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EXPONENTIAL ATTRACTORS FOR
ABSTRACT PARABOLIC SYSTEMS WITH BOUNDED DELAY

DALIBOR PRAZAK

We show that a suitable adaptation of the so-called method of trajectories can be used
to construct an exponential attractor for a very general class of nonlinear reaction-
diffusion systems with a bounded delay.

In particular, we assume that the dependence on the past history is controlled via
convolution with a possibly singular measure. Assuming a priori that the solutions
are bounded, a simple proof of the existence of an exponential attractor is given under
very little regularity requirements.

1. INTRODUCTION

We study a nonlinear abstract parabolic system of the form

(1) dtu - div a(Vtx) = F(u') in ft x (0, oo),

where u(x, t) : ft x [—r, oo) —>• RN is the unknown, ft c R" is a bounded smooth domain,
and 0(77) : RnN ->• RnN captures the diffusion effects.

In our notation

(2) [ut](x,s) = u{x,t + s), «€[-r,0].

Hence the right-hand side includes a general functional dependence on the past history
up to time t — r, where r > 0 (the maximal delay) is fixed.

We consider Neumann boundary condition

(3) — = 0, on an x (0,00),

and the initial condition / initial history, written succinctly (in view of (2)) as

(4) u° = <t>, i n f i x [ - r , 0 ] .
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We assume

1. a(-) is strongly monotone with quadratic growth, that is,

o(0)=0,

(5) {aW-fi

2. Denoting X = C([-r,0]; £2(fi)), we require that F : X - • L2(fi) be continuous,

with

(6)

where /x is a suitable Radon measure on [—r,0]. We shall see below that such an abstract
assumption covers a wide class of meaningful examples; on the other hand, it seems
optimal in view of our approach. Note that (6) is only slightly stronger than a mere
Lipschitz continuity of F : X ->• L2(ft).

3. We finally assume that the equation has a bounded invariant region; more specif-
ically, there exists a closed, bounded set B C L2(fl) such that

(7) <f>(;s)eB Vs€[-r,0] =*• v.(-,t)£B Vt^O,

where u is a solution in the sense defined below.

We shall only consider the dynamics of solutions living in B; hence it is enough to
assume (6) for <j>, ifr with values in B. In particular, L depends on B as the case may be.

The paper is organised as follows: we finish the present section by several biblio-
graphical remarks; we also discuss the meaningfulness of our abstract model and of our
assumptions.

Section 2 brings the mathematical preliminaries. Here we sketch the proof of exis-
tence of weak solutions, and prove its uniqueness. The solution semigroup is introduced,
and the main result (Theorem 2.3) is formulated.

Section 3 consists of the technical part of the paper. Here we introduce the "dynamics
of trajectories", and we prove that it has an exponential attractor. The Theorem 2.3 is
then proved in the last, short Section 4.

COMMENTARY AND BIBLIOGRAPHICAL REMARKS.

Recently, many authors have considered problems with diffusion and delay, see for

example, [16, 20, 23]. One can say that almost any model with bounded delay fits into

our abstract scheme.

Usually a linear diffusion is considered, that is, o(r/) = Arj, where A is some strictly

monotone matrix. Here we allow for a nonlinear diffusion, since it is more general and

brings no additional complication to our approach.
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The assumption (6) incorporates a very general class of dependencies on the past,
as for example

u*)}(a!,*) = FU(t,i),ii(t-aj,a;),..., f b(u(x,t + s),s) ds,... J .

In such a case (6) holds with fj, — \ + 8Q + 5ai +..., where A is the Lebesgue measure, and
6a a Dirac measure located in x = a, assuming that F ( ) , &(•) are Lipschitz continuous
on the appropriate spaces.

Since (6) only requires the control of L2 norm with respect to the x variable, one
can even include a non-local dependence (via convolution, see [20]) on x.

We remark finally that our last requirement - the asymptotic boundedness - is a
nontrivial problem in the presence of delay. For some models, it can be easily proved
using the maximum principle. For example, if

• F(ul) (x, t) = u(x, t) [a - bu(x, t) - / (« ' ) ] ,

where a, b > 0 and /(•) ^ 0, one proves easily that the solution never leaves the interval
[0, a/6]. A more involved generalisation of this simple idea, leads to the concept of "mixed
quasimonotonicity", as developed in [14, 15]. These results in particular give a class of
sufficient conditions for the existence of a bounded invariant set B in the form

B = {u € L2(Q); Ui(x) € [OJ, bi\ for almost everywhere x 6 fi}.

The asymptotic boundedness is also quite easy to verify, when the diffusion dominates
delay effects in an appropriate sense, see [23, 8, 17]. It also holds if the delay is small,
or in one spatial dimension, see [11].

On the other hand, very interesting results of [11, 8] show that in the case of a
seemingly simple model

dtu(x, t) - i/Au(i, t) = u(x, t) [l - u(x, t - T)] ,

with x e fi C R2, the solutions might grow exponentially provided that U/T is small
enough. This is rather surprising since, if v = 0 (that is, the ODE case), asymptotic
boundedness holds. So the unexpected dynamics arises from a nontrivial interplay be-
tween the delay and diffusion.

This is the main reason why we stipulate the asymptotic boundedness simply as an
axiom, instead of trying to verify it directly in terms of the properties of the equation in
our general form.

Our construction of the attractor rests on the so-called "method of trajectories",
originating from papers [12, 13]. The heart of our paper (Section 3) is an adaptation of
the method, which was originally devised to study nonlinear parabolic problems with no
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delay. Yet, according to a number of recent publications, the phase space of trajectories
is a natural setting for problems with time delays (see for example [2, 19, 10].)

The main feature of our approach is the simple proof of the smoothing property
(and hence the existence of an exponential attractor); though the result is ultimately
obtained in C([—r, 0]; L2(£l)) topology, no other than mild, natural parabolic (essentially
L2 (0, T; Wli2(n)) for u and L2 (0, T; W~i;i(Q)) for dtu) regularity of solutions is needed.
A similar construction was used already in [17]; however, the significant improvement of
the present paper is that we do not have to prove additional regularity of the solutions.

One can compare this with the approach based on introducing a new variable, the
so-called summed past history (see for example [9]). This method leads to a robust
description of the large time dynamics. In particular, various relaxation/perturbation
phenomena can be captured. On the other hand, an important assumption of this method
is that the dependence on the past is given by a convolution with sufficiently regular
function. One of the features of the present paper is that our method accommodates
easily the convolution with a possibly singular measure if needed. See also [1] for the
evaluation and comparison of the "past history approach" and the "trajectory approach".

From a more general perspective, the phase space of trajectories is a convenient tool
in situations where one has not enough regularity to prove the asymptotic compactness
(or even uniqueness) of solutions; see for example [22, 4, 3, 7] for further applications
of this approach and its various generalisations.

2. PRELIMINARIES

We denote by (L2(ft), ||-||2), (Wrl'2(fi), ||-|li,2)
 t h e vsaBl Lebesgue and Sobolev

spaces; the scalar product in L2(fi) and the duality between Wlt2(D) and W~1>2(fi) are
denoted by (•, •) and (•, •), respectively. For the sake of simplicity, we do not distinguish
the vector-valued and scalar-valued functions notationally.

As said before, we set X = C([—r, 0]; L2(f2)); this will be our phase-space. By weak
solution we understand

tx e L°°(-r,T;L2(Q))nL2(0,T;Wl-2(Q))

such that u \ [—r, 0] = 4> where <j> 6 X, and (1) holds in the sense of distributions. It
follows that u T [0,T] has a representative in C([0,T];L2(ft)), and u(0) = <j>(0).

THEOREM 2 . 1 . Let <j> € X and T > 0 be given. Then there exists u a weak
solution to (1). Moreover, one has

(8)

wiere K is independent ofT.
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P R O O F : (Outline.) Testing by u gives

By (6),

and we deduce (replacing fi by /i + <50 if necessary)

+/V<*+«)
Integrating on (0, t), and invoking Lemma 2.1 below, we arrive at

/ H I : , < IK°>IE+/ n«ie < n«°i&+/HI; •
Prom GronwalPs lemma one has

The estimate of / | |3tu| |_1 2 is obtained directly from the equation (see Lemma 3.2
below). Jo

The independence of (8) on T rests substantially on the existence of bounded in-
variant region B in (7). This gives directly that ||u(*)||2 is bounded for all t ^ 0, and the
rest of (8) follows by bootstrapping of (9).

The argument can be made rigorous using a suitable approximating scheme (see [20]
where Galerkin method is used). Strong convergence of u in L2(0, T;L2(Q.)) follows by
Aubin-Lions lemma, and enables the passage limit in F(u'). For a(Vu) one uses Minty's
trick together with the monotonicity of a ( ) . We omit further details. D

THEOREM 2 . 2 . Tie weak solution is unique.

PROOF: Let u, v be two solutions. Multiplying the equation for w = u — v by w
gives (in view of (5), (6))

As above, one deduces
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Invoking Lemma 2.1, and assuming u = uon [—r,0] gives

for all t ^ 0. Hence u = v by Gronwall's lemma. D

The following lemma (in fact a Fubini's theorem) is instrumental in handling the
estimates of the memory term.

LEMMA 2 . 1 . Let f € Ll(-r,T), and F(t) = / f(t + s)dfi(s), where n is a
J—T

Radon measure on [—r,0]. Then

/ \F(t)\dt$c[ \f(t)\dt,
JO J-T

where c = /•»([—r, 0]).

P R O O F : One computes

Q

Theorems 2.1, 2.2 enable us to define "solution semigroup" S(t) : X —> X by the
formula S(t)<j> = u', where u is the unique solution to (l)-(4).

Recall that £ C X is called an exponential attractor, if £ is compact, positively
invariant, that is to say, S(t)£ C £ for all t > 0), has finite fractal dimension, and
attracts the dynamics exponentially fast:

distx(S(t)X,£) ^ cexp(-Tt),

with some c, 7 > 0. The fractal dimension of a set A is defined as

lnN{A,s)
km sup —r-1 ,

lne
where N(A, e) is the minimal number of e-balls that cover A. See for example [21] to

read more about this concept and its motivation. Regarding the exponential attractors,

the literature about its theory and applications is abundant. See the basic monograph

[5], and also [6, 18], for example.

Our main result reads as follows:

THEOREM 2 . 3 . Let the assumptions (5)-(7) be in force. Then the dynamical

system (S(t),X), associated to the equation (1), ias an exponential attractor.
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3. DYNAMICS O F TRAJECTORIES

Let £ > 0 be fixed. We set

Xt = {x : [~r, £] -* L2(fi); x is solution to (1) on [0,£]} .

The semigroup L(t) : Xi -* Xi is defined by

{L(t)X}(s)=u(t + s) a€[-r,t\,

where for a given x S Xi, u is the unique solution to (1) satisfying (4) with <f> = x \ [—r, 0].

The set of trajectories Xt is considered with the topology L2(—r, £; L2(fi)); which -
with a slight abuse of notation - will also be denoted Xi.

We first prove a simple continuity result.

LEMMA 3 . 1 .

(1) Tie mapping x >-> L(i)x is Lipschitz continuous on Xt, uniformly with
respect tote [0,T].

(2) Tie mapping t H* L(t)x is 1/2-Holder continuous on [r, oo), uniformly with
respect to x € Xt.

PROOF: (1) Given xi> X2 € Xt, let u\, u2 be the corresponding solutions to (1),
that is, ut f [—r, £] = x«- Denote w = tti — u^. We have proved (see (10) above) that

holds for any r € [0,T]. We integrate on (s,t), where s e (0,^) and t G {£,1 + T) are
fixed. In view of Lemma 2.1, we have

(11) \\w(t)\\l + 2 f l

(12) \\wit)\\\+2Cl A|«,n; < | | W ( . ) |g+ c f |
Jt J-r

One more integration over s 6 (0,1) gives

-r

Aste(£,£ + T)is arbitrary, we deduce by GronwaU's lemma

rt+T

Recalling the definitions of x, L(t)x, one concludes easily that

sup ||L(t)xi - L{t)x2\\Xt ^ c(T)\\Xi - X2||l •
te[o,T) A< '
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(2) Observe that

)x-L(t)x\\2
Xt= f \\u(

J —r

where, as above, u is the solution satisfying u \ [—r, £] = x- The trick is to write

u(t + r + a)\\\ - \\u(t + a)\\\
- 2(u(t + r + s)-u(t + s),u(t + s))

\\u{t + T + 3) _ U( t + s)\\l = ||u(t + r + a)\\\ - \\u(t + a)\\\

= 2

- 2 / (b\u(t + h + s), u(t + s))dh.
Jo

Note that, thanks to (8), u has sufficient regularity to justify this if t ^ r. In partic-
ular, for the second integral we need u(t + s) € W1<2(Q), which holds for almost every
s€(-r,£).

Interchanging the order of integration gives

\\L(t + T)X ~ L(t)x\\Xl = % [ \ f (dtu{t + h + s),u(t + h + s)-u(t + s))ds\dh.

The inner integral, however, is bounded (uniformly with respect to t, h) thanks to the
estimates (8). Hence

\\L(t + T)X — L(t)x\\x ^ CT . fj

We now deduce the key observation of the method of trajectories, that is, the smooth-
ing property for L(t).

LEMMA 3 . 2 . Sett* = r + L Then L(f) is Lipschitz continuous from Xt into Wt,
where

PROOF: Taking T = £ + r in (13) at once gives

(14)

To estimate the time derivative, we use the duality argument
2t+r

/

2

where <p is taken from <p € L2(£, 2£ + r; W1<2(Q)) with ||^|| = 1. Prom the equation we
have

J ( J
/

2t+r p2t+T r

(8tw, <p) = J (a(V«) - a(Vt;), V<p) + J
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One deduces from (5) that

/•2M-r /•

It L '
Similarly we have

1/2

Invoking (6) and Lemma 2.1,

\\Ftf) - F(u<)\\l dt^c / ||w(t + s)\\

Rewriting in terms of L(t), we deduce

(15)

Combining (14), (15) gives the conclusion of lemma. D

We can now formulate the main result of this section.

THEOREM 3 . 1 . The dynamical system (L(t),Xi) has an exponential attractor
£i C Xt.

PROOF: The proof follows a standard scheme. The smoothing property from the
above lemma entails the existence of an exponential attractor £\ for the (discrete) sub-
system L(t'n), n e N. See for example [6].

We then set
£t= ( J L(t)£'t.

In view of the continuity properties of L(t) (Lemma 3.1) one verifies that £i is the desired
exponential attractor. See [5] for details. D

REMARK. There is a minor technical obstacle in the fact that Xt - which consists of
solutions, and hence is a subset to C([-r, (\; L2(D)) - is not a complete space (it is not
even closed) when considered with the topology L2{—r, £;L2(J2)).

A closer look on the construction of an exponential attractor shows that one only
needs that w-limit points remain in Xi, that is to say, Xt is asymptotically compact. Yet
the estimates (8) ensure that any w-limit point has a regularity of the weak solution.
In particular, it belongs to C([—r, (\;L2(Q,)) as required. See [10] for details of this
argument.
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4. P R O O F OF THEOREM 2.3

Let us define the mapping E : Xe -» X by E{\) •= {L{t + r)x} \ [-r,0]. It
follows at once from (13) that E is Lipschitz continuous from I?(-r,t;L2(il)) into the
C([-r ,0];L2(ft)) topology. Also, observe that

(16) S(t)(E{X))=E(L(t)x).

We can now prove our main result. Recall that £t C Xe is an exponential attractor
for (L(t), Xt). Set

£~E(£e).

We claim that £ is an exponential attractor for (S(t),X).

1. £ is compact and has finite fractal dimension, since £/ has these properties and

E is Lipschitz (see [21, Proposition 13.2].)

2. £ is positively invariant, because (by (16))

S(t)£ = S[t)E{£t) = E(L{t)£t) C E(£t) = £.

3. Observe that E(Xt) = S(£ + r)X; hence

dist* (S(t + £ + r)X, £) = distx (S{t)S{t + r)X, £)

= distx(s(t)(E(Xt)),£)

= distx(E(L(t)Xt),E(£t))

(The last step uses the Lipschitz continuity of E). Thus £ is exponentially attracting,
since £i is. The proof is finished. D
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