit 3-sphere S3 with the canonical Sasakian structure.

3. SLANT CURVES

3.1. Let M be a contact metric 3-manifold and j(s) a Frenet curve parametrised by
arc length s in M. The contact angle 6(s) is a function defined by cos#(s) = g(T(s),£).
A curve 7 is said to be a slant curve if its contact angle is constant. Slant curves of
contact angle n/2 are traditionally called Legendre curves. The Reeb flow is a slant curve
of contact angle 0.

Now we consider Bertrand-Lancret-de Saint Venant type results for contact ge-
ometry. We take an adapted local orthonormal frame field {X, tpX, £} of M such that
V(X) = 0.

Let 7 be a non-geodesic Frenet curve in a Sasakian 3-manifold. Differentiating the
formula g(T,£) = cos 9 along 7, then it follows that

-ff sin 6 = g{nN, f) + g(T, -ipT) = K TI(N).

This equation implies the following result.

PROPOSITION 3 . 1 . A non-geodesic curve 7 in a 3-dimensionai Sasakian man-
ifold M is a slant curve if and only if it satisfies T)(N) = 0.

Hence T, N and £ of a slant curve j(s) has the form

T = sin 6{cosP{s)X + sin 0{s)<pX} + cosflf,

N = - sin P(s)X + cos P{s)<pX,

€ = cos 6T ±sin0B
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for some function 0{s). Differentiating 0 = g(N,£) along 7 and using the Frenet-Serret

equations, we have

(3.1)

This implies that the ratio of r ± 1 and it is a constant. Conversely, if the ratio of r ± 1
and K / 0 is constant, then 7 is clearly a slant curve. Thus we obtain the following result.

THEOREM 3 . 1 . A non-geodesic curve in a Sasakian 3-manifold M is a slant curve

if and only if its ratio of r ± 1 and K is constant.

The equation (3.1) implies the following result (compare with [2]).

COROLLARY 3 . 1 . Let 7 be a non-geodesic slant curve. Then r = ±1 ifand only

ifj is a Legendre helix.

3.2. A Sasakian 3-manifold M is said to be regular if its Reeb vector field f generates
a one-parameter group K of isometries on M, such that the action of K on M is simply
transitive. The Killing vector field £ induces a regular one-dimensional Riemannian
foliation on M. We denote by M := M/£ the orbit space (the space of all leaves) of a
regular Sasakian 3-manifold M under the /f-action.

The Sasakian structure on M induces a Kahler structure on the orbit space M.

Further the natural projection it: M —1 M is a Riemannian submersion. It is easy to see
that M is a Sasakian space form of constant <^>-holomorphic sectional curvature H if and
only if M is a space form of curvature H + 3.

Take a curve 7 in the orbit space, then its inverse image Sj = 7r~x(7) is a flat surface
in M. This flat surface is called the Hopf cylinder over 7. The mean curvature of the
Hopf cylinder is the half of the geodesic curvature of 7.

In particular, if M is the unit 3-sphere S3, then w coincides with the Hopf fibreing
S3(l) —• S2(4). In this case, if 7 is a small circle, then its Hopf cylinder is a non-minimal
constant mean curvature torus. If 7 is a great circle, then its Hopf cylinder is the Clifford
minimal torus.

Now we consider a slant curve 7 with the contact angle 8 in a regular Sasakian
3-manifold. Let 7 = 71-07 be the projection of 7 onto M. Direct computation shows that
the arc length parameter s of 7 is

(3.2) s = ^-Z-
v ' sin 6
The Frenet frame {T(s),Jf{s)} of 7 is given by

T(s) = ^7r . r (« ) , N(s) = ±n,N(s).

Thus the signed curvature « of 7 is given by
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We specialise the contact angle of slant curves. Let 7(s) be a Legendre curve in a
regular contact Riemannian 3-manifold M. Then from (3.2) we see that its projection
7(s) = TT(7(S)) is a curve with arc length parameter s and that 7 is a horizontal lift of
7. Further, the signed curvature 7c is given by 7c(s) = ±/c(s). We note that for the Hopf
cylinder S = TT~1(7Y), the Reeb vector field £ is tangent to 5 and 5 contains 7.

4. E X A M P L E S AND R E M A R K S

Let M be a Riemannian 3-manifold and 7 a curve in M parametrised by arc length.
Then 7 is said to be biharmonic if

V3
TT + R(KN, T)T = 0.

Caddeo, Montaldo and Piu [5] classified biharmonic curves in the unit 3-sphere S 3 . Cad-
deo, Piu and Oniciuc [7] classified biharmonic curves in the Heisenberg group. The
present authors generalised the results of [7] to general 3-dimensional Sasakian space
forms [9]. Caddeo, Montaldo Oniciuc and Piu generalised the classification of [9] to
Bianchi-Cartan-Vranceanu spaces [6].

THEOREM 4 . 1 . ([9]) Every proper biharmonic curve in Sasakian space form with
constant holomorphic sectional curvature H is a slant helix satisfying

K2 + r2 = 1 + {H - l ) s in 2 0 .

Thus classification of proper biharmonic curves in a Sasakian 3-space form reduces
to solving the equations:

K2 + T2 = 1 + (H - 1) sin2 0, KCOS0 + (-1 ± r) sin0 = 0.

REMARK 1. Let M be one of the following 3-dimensional spaces; Riemannian space
form, or Minkowski 3-space. Then the biharmonic equation for non-geodesies in M is
given by the following:

(1) M is of constant curvature c, then K = constant and K2 + T2 = c ([5]),

(2) M is the Minkowski 3-space, then K = constant and K2 - r2 = 0
([8, 15, 16]).

EXAMPLE 4.1. ([7, 9]) The Heisenberg group H3 is a Cartesian 3-space R3{x,y, z)
furnished with the group structure

{x1, y', z') • (x, y, z) = (x' + x, y1 + y, z' + z + (x'y - y'x)/2).

Define the left-invariant metric g by

dx2 + dy2 I f . 1. , , , •)
9 = ^ + V® V, V =-^{dz +-(ydx - xdy) j .
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We take a left-invariant orthonormal frame field (ei,e2,e3):

_ d d d d nd
ox oz ay oz oz

Then the commutation relations are derived as follows:

(4.1) [ei,e2] = 2e3, [e2)e3] = [e3,ei] = 0.

The dual frame field (01,82,93) is given by

., 1 , -9 1 , „, 1 , ydx — xdy
9l = -dx, 92 = -dy, 93 = -dz + y- y-.

Then the 1-form 77 = 83 is a contact form and the vector field f = e3 is the Reeb vector
field on H3.

We define a (l,l)-tensor field <p by

tpei = e2 , <pe2 = -eu (p£ = 0.

Then we find

(4.2) dr)(X,Y) = g(X,<pY),

and hence, (77, £, tp, g) is a contact metric structure. Moreover, we see that it becomes a
Sasakian structure. Then every proper biharmonic curve in H3 is represented as

x(s) = — sin 9 s'm(As + a) + b,

y(s) = — — s\n9cos(As + a) + c,

z{s) = (cos0+ •• js — —sm9cos(As + a) - —sin9sin(As + a) + d,

for a constant contact angle 9, where A, a, b, c, d are constants. These slant helices satisfy
K? + T2 = 1 - 4 sin2 9. Note that in [7], the metric on H3 is chosen as 4g.

EXAMPLE 4.2. We construct a proper slant curve 7 which is not a helix in the above

H3. Let 7 be a slant curve in H3. Then for a constant 9 we put

j'(s) = T(s) = Tid + T2e2 + T3e3

and
Ti(s) = sin 9 cos 0(s), T2 = sin 0 sin ̂ (s), T3 = cos 9.

By using Frenet-Serret equations (2.1) we compute the geodesic curvature K and the
geodesic torsion T for a slant curve 7 in H3. Then we obtain

(4.3) K = sin 0(P'{s) - 2 cos 9),

T = cos 9(/3'{s) - 2 cos 9) + 1,

https://doi.org/10.1017/S0004972700040429 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700040429


[7] On slant curves 365

where we assume that sin0(/3'(s) — 2cos0) > 0.

Here, the tangent vector field T of 7 is also represented by the following:

rdx dy dz\ _ dx d dy d dz d
\ds' ds' ds/ ds dx ds dy ds dz

Then it follows that
dx dy dz (dy dx\
3 - = 2Ti, — = 2T2, — — 2T3 + I x- y— 1.
ds ds ds V ds ds/

In view of (4.3), we take for example /?(s) = Ins. Then we can find an explicit
parametric equations of slant curves 7 which are not helices:

x(s) = 2 sin 8 • -{sin(ln s) + cos(ln s)} + &i,

y(s) — 2sin0 • -{sin(lns) — cos(lns)} + C\,
z(s) = 4 ( - s in 2 0 ) s 2 + 2(cos0)s + d1,

where &i,Ci,di are constants.

EXAMPLE 4.3. (Grassmann geometry) Let M be a Riemannian manifold and Gr<(TM)
its Grassmann bundle of all ^-planes in TM (1 ^ I ^ dimM). Take a non-empty subset
E of GT((TM). An ^-dimensional submanifold <f> : S —>• M of M is said to be a E-
submanifold of M if d(j>(TS) C E. The collection of all E-submnaifolds is called the
E-geometry of M. Grassmann geometry is a collected name for such a E-geometry. Let
us denote by G the identity component of the isometry group of M. Then G naturally
acts on Gr<(TM). If E is an G-orbit in GT((TM), the E-geometry is called of orbit type.

In [17], Inoguchi, Kuwabara and Naitoh investigated the Grassmann geometry of
orbit type in H3. In this case, the G-orbit spaces in Gr2(TH3) are parametrised by the
curvature function K and K takes value in the closed interval [—3,1]. The following
results were obtained in [17]:

PROPOSITION 4 . 1 . For any a e (-3,1), C?(a)-surfaces are of constant nega-
tive curvature a - I.

THEOREM 4 . 2 . For any a € ( -3 ,1 ) ,

(1) O(a)-surfaces are of constant negative curvature a — 1.

(2) there exist local O(a)-surfaces foliated by circles which are helices ofM3

with the same curvature and torsion 1.

The helices on O(a)-surfaces are slant helices. In fact, the contact angle 6 is com-
puted as

costf = -Wl- p2, p : = - V l - a .

These helices have geodesic curvature K = 2pl \J\ — p2 and geodesic torsion r = 1, and
hence do not satisfy the relation K2 + T2 = 1 — 4 sin2 6. Thus these slant helices are
non-biharmonic.
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