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PARAREDUCTIVE OPERATORS ON BANACH SPACES 

ROMAN DRNOVSEK 

ABSTRACT. This note gives a Banach space extension of the Hilbert space result 
due to P. A. Fillmore (see [3]). In particular, it is shown that the adjoint T* = A — iB of 
an operator T = A + iB (with A and B hermitian) is a polynomial in T if and only if T* 
leaves invariant every linear subspace invariant under T, and this is equivalent to the 
assertion that T* leaves invariant every paraclosed subspace invariant under T. 

Let X be a complex Banach space. The Banach algebra of all bounded linear operators 
on X is denoted by *B(X). A linear subspace of the space X is called paraclosed if it is the 
range of some bounded linear mapping from some Banach space into X. For T € (BQC), 
let Lato T denote the lattice of all (not necessarily closed) subspaces invariant under T. 
By Latj/2 T and Lat T we denote the sublattices of Lato T consisting of paraclosed and 
closed subspaces respectively. 

We now recall the notion of hermitian operators on a Banach space. An operator 
H 6 *B(X) is called hermitian if 

l i m £ ± M - i 
f—0 t 

where t approaches zero through real values. Let 9f(X) C <B(X) be the real Banach space 
of all hermitian operators on X. It is well-known that an operator H € *B(X) is hermitian 
if and only if || exp(/r//)|| = 1 for all t € 1R. For other equivalent définitions and basic 
properties of hermitian operators see [1] and [2]. 

Let J(X) denote the subspace of all operators T E (BiX) of the form T = A + iB with A 
and B hermitian, or shortly J(X) = H(X) + iti(X). The space J{X) with the norm of <B(X) 
is a complex Banach space, but it need not be a subalgebra of *B(X). Since each element 
of J(X) has a unique representation of the form A + iB with A and B hermitian, we may 
define a continuous linear involution on J{X) by 

(A + iB)*=A-iB. 

An operator T = A + iB with A and B hermitian is said to be normal if T*T = TT*, or 
equivalently AB = BA. 

In the proof of the main theorem of this note we need the following result concerning 
a normal operator, the spectrum of which is a finite set. 
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LEMMA. Suppose that an operator T 6 J(X) is normal and that its spectrum is a 
finite set, Le. a(T) = {Ai, A2,. . . , \n} for some complex numbers {A*}. Then 

T=j£\kPk and V = jr\kPk, 
k=l k=l 

where {Pk} are the spectral projections corresponding to {A*}. Furthermore, the oper
ator T is algebraic. 

PROOF. Let T = A + iB, where A,B e MQC) and AB = BA. It is well-known that 

T = j£(\kPk + Qk), 

where {Qk} are quasinilpotents, and {Pk} are the spectral projections corresponding to 
{A*} and satisfying the following P2

k = Ph PtPj - 0 for i jtj and P\ + P2 + • • • + Pn = /. 
The facts that AT = TA and BT = TB imply APk = PkA and BPk = PkB respectively; 
therefore (for any k = 1,2,..., n) Ak = A\jmPk and Bk = B\imPk are hermitian operators 
on Im Pk. We then have 

Ak + iBk = \kIk + Qk, 

where 4 is the identity operator on ImP^- From this it follows that 

Qk = (Ak - Re Â  Ik) + i(Bk - Im AkIk). 

Since {A^ — Re A# IklBk — Im A# 4 ,2^} is also a commutative triple of two hermitian 
operators and a quasinilpotent, they are all equal to zero by [2, Proposition 4.20]. 
Therefore, T = T.nk=\ ^kPk and T* = E^=1 ^kPk- Clearly, the operator T is algebraic, and 
the proof is completed. • 

Since the spectrum of an algebraic operator is a finite set, the following assertion 
clearly holds. 

COROLLARY. A normal operator T € J(X) is algebraic if and only ifT* is algebraic. 

The following theorem is a generalization of the theorem in [3]. 

THEOREM. IfTE J(X), then each of the following conditions implies all the others: 
1. Lato T Ç Lato T*; 
2. T* - p(T) for some polynomial p; 

3. Lat1/2 T
7 Ç Lat1/2 7

1*; 
4. T* = u(T)for some entire function u; 
5. Either T is normal and algebraic, or else T = aH+blfor some hermitian operator 

H and complex numbers a and b. 
Moreover, each of these conditions is equivalent to the symmetric condition obtained by 
interchanging T and T*. 

By the analogy with the notion of reductive operators on a Hilbert space, an operator 
T € J(X) satisfying any (and therefore all) of the conditions of this theorem is called 
parareductive. (A bounded operator A on a Hilbert space is called reductive if Lat A = 
LatA*.) 
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PROOF OF THE THEOREM. We will first show the equivalence of 1 and 2. Since 2 
obviously implies 1, we suppose that 1 holds. By [4, Theorem 2] it is enough to show 
that T is normal. For any vector JC, let us define the (not necessarily closed) cyclic 
subspace Cx = Lin{x, Tx, T2x, T3x,.. .} and assume first that Cx is finite-dimensional. 
Since T - A + iB for some hermitian operators A and B, it follows that 

A = \(T + T*) and £ = ^ ( 7 - 7 * ) , 
2 Li 

so that (using 1) Lato T Ç Lato A and Lato T Ç Lato B. Thus Cx is an invariant subspace 
under A and B, and hence the restrictions A\cx and B\cx are hermitian operators on Cx. 
By the Jordan canonical form there exists a basis for Cx so that Cx = V\ © V2 © • • • © Vn 

and the matrix of T\cx is of the form T\ © 72 © • • • © Tn, where Tk are matrices of the 
restrictions of T to Vk. Moreover, for some a*, /?* E R (fc = 1,2,..., n) we have 

7* = (a* + ij3k)lk + jg ,̂ 

where Ik is the identity and <2it a strictly upper triangular nilpotent matrix. Since 
Lato(r|cJ Ç Lato(A|Cx) and Lato(r|cJ Ç Lato(5|cJ, the matrices of A\Cx and B\Cx 

are also of the form A\ © A2 © • • • © An and B\ © B2 © • • • © Bn respectively, where 
Ak and Bk are (because of the same reason) upper triangular matrices of some hermitian 
operators. Then 

Tk = Ak + iBk = (ak + i(3k)Ik + Qk, 

and hence 
Qk = (A* - akIk) + i(Bk - pkIk). 

Since A^ and 5ft are matrices of some hermitian operators, they have real eigenvalues 
on the diagonals. It follows that matrices Ak — akIk and Bk — (3kIk are strictly upper 
triangular, and therefore nilpotents. Since they are matrices of some hermitian operators 
as well, we have 

Aft - akIk = Bk- j3kIk = Ôft = 0. 

Thus, the matrices of operators T\cx and T*\cx are of the form 

n n 

@(c*ft + ;/3ft)/ft and ®(c*ft - //?*)/* 
k=\ k=l 

respectively, and hence T*Tx = TT*x. If Cx is infinite-dimensional, the proof of the equa
tion T*Tx = TT*x is exactly the same as in the Hilbert space case (see [4, Theorem 3]). 

Most of the proof of equivalence of 3 and 4 can be obtained as a special case of 
[5, Theorem 3.2]. The only exception is the proof that 3 implies 4 in the case that T 
is algebraic. To prove this, choose any linear submanifold M E Lato T and any vector 
x E M. Since the cyclic subspace Cx generated by x is finite-dimensional, it is closed, so 
that Cx E Lat1/2 T. By 3 we then have Cx E Lat1/2 7

1*, and T*x eCxQ
<M. Thus M is 

invariant under T*, and hence 1 holds. Since 1 and 2 are equivalent and 2 clearly implies 
4, 3 implies 4. 

https://doi.org/10.4153/CMB-1994-051-1 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-1994-051-1


PARAREDUCTIVE OPERATORS 349 

We next show that 4 implies 5. If T* = u(T), then T is normal, and so T = A + IB 
for some commutative hermitian operators A and B. Let A be the maximal commutative 
Banach sub-algebra of <B(X) containing A and B. By g we denote the corresponding 
Gelfand transform, and we observe that Ç commutes with any polynomial and therefore 
with any entire function. Since A is hermitian, || exp(/fA)|| = 1 for all t € R. It follows 
that 

||exp(if #A)) L = || £(exp(/M)) (^ < || exp(ÛA)|| = 1 for all t E R, 

so that the function Ç(A) is real. Similarly, g(B) is a real function. Therefore, we have 

g(T)=g(A) + ig(B), Ç(r)=Ç(A)-iÇ(B) and # n = # f ) . 

Define an entire function u* by u*(z) = u(z). Then, 

£(7) = # T ) = ç(u(TJ) = u(ç(T)) = u*(g(T)) = u*(QT)) = ç(u*(u(T))), 

and so 
g(u*{u(T))-T) = 0. 

Since the entire function v(z) = u*(u(z)) — z satisfies the equation g(y(T)) = 0, the 
operator v(T) is quasinilpotent. By the spectral mapping theorem it follows that 

v(a(T))=a(v(T))=0. 

If a(T) is a finite set, then T is algebraic by the Lemma. If a(T) is an infinite set, then 
v = 0. Hence u is a homeomorphism, so that lmv-K» \u(z)\ = oo, and u has a pole at 
infinity by the classical result of the behaviour of a function in the neighbourhood of an 
essential singularity. Therefore u is a polynomial. Since it is also a homeomorphism, it 
follows that u is a linear function. Hence, T* = aT + bl for some complex numbers a 
and b. If a ^ — 1, then let us define a hermitian operator H by H = T + T*. It follows that 
T = (l /(a + 1))// - (fc/(fl + 1))/. If a = - 1 , then H = iT - iT is a hermitian operator, 
which satisfies the equation T = ( l / (2/) )# + (b/2)L In both cases we have proved that 
T is a linear function of some hermitian operator, and therefore 5 holds. 

Since 2 obviously implies 4, we only have to prove that 5 implies 2. Suppose first 
that T is normal and algebraic. Then its spectrum is a finite set of complex numbers, say 
a(T) = {Ai, À2, . . . , A„}. By the Lemma it follows that 

T = t,hPk and r = £**/>*, 

where {Pk} are the spectral projections corresponding to {A*}. Therefore T* =p(T) for 
any polynomial/? with p(Xk) = Â* for all k = 1,2,... ,n. If T = aH+bl with //hermitian, 
then r =aH + bI.lfa?0 then # = ( l /a)T - (6/a)/, so that V = p(T) for linear 
polynomial p(x) = ox/a + (b - âb/a). lfa = 0 then T* = (5/fe)T (if fc = 0 as well, then 
r = r = 0). Therefore 2 holds. 

By the Corollary the condition 5 is equivalent to the symmetric condition obtained by 
interchanging T and 71*, and this observation completes the proof of the theorem. • 
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