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Abstract
Cannibalism is often an extreme interaction in the animal species to quell competition for limited resources. To
model this critical factor, we improve the predator–prey model with nonlocal competition effect by incorporating the
cannibalism term, and different kernels for competition are considered in this model numerically. We give the critical
conditions leading to the double Hopf bifurcation, in which the gestation time delay and the diffusion coefficient
were selected as the bifurcation parameters. The innovation of the work lies near the double Hopf bifurcation
point, and the stable homogeneous and inhomogeneous periodic solutions can coexist. The theoretical results of the
extended centre manifold reduction and normal form method are in good agreement with the numerical simulation.

1. Introduction

Cannibalism is the biological phenomenon of consuming the same species and helping to provide a food
source. It is commonly seen that some multiparous animals and some primates chew the young animals
in the first few days after delivery [5, 20, 27]. For example, a variety of spiders, mantis, chironomids and
sea slugs have the special habit of females eating males. As a special natural phenomenon, cannibalism
often occurs in social insects [13], spiders [18] and plankton [23], which has attracted the attention of
many scholars. The mutual killing between brothers and sisters for survival may happen in the birds’
or small animals’ nests. For the phenomenon of sexual cannibalism [11, 26, 29], some people believe
that it is due to various complex evolutionary reasons, but after research, it is found that the motivation
for this creepy cannibalism is straightforward, often due to the size of male and female. Large female
spiders eat their weak mates for two reasons: hunger and the ability to eat smaller male spiders [28].

In our work [7], we investigated the following predator–prey model with cannibalism effect and time
delay: ⎧⎪⎪⎨⎪⎪⎩

∂

∂t
u(x, t) = d1�u(x, t) + ru(x, t)

[
1 − u(x, t)

K

]
− au(x, t)v(x, t)

1 + ahu(x, t)
,

∂

∂t
v(x, t) = d2�v(x, t) + v(x, t)

[ bau(x, t − τ )

1 + ahu(x, t − τ )
− d − a0v(x, t)

1 + ahu(x, t)

]
, x ∈�, t> 0,

(1.1)

where u(x, t) and v(x, t) denote the population density of the prey and the predator at location x and
time t, respectively. τ is the gestation time of predator. d1 and d2 are diffusion coefficients. r is the
growth rate and K is the carrying capacity of prey. a and a0 are the scalings of the predator–prey and
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predator–predator encounter rate, respectively. h is the handling time and d is death rate of the predator.
b is the food-to-newborn conversion factor. For the diffusive system (1.1), Sun et al. [25] considered spa-
tial pattern formation induced by predator cannibalism in two-dimensional spatial domain when τ = 0.
Li et al. [14] investigated instability and Hopf bifurcation of system (1.1) induced by time delay with
normal form method and centre manifold theory. Based on [14], we have studied the double Hopf bifur-
cation induced by two different parameters and obtained the coexistence of periodic solutions caused by
cannibalism.

In nature, individual species compete for common resources not only in the neighbouring regions but
also in the entire spatial domain. Therefore, nonlocal competition effect can be introduced into the bio-
logical model to make the system more reasonable [2, 9, 17, 24]. In [2], a single population model with
nonlocal competition effect is first studied, where Britton introduced the nonlocal competition term∫
�

W(x − y)u(y, t)dy with �= (−∞, ∞) and W(x − y) is general kernel function. In the simple case,
Furter and Grinfeld [10] replaced W(x − y) with W(x, y) and took W(x, y) = 1/ |�| when � is bounded
and investigated the steady-state bifurcation of a single population model with Neumann boundary con-
ditions. Since then, the nonlocal competition has been broadly studied in competitive population [17,
21] and predator–prey models [1, 3, 15, 16]. Many results show that nonlocal prey competition can make
the system more likely to generate spatiotemporal dynamics and affect the stability of wave trains.

What kind of interesting dynamic behaviours will be generated, when we consider the influence of
nonlocal effects on the system (1.1)? In nature, the prey is often small with abundant amounts and
competition for intraspecies resources, so the nonlocal competition is more intense and common for
the prey, while the number of predators is less than that of the prey, and the size is larger, hence the
intraspecific competition is not considered normally. Keep this in mind, we propose a diffusive model
with nonlocal intraspecific competition in prey:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂u(x, t)

∂t
= d1�u(x, t) + ru(x, t)

[
1 − 1

K

∫
�

W(x, y)u(y, t)dy
]
− au(x, t)v(x, t)

1 + ahu(x, t)
,

∂v(x, t)

∂t
= d2�v(x, t) + v(x, t)

[ bau(x, t − τ )

1 + ahu(x, t − τ )
− d − a0v(x, t)

1 + ahu(x, t)

]
, x ∈�, t> 0,

∂u(x, t)

∂−→n = ∂v(x, t)

∂−→n = 0, x ∈ ∂�, t> 0,

u(x, t) = u0(x, t) � 0, v(x, t) = v0(x, t) � 0, x ∈�, t ∈ [−τ , 0].

(1.2)

For simplicity of notation, we denote û(x, t) = ∫
�

W(x, y)u(y, t)dy. To facilitate the study of the distri-
bution of eigenvalues, we choose �= (0, lπ ), l ∈R

+. If the kernel is a classical Dirac function, that is,
W(x, y) = δ(x − y), the system (1.2) is reduced to the system (1.1). Some other common kernel functions
can be used in the model, such as symmetric kernel function, average kernel function, etc, which are
commonly used to describe the probability distribution of random variables [9]. Therefore, we choose
the following particular kernels:

(I) W(x, y) = 1

lπ
+μ cos(x − y),

(II) W(x, y) = g1(x)g2(y).

Compared with the research on the reaction–diffusion system without nonlocal competition effect
[7], we first show the effects of different kernel functions on the system dynamics. Through intuitive
simulation, it is found that the system will exhibit constant/nonconstant steady-state solutions and spatial
homogeneous/nonhomogeneous periodic solutions. This means that due to the different forms of kernel
functions, there are significant differences in the final dynamics of the population. Second, we find the
existence of double Hopf bifurcations for the average kernel function. In addition, we can provide the
theoretical results near the bifurcation points of double Hopf by using the generalised normal form
method and demonstrate the complex dynamic behaviour that the system may present numerically.
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After the introduction, in Section 2, we show, by selecting different nonuniform kernel functions,
that the system can generate a stable constant/nonconstant steady-state solution, and a stable noncon-
stant periodic solution, etc. In Section 3, we mainly discuss the existence of double Hopf bifurcation near
the positive steady state. In Section 4, near the double Hopf bifurcation point, we provide the extended
calculation methods of normal form for the nonlocal predator–prey system with time delay and predator
diffusion. Furthermore, we study the coexistence behaviour of spatially nonhomogeneous and homoge-
neous periodic oscillations near the double Hopf bifurcation point based on the influence of diffusion
and cannibalism on the system.

In summary, we establish a framework to calculate the normal form of the centre manifold of system
(1.2) at double Hopf bifurcation points. Some recursive transformations related to the variables are
used to derive the codimension two normal form, which is a tedious but effective derivation process.
We provide the range of related parameters through a normal form bifurcation set, and the selection of
parameters is determined by several different bifurcation curves. As for the initial function, due to the
local dynamical analysis, we choose it near the steady-state solution. The numerical simulation results
provide good support for our theoretical analysis.

2. The influence of different kernel function

In this section, we study the influence of spatial nonlocality on the dynamic behaviour by selecting
different kernel functions of the trigonometric function class. In the following, we discuss the impact of
individual resource distribution on population size in several scenarios. In order to compare the dynamic
behaviours between the systems (1.2) and (1.1), we fix the following same parameters as in [7]:

d1 = 0.3, K = 21, a0 = 0.28, r = 0.85, h = 0.9, a = 0.28, b = 0.998, d = 0.1, l = 1.2, (2.1)

and choose d2 = 0.8, the initial functions u(x, t) = 6.52 + 0.01 cos x and v(x, t) = 5.53 + 0.01 cos x.
Case I: When W(x, y) = 1

lπ
+μ cos(x − y), μ ∈ [− 1

lπ
, 1

lπ

]
. When μ= 0, W(x, y) = 1

lπ
, implying that

the intensity of competition is the same for the prey group. If μ ∈ [− 1
lπ

, 0) ∪ (0, 1
lπ

]
, W(x, y) is a sym-

metric kernel due to the form of cos(x − y), the nonlocal effect is a function of the distance. Taking
μ= 0 and μ= 1

lπ
, respectively, we can observe the significant difference in the prey population (see

Figure 1). With μ= 0, there exits stable constant state for small delay (τ = 2), then spatially nonho-
mogeneous periodic solutions (τ = 8), and spatially homogeneous periodic solutions (τ = 12) when the
delay is increased gradually (Figure 1 (a)(c)(e)), while a stable state converges to a stable cosine form
when μ= 1

lπ
for small delay (τ = 2) and the spatial ‘cos-type’ shape periodic solutions(τ = 8) and then

steady-state solutions (τ = 12) exist with the increasing of delay τ (Figure 1 (b)(d)(f)). Notice that in
Figure 1, we only show the variation of prey and the predator evolves in a similar form. Figure 1(d) shows
that the prey distribution is concentrated at both ends rather than in the middle. Figure 1(b)(f) illustrate
that without temporal vibration, the spatial distribution of species is uneven, with one concentrated at
both ends and one concentrated near x = 0.

Case II: It should be pointed out that in (1.2), substituting W(x, y) = g1(x)g2(y) yields the partial
form:

1

K/g1(x)

∫
�

g2(y)u(y, t)dy. (2.2)

Note that K/g1(x), g2(y) correspond to the environmental carrying capacity (resource) at x and the con-
sumption capacity at y, respectively. By changing the time delay, when g1(x) = 1 − sin ( 1

l
x), g2(y) =

sin 1
l
y, we can observe spatially nonhomogeneous steady-state solutions and spatially nonhomogeneous

periodic solutions (Figure 2), indicating that the variation of g1(x) in the kernel function W(x, y) can
directly reflect the density distribution of prey. When g1(x) = sin 1

l
x, g2(y) = 1 − sin ( 1

l
y), we can observe

that the prey ultimately exhibits steady-state and periodic solutions related to its distribution position
(Figure 3). From Figures 2 and 3, it can be seen that the density distribution of prey is closely related
to the form of g1(x). If we project Figures 2 and 3 onto the x − u plane, the shape of the solution is
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Figure 1. The spatiotemporal patterns of prey with τ = 2, 8, 12. (a,c,e): μ= 0. (b,d,f): μ= 1
lπ

.

mainly influenced by [g1(x)]−1. More specially, as x increases, the population density in Figure 2 shows
a trend of first increasing and then decreasing, while in Figure 3, the opposite is true. The density of
prey decreases at first and then increases.

In particular, if g1(x) = C remains constant, g2(y) = sin 1
l
y, W(x, y) = g1(x)g2(y), (2.2) becomes

C

K

∫
�

sin
y

l
u(y, t)dy.

The system (1.2) eventually exhibits a stable equilibrium solution, and the smaller the value of C, the
larger the value of the solution; see Figure 4. Figure 4(c) demonstrates that as C increases, the steady-
state solution u∗ gradually decreases in contrast. If we keep g2(y) at the constant, and change g1(x) as
g1(x) = sin 1

l
x, and τ = 2. By changing the value of C, it is found that the number of prey eventually

converges to a stable nonhomogeneous steady-state solution in space, with the projection curve opening
upwards, which is exactly opposite to the direction of g1(x) opening; see Figure 5.
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Figure 2. The spatiotemporal diagram of prey. (a) τ = 2. (b) τ = 6.

Figure 3. The spatiotemporal diagram of prey. (a) τ = 2. (b) τ = 12.
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Figure 4. The prey ultimately reaches a stable steady-state solution with τ = 2. (a) C = 0.5. (b) C = 2.5.
(c) u∗ monotonically decreases with C.

Intuitively, through the numerical simulations, we can observe that the system exhibits spatially
homogeneous or nonhomogeneous periodic solutions, constant or nonconstant steady-state solutions,
etc., and the shapes of the solutions are closely related to the choice of kernel functions. Next, we analyse
the dynamical properties mathematically. If the kernel function is uniformly distributed, the system may
generate constant/nonconstant steady-state solutions or homogeneous/inhomogeneous periodic oscil-
lations. The case of nonuniform distribution usually leads to the occurrence of extreme steady-state
solutions in the system. This further indicates that different choices of kernel functions can lead to
different dynamics in the system.

https://doi.org/10.1017/S0956792524000019 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792524000019


712 D. Duan et al.

Figure 5. The prey eventually converges to a stable nonhomogeneous steady-state solution. (a) C = 0.5.
(b) C = 6.5.
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Figure 6. Relationship between population size and cannibalism factors.

3. Existence of double Hopf bifurcation for the uniform kernel

It is straightforward to see that, same as that in the system (1.1), there is a unique constant solution
E∗ = (u∗, v∗) for the system (1.2) when d − a(b − dh)K < 0, with

v∗ = r

a
(1 + ahu∗)

(
1 − u∗

K

)
.

As u∗ gradually increases, the trend of v∗ is increases first and then decreases. When u∗ = ahK−1
2ah

, v∗
reaches its maximum value. As seen from Figure 6, when the predator cannibalism factor reaches a cer-
tain point, the predator population reaches a maximum by selecting appropriate parameters, indicating
that cannibalism can promote species reproduction. Cannibalism can regulate population size and ben-
efit cannibalism individuals and their relatives, as additional shelter, territory, and food resources are
released.

Mathematically, let �= (0, lπ ), linearising system (1.2) at E∗, we obtain

∂

∂t
W(x, t) = D�W(x, t) + A0W(x, t) + B0Ŵ(x, t) + CW(x, t − τ ),
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where

W(x, t) =
⎛⎝u(x, t)

v(x, t)

⎞⎠ , Ŵ(x, t) =
⎛⎝û(x, t)

v̂(x, t)

⎞⎠ , W(x, t − τ ) =
⎛⎝u(x, t − τ )

v(x, t − τ )

⎞⎠ ,

D =
⎛⎝d1 0

0 d2

⎞⎠ , A0 =
⎛⎝α11 α12

α21 α22

⎞⎠ , B0 =
⎛⎝β11 0

0 0

⎞⎠ , C =
⎛⎝ 0 0

c21 0

⎞⎠ , (3.1)

and

α11 = a2hu∗v∗
(1 + ahu∗)2

, α12 = − au∗
1 + ahu∗

, α21 = aa0hv2
∗

(1 + ahu∗)2
,

α22 = − a0v∗
1 + ahu∗

, β11 = − ru∗
K

, c21 = abv∗
(1 + ahu∗)2

.

The characteristic problem

−�ϕ = σϕ, x ∈ (0, lπ ), ϕ ′(0) = ϕ ′(lπ ) = 0

results the eigenvalues n2

l2
(n ∈N0), and the normalised eigenfunctions

ξn(x) = cos n
l
x

‖cos n
l
x‖ =

⎧⎪⎨⎪⎩
√

1
lπ

, n = 0,√
2
lπ

cos n
l
x, n � 1.

(3.2)

Let β i
n(x) = ξn(x)ei, i = 1, 2, where ei is the unit coordinate vector of R2. First, we define the real-valued

Hilbert space

X:= {(u, v) ∈ H2(0, lπ ) × H2(0, lπ ) : ∂xu(0, t) = ∂xu(lπ , t) = 0, ∂xv(0, t) = ∂xv(lπ , t) = 0
}
,

and the complexification of X is XC:= {x1 + ix2, x1, x2 ∈ X}. {β i
n}n∈N0 forms an orthonormal basis of XC.

For U ∈ XC and βn = (β1
n , β2

n ), we define 〈βn, U〉 = (〈β1
n , U〉, 〈β2

n , U〉)T , and

Bn = span{〈β i
n, U〉β i

n|U ∈ XC, i = 1, 2}.
The sequence of characteristic equations is

λ2 + Aλ+ B̃ − α12c21e−λτ = 0, (3.3)

λ2 + Dnλ+ En − α12c21e−λτ = 0, n ∈N+, (3.4)

with A = −(α11 + β11 + α22), B̃ = α22(α11 + β11) − α12α21, Dn = (d1 + d2)n2/l2 − α11 − α22, En =
(d1n2/l2 − α11)(d2n2/l2 − α22) − α12α21. It is easy to see that

B̃ − α12c21 =
[
ra0(1 + ahu∗)2 + Ka2b

]
u∗v∗

1 + ahu∗
> 0.

Thus, if

(S1) A> 0, Dn > 0, En − α12c21 > 0,

the following conclusion can be drawn.

Lemma 1. Under the assumption (S1), the positive equilibrium E∗ is asymptotically stable in the system
(1.2) when τ = 0.
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To find the critical value of τ such that the equations (3.3) or (3.4) has a pair of simple purely imag-
inary roots ±iω (ω> 0) under (S1), by using the similar method in [19], and let λ= iω be solutions of
(3.3), we have ⎧⎪⎪⎪⎨⎪⎪⎪⎩

cosωτ = −ω2 + B̃

α12c21

:= C(ω),

sinωτ = −Aω

α12c21

:= S(ω)> 0.

(3.5)

That is,

ω4 + (A2 − 2B̃)ω2 + B̃2 − α2
12c

2
21 = 0. (3.6)

The two positive roots of equation (3.6) are represented as:

ω± =
[

1

2

(
−A2 + 2B̃ ±

√
A4 − 4A2B̃ + 4α2

12c2
21

)]1/2

(3.7)

if

(S2) − A2 + 2B̃> 0, B̃ + α12c21 > 0, A4 − 4A2B̃ + 4α2
12c2

21 > 0 (3.8)

holds. In particular, equation (3.6) has a unique positive root ω+ if

(S3) B̃ + α12c21 < 0.

Similarly, when

ω±
n =

[
1

2

(
−D2

n + 2En ±
√

D4
n − 4D2

nEn + 4α2
12c2

21

)]1/2

, (3.9)

iω±
n are the solution in (3.4) if

(S4) − D2
n + 2En > 0, En + α12c21 > 0, D4

n − 4D2
nEn + 4α2

12c2
21 > 0. (3.10)

With

(S5) En + α12c21 < 0,

ω+
n exists. The critical values of τ , created to ω±/ω±

n , are⎧⎨⎩τ
j± = (arccos C(ω) + 2jπ )/ω±,

τ j±
n = (arccos Cn(ω) + 2jπ )/ω±

n , j ∈N0, n ∈N+,

where Cn(ω) = (−ω2 + En)/(α12c21), respectively.

Lemma 2. Suppose that (S1) holds.
(a) If (S3) and (S5) hold, then Re λ′(τ j+)> 0, Re λ′(τ j+

n )> 0 for j ∈N0, n ∈N+.
(b) If (S2) and (S4) hold, then Re λ′(τ j+)> 0, Re λ′(τ j−)< 0, Re λ′(τ j+

n )> 0, Re λ′(τ j−
n )< 0 for j ∈N0,

n ∈N+.

Remark 3.1. The possible cases are (S2) and (S5), (S3) and (S4), a conclusion similar to Lemma 2 can
be obtained as well.

Remark 3.2. Under assumptions (S1), (S3) and (S5), system (1.2) may undergo a double Hopf bifur-
cation at the positive constant stationary solution E∗ when (τ , d2) = (τ ∗, d∗

2). In order to better analyse
the dynamical behaviour near the bifurcation point, we will give the normal form analysis of E∗ about
system (1.2).

Compared with the previous study, the nonlocal competition term in model (1.2) can improve the
chances of coexistence between prey and predators to a certain extent. In this section, we have estab-
lished the existence conditions of double Hopf bifurcation. In the next section, theoretically, we will
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calculate the normal form near the bifurcation point of the double Hopf, mainly by calculating the rel-
evant coefficients, which are significantly different from the formula derived by previous researchers.
Subsequently, based on the positivity and negativity of coefficient symbols, dynamic classification can
be explored.

4. Normal form of double Hopf bifurcation

To study the dynamic behaviour in the system (1.2) near the double Hopf bifurcation point, we then
calculate the normal form. Based on the normal form of the reaction–diffusion equation without time
delay in [22], we give a new algorithm of the normal form for system (1.2) with time delay and nonlocal
term. Let u(t) → u(·, τ t) − u∗, v(t) → v(·, τ t) − v∗, and û(t) → û(·, τ t) − u∗, then we obtain⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u̇(t) = τ
[
d1�u(t) + α11u(t) + α12v(t) + β11û(t) + α1u2(t) + α̃1u(t)û(t)

+ α2u(t)v(t) + α3u
3(t) + α4u

2(t)v(t) + O(4)
]
,

v̇(t) = τ
[
d2�v(t) + α21u(t) + α22v(t) + c21u(t − 1) + β1u2(t) + β2u(t)v(t)

+ β3u
2(t − 1) + β4u(t − 1)v(t) + β5v2(t) + β6u

3(t) + β7u2(t)v(t)

+ β8u(t)v2(t) + β9u3(t − 1) + β10u2(t − 1)v(t) + O(4)
]
,

(4.1)

where

α1 = a2hv∗
(1 + ahu∗)3

, α̃1 = − r

K
, α2 = −a

(1 + ahu∗)2
, α3 = −a3h2v∗

(1 + ahu∗)4
, α4 = a2h

(1 + ahu∗)3
,

β1 = − a2a0h2v2
∗

(1 + ahu∗)3
, β2 = 2aa0hv∗

(1 + ahu∗)2
, β3 = −a2bhv∗

(1 + ahu∗)3
, β4 = ab

(1 + ahu∗)2
, β5 = −a0

1 + ahu∗
,

β6 = a3a0h3v2
∗

(1 + ahu∗)4
, β7 = − 2a2a0h2v∗

(1 + ahu∗)3
, β8 = aa0h

(1 + ahu∗)2
, β9 = a3bh2v∗

(1 + ahu∗)4
, β10 = −a2bh

(1 + ahu∗)3
.

Under assumptions (S1), (S3) and (S5), there exists d∗
2 that causes two Hopf bifurcation curves to

intersect, with the intersection point represented as (τ ∗, d∗
2), known as a double Hopf bifurcation point.

Setting τ = τ ∗ +μ1, d2 = d∗
2 +μ2, U(t) = (u(t), v(t))T , Û(t) = (û(t), v̂(t))T , Ut(·) = U(t +·), and Ût(·) =

Û(t +·). Then (4.1) becomes
d

dt
U(t) =(τ ∗ +μ1)

[
D0�U(t) + A0Ut(0) + B0Ût(0) + CUt(−1)

]+μ2τ
∗D1�U(t)

+ [f1(μ1,μ2, Ut, Ût), f2(μ1,μ2, Ut, Ût)]
T ,

(4.2)

where D0 = diag{d1, d∗
2}, D1 = diag{0, 1}, Ût = 1

lπ

∫ lπ

0
Utdx, and

f1(μ1,μ2, Ut, Ût) = (τ ∗ +μ1)
[
α1u2

t (0) + α̃1ut(0)ût(0) + α2ut(0)vt(0)

+ α3u3
t (0) + α4u2

t (0)vt(0)
]
,

f2(μ1,μ2, Ut, Ût) = (τ ∗ +μ1)
[
β1u2

t (0) + β2ut(0)vt(0) + β3u2
t (−1) + β4ut(−1)vt(0) + β5v2

t (0)

+ β6u3
t (0) + β7u

2
t (0)vt(0) + β8ut(0)v2

t (0) + β9u
3
t (−1) + β10u2

t (−1)vt(0)
]
.

At the double Hopf bifurcation point, the linearisation of system (4.2) has purely imaginary eigenvalues
�= {±iω1τ

∗, ±iω2τ
∗}, and all eigenvalues except � have negative real parts under assumptions (S1),

(S3) and (S5). To discuss double Hopf bifurcation, we assume
(H1) ω1 <ω2 and ω1 :ω2 is irrational number.
We choose

φ1(θ ) = (1, p1)Teiω1τ
∗θ , φ2(θ ) = (1, p2)Teiω2τ

∗θ , (θ ∈ [−1, 0]),
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as the column eigenvectors, corresponding to the eigenvalue iω1τ
∗ and iω2τ

∗, respectively:

ψ1(s) = M1(1, q1)e−iω1τ
∗s,ψ2(s) = M2(1, q2)e−iω2τ

∗s, (s ∈ [0, 1]),

as the row eigenvectors, corresponding to the eigenvalue iω1τ
∗ and iω2τ

∗, respectively. By direct
calculations, we obtain

p1 = (iω1 − α11 − β11)/α12, p2 = (iω2 + d1/l
2 − α11)/α12,

q1 = α12/(iω1 − α22), q2 = α12/(iω2 + d2/l
2 − α22),

M1 = (1 + p1q1 + τ ∗q1c21e−iω1τ
∗
)−1, M2 = (1 + p2q2 + τ ∗q2c21e−iω2τ

∗
)−1.

Decomposing the phase space XC as:

XC = P ⊕ Kerπ ,

where P = Imπ , and π : XC → P is the projection:

π (U) =
2∑

k=1

�k(�k, 〈βn, U〉)ξn,

U ∈ XC have the form:

U =
2∑

k=1

(�kz̃k(t))ξnk + w =�zx + w, (4.3)

with z̃k(t) = (�k, 〈βn, U〉) ∈C
2, � = (�1,�2), zx = (z1ξn1 , z2ξn1 , z3ξn2 , z4ξn2 )T , and w ∈ Kerπ . Let z(t) =

(z1(t), z2(t), z3(t), z4(t))T ∈C
4 and

F̃(z, w, ŵ,μ) = F̃
( 2∑

k=1

(�kz̃k(t))ξnk + w,
1

lπ

∫ lπ

0

( 2∑
k=1

(�kz̃k(t))ξnk + w
)

dx,μ
)

.

We use (z, w, ŵ,μ) in place of (U, Û,μ), (4.2) can be re-represented with the following equation in
C

4 × Kerπ : ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ż = Bz + �̄

⎛⎜⎝c〈βn1 , F̃(z, w, ŵ,μ)〉
〈βn2 , F̃(z, w, ŵ,μ)〉

⎞⎟⎠ ,

d

dt
w =L1w + (I − π )F̃(z, w, ŵ,μ),

(4.4)

where B = diag(B1, B2), B1 = diag(iω1, −iω1), B2 = diag(iω2, −iω2).
Using the Taylor expansions:

F̃(U, Û,μ) =
∑
j�2

1

j! F̃j(U, Û,μ),μ ∈R
2, U ∈ XC,

where F̃j is the jth Fréchet derivation of F̃, (4.4) can be recorded as:⎧⎪⎪⎨⎪⎪⎩
ż = Bz +

∑
j�2

1

j! f 1
j (z, w, ŵ,μ),

d

dt
w =L1w +

∑
j�2

2

j! f 1
j (z, w, ŵ,μ),

(4.5)

where ŵ = 1
lπ

∫ lπ

0
wdx ∈ Kerπ , and

f 1
j (z, w, ŵ,μ) = �̄

⎛⎝〈βn1 , F̃j(z, w, ŵ,μ)〉
〈βn2 , F̃j(z, w, ŵ,μ)〉

⎞⎠ , (4.6)
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f 2
j (z, w, ŵ,μ) = (I − π )F̃j(z, w, ŵ,μ), (4.7)

From [4, 8], it can be seen that through some variable transformations, we can obtain the normal form
of (4.5). Let

(z, w,μ) = (z̃, w̃,μ) + 1

j! (U1
j (z̃,μ), U2

j (z̃,μ)), j � 2,

and Uj = (U1
j , U2

j ) ∈ V4+2
j (C4) × V4+2

j (Kerπ ). V4+2
j (Y) is denoted as:

V4+2
j =

{ ∑
|(p,l)=j|

c(p,l)z
pμl : (p, l) ∈N

4+2
0 , c(p,l) ∈ Y

}
, (4.8)

and p = (p1, p2, p3, p4) ∈N
4
0, l = (l1, l2) ∈N

2
0,
∑4

i=1 pi +∑2
i=1 li = j, zp = zp1

1 zp2
2 zp3

3 zp4
4 and μl =μl1μl2 . The

operators Mj = (M1
j , M2

j ), j � 2 is defined as:

M1
j : V4+2

j (C4) → V4+2
j (C4),

(M1
j p)(z,μ) = Dzp(z,μ)Bz − Bp(z,μ),

M2
j : V4+2

j (Kerπ ) → V4+2
j (Kerπ ),

(M2
j h)(z,μ) = Dzh(z,μ)Bz −L1p(z,μ).

(4.9)

Through simplification, (4.5) can be written as:⎧⎪⎪⎨⎪⎪⎩
ż = Bz +

∑
j�2

1

j!g1
j (z, w, ŵ,μ),

d

dt
w =L1w +

∑
j�2

2

j!g1
j (z, w, ŵ,μ),

(4.10)

with gj = (g1
j , g2

j ), j � 2,

gj(z, w, ŵ,μ) = f̄j(z, w, ŵ,μ) − MjUj(z,μ).

Uj ∈ V4+2
j (C4) × V4+2

j (Kerπ ) can be calculated by:

Uj(z,μ) = (Mj)
−1PIm,j f̄j(z, 0, 0,μ), (4.11)

where (Mj)−1 is the inverse of Mj. PIm,j = (P1
Im,j, P2

Im,j) is the projection operator related to previous
decomposition of V4+2

j (C4) × V4+2
j (Kerπ ) → Im(M1

j ) × Im(M2
j ).

4.1. Formula derivation of normal forms

To obtain the explicit form in the normal form, by (4.9), we have

M1
j (zpμlek) = Dz(z

pμlek)Bz − Bzpμlek =⎧⎨⎩((−1)kiω1 + iω1p1 − iω1p2 + iω2p3 − iω2p4)zpμlek, k = 1, 2,

((−1)kiω2 + iω1p1 − iω1p2 + iω2p3 − iω2p4)zpμlek, k = 3, 4,

(4.12)
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where ek ∈R
4 represents the kth standard basic vector, zp = zp1

1 zp2
2 zp3

3 zp4
4 , and μl =μl1μl2 . Hence,

Ker(M1
2) = span{μiz1e1,μiz2e2,μiz3e3,μiz4e4}, i = 1, 2.

By (4.6), we have

1

2! f 1
2 (z, 0, 0,μ) = 1

2! �̄
⎛⎝〈βn1 , F̃2(z, 0, 0,μ)〉

〈βn2 , F̃2(z, 0, 0,μ)〉

⎞⎠ . (4.13)

Therefore, on the centre manifold of (0, 0) near (τ ∗, d∗
2), for (4.2) the normal forms of second order is

ż = Bz + 1

2!g1
2(z, 0, 0,μ) + . . . ,

with g1
2(z, 0, 0,μ) = ProjKer(M1

2 )f
1
2 (z, 0, 0,μ). By further computation,

1

2!g1
2(z, 0, 0,μ) = 1

2!ProjKer(M1
2 )f

1
2 (z, 0, 0,μ) =

⎛⎜⎜⎜⎜⎜⎜⎝

E11μ1z1 + E21μ2z1

E11μ1z2 + E21μ2z2

E13μ1z3 + E23μ2z3

E13μ1z4 + E23μ2z4

⎞⎟⎟⎟⎟⎟⎟⎠ , (4.14)

where E11, E21, E13 and E23 have the following representations:

E11 =ψ1(0)
(
A0φ1(0) + B0φ1(0) + Cφ1(−1)

)
,

E21 = 0,

E13 =ψ2(0)
(−D0φ2(0)/l2 + A0φ2(0) + Cφ2(−1)

)
,

E23 = −ψ2(0)τ ∗D1φ2(0)/l2,

where A0, B0 and C are given by (3.1), D0 = diag{d1, d∗
2} and D1 = diag{0, 1}.

Similarly, by (4.5) and (4.12), we can obtain the expression of the third-order normal forms:

ż = Bz + 1

2!g1
2(z, 0, 0,μ) + 1

3!g1
3(z, 0, 0, 0) + . . . ,

by noting that

Ker(M1
3) = span{e1z2

1z2, e1z1z3z4, e2z1z
2
2, e2z2z3z4, e3z2

3z4, e3z1z2z3, e4z3z
2
4, e4z1z2z4}.

Here, g1
3(z, 0, 0, 0) = ProjKer(M1

3 ) f̄
1
3 (z, 0, 0, 0), f̄ 1

3 (z, 0, 0, 0) can be obtained by the formula (see [22]):

f̄ 1
3 (z, 0, 0, 0) = f 1

3 (z, 0, 0, 0) + 3

2

(
Dzf

1
2 (z, 0, 0, 0)U1

2(z, 0) + Dwf 1
2 (z, 0, 0, 0)U2

2(z, 0)

+ Dŵf 1
2 (z, 0, 0, 0)Û2

2(z, 0) − DzU
1
2(z, 0)g1

2(z, 0, 0, 0)
)

,
(4.15)

where U1
2 and U2

2 are given in (4.11), and

U2
2 = 1

lπ

∫ lπ

0

U2
2dx.

It is straightforward to have g1
2(z, 0, 0, 0) = 0 by (4.14); next, we need to calculate the remaining four

parts in formula (4.15):
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(a) ProjKer(M1
3 )f

1
3 (z, 0, 0, 0),

(b) ProjKer(M1
3 )

(
Dz f 1

2 (z, 0, 0, 0)U1
2(z, 0)

)
,

(c) ProjKer(M1
3 )

(
Dw f 1

2 (z, 0, 0, 0)U2
2(z, 0)

)
,

(d) ProjKer(M1
3 )

(
Dŵ f 1

2 (z, 0, 0, 0)Û2
2(z, 0)

)
,

which are provided in the appendix.
Using the algorithms similar to those in [6, 22], we can get the following normal form of double Hopf

bifurcation, up to the third order:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

ż1 = iω1τ
∗z1 + E11μ1z1 + E21μ2z1 + E2100z2

1z2 + E1011z1z3z4,

ż2 = −iω1τ
∗z2 + E11μ1z2 + E21μ2z2 + E2100z1z

2
2 + E1011z2z3z4,

ż3 = iω2τ
∗z3 + E13μ1z3 + E23μ2z3 + E0021z2

3z4 + E1110z1z2z3,

ż4 = −iω2τ
∗z4 + E13μ1z4 + E23μ2z4 + E0021z3z

2
4 + E1110z1z2z4.

(4.16)

By the polar coordinate transformations, let z1 = r̃1eiθ1 , z2 = r̃2eiθ2 , and

ε1 = Sign(Re(E2100)), ε2 = Sign(Re(E0021)),

r1 = r̃1

√|E2100|, r2 = r̃2

√|E0021|, t̃ = tε1,

the system (4.16) can be rewritten as follows:⎧⎪⎨⎪⎩
dr1

dt̃
= r1(υ1 + r2

1 + b0r2
2),

dr2

dt̃
= r2(υ2 + c0r2

1 + d0r2
2),

(4.17)

where

υ1 = ε1

(
Re(E11)μ1 + Re(E21)μ2

)
,

υ2 = ε1

(
Re(E13)μ1 + Re(E23)μ2

)
,

b0 = ε1ε2Re(E1011)

Re(E0021)
, c0 = Re(E1110)

Re(E2100)
, d0 = ε1ε2. (4.18)

Obviously, there is a zero equilibrium E1(0, 0). The three nonnegative equilibria:

E2 = (
√−υ1, 0), when υ1 < 0,

E3 =
(

0,
√

−υ2

d0

)
, when d0υ2 < 0,

E4 =
(√b0υ2 − d0υ1

d0 − b0c0

,

√
c0υ1 − υ2

d0 − b0c0

)
, when

b0υ2 − d0υ1

d0 − b0c0

> 0,
c0υ1 − υ2

d0 − b0c0

> 0. (4.19)

Corresponding to the original system (1.2), E1 associates with the positive steady state; E2 and E3 rep-
resent the spatially periodic solutions, and E4 represents the spatially quasi-periodic solution. Due to
the possible different sign in the coefficients b0, c0, d0 and d0 − b0c0, there are 12 types of unfolding in
(4.17) (see chapter 7.5 in [12]).

5. Numerical simulations

Throughout this section, we always fix the parameters in (2.1) and vary d2, τ and a0 to explore the
dynamics with respect to diffusion, time delay and predator cannibalism on the spatial distribution of
prey. Predators can also exhibit similar pattern structures.
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Figure 7. The bifurcation diagrams on the τ − d2 plane.

Figure 8. The dynamical phenomenon of different regions.

5.1. The dynamical phenomenon in different regions

We first draw the bifurcation diagram with respect to d2 and τ in Figure 7, where we can see with the
increase of the diffusion coefficient d2, the double Hopf bifurcation points appear. We can calculate
(τ ∗, d∗

2) = (8.1471, 0.3499) (denoted by “HH1”), and

E11 = 0.0099 + 0.0961i, E21 = 0,

E13 = 0.0526 + 0.0980i, E23 = −0.6613 − 0.1267i,

E2100 = −0.0021 − 0.002i, E1011 = −0.0128 + 0.0103i,

E0021 = −0.0093 − 0.0022i, E1110 = −0.0083 + 0.0009i.

It follows from (4.16) and (4.17) that

ε1 = −1, b0 = 1.3696, c0 = 3.9506, d0 = 1, d0 − b0c0 = −4.4110. (5.1)

Near the double Hopf bifurcation point (τ ∗, d∗
2), the dynamics of system (1.2) is topologically equivalent

to (4.17) near (μ1,μ2) = (0, 0), where (μ1,μ2) = (τ − τ ∗, d2 − d∗
2). We can divideμ1 −μ2 plane into six

parts by lines l1 (υ1 = 0), l2 (υ2 = 0), and half-lines l3 (b0υ2 − d0υ1 = 0), l4 (c0υ1 − υ2 = 0), obtained from
(4.18) and (4.19), as depicted in Figure 8. The four red dots marked in Figure 8 are the relative positions
of the values. We then calculate that

l1 :μ1 = 0, l2 :μ1 = 12.5722μ2,

l3 :μ1 = 14.5638μ2 (μ2 � 0),

l4 :μ1 = 49.0891μ2 (μ2 � 0).
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Figure 9. The dynamical classifications in regions 1, 2, 4 and 5.
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Figure 10. When τ = 6< τ ∗, the positive constant stationary solution E∗ of system (1.2) is locally
asymptotically stable.

Near the double Hopf bifurcation point (τ ∗, d∗
2), the values of time delay and diffusion coefficient taken

in the numerical simulation are consistent with the theoretical results. More specially, the dynamical
classifications in each region separating by li (i = 1, 2, 3, 4) are shown in Figure 9.

5.2. The effect of predator diffusion on pattern formation

From Figure 7, we know that the positive equilibrium remains stable if τ <min{τ 0+, τ 0+
1 }, spatially

homogeneous or nonhomogeneous periodic solutions appear if τ >min{τ 0+, τ 0+
1 }. We then choose

the time delay τ and the diffusion coefficient d2 as double Hopf bifurcation parameters to study
the dynamic behaviour of the system (1.2). With the same initial functions u(x, t) = 6.5 + 0.01 cos x,
v(x, t) = 5.5 + 0.01 cos x, when we fix d2 = 0.8, we can observe different patterns as τ varies. In
Figure 10, the positive equilibrium is locally asymptotically stable. In Figures 11 and 12 (d2 = 0.34),
there are stable spatially homogeneous and nonhomogeneous periodic solutions. In Figure 13, we
find stable spatially homogeneous and nonhomogeneous periodic oscillations could coexist with dif-
ferent initial functions. One initial function is u(x, t) = 6.48 + 0.01 cos x, v(x, t) = 5.53, and the other is
u(x, t) = 6.52, v(x, t) = 5.53 + 0.01 cos x. With the increase of time, the unstable quasi-periodic solution
disappears gradually.
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Figure 11. When τ = 13.9> τ ∗, spatially homogeneous periodic solutions are stable of system (1.2).
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Figure 12. When τ = 18.7> τ ∗, spatially nonhomogeneous periodic solutions are stable of system
(1.2).
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Figure 13. Stable spatially homogeneous periodic solution and stable spatially nonhomogeneous
periodic solution with different initial values coexist when τ = 18.7.
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Figure 14. The bifurcation diagrams on the b − τ plane.

Figure 15. The spatiotemporal diagram of predator. Left, a0 = 0.2; centre, a0 = 0.28; right, a0 = 0.3.

Remark 5.1. Under the assumptions (S1), (S2) and (S5), there exists d∗
2 such that τ 0+ = τ 0+

1 , system (1.2)
undergoes a double Hopf bifurcation at the positive equilibrium E∗, when d2 = d∗

2 and τ ∗ = τ 0+ = τ 0+
1 .

Notice that d2 = 0.5 and l = 1.2, the relationship of b and τ is shown in Figure 14. The double Hopf
bifurcation point (τ ∗, b∗) = (9.2949, 0.9925) is denoted by “HH”. In fact, the bifurcation set near HH
has the form given in Figure 8, which can be proved by using the normal form method in the coming
section.

5.3. The effect of cannibalism on pattern formation

In this section, we discuss the effect of cannibalism. Fix a = 0.28, τ = 18.7. When the intraspecies self-
killing rate is less than the interspecies capture rate (a0 < a), the system exhibits a spatially homogeneous
periodic solution. When the intraspecies self-killing rate and interspecies capture rate are equal (a0 = a),
the system exhibits spatially nonhomogeneous periodic solutions. The increase in a0 results in a spatial
distribution of species with certain patterns. When the intraspecies self-killing rate exceeds the inter-
species capture rate, that is, a0 > a, the system exhibits a stable equilibrium solution; see Figure 15(c).
Predators eventually reach a stable number, indicating that cannibalism may lead to a decline in the
population, but it may enable stronger individuals to survive. This is beneficial in an environment where
food is relatively scarce, ensuring that a small number of excellent individuals can master sufficient
resources to breed the next generation.
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6. Conclusions

Compared with the model without nonlocal prey competition, we find that the predator–prey model
with the nonlocal term can generate new dynamic behaviours, such as nonhomogeneous stable periodic
patterns. We find that the dynamic behaviour of the predator and the prey is directly affected by the
shape of the kernel function. Different types of kernel functions can affect the population’s dynamic
behaviour density over time and space. In order to further investigate the dynamics with different kernel
functions, we take uniform kernel functions as an example and provide theoretical analysis. The main
derivation is the form of the double Hopf bifurcation normal form near the positive equilibrium point
of the system, and the simulation results page displays the complex dynamic behaviour of the system.
The highlights are mainly divided into two parts. First, the coexistence of spatially homogeneous and
nonhomogeneous stable periodic oscillations is one of the highlights of this paper. Another highlight is
the derivation of the normal form at the double Hopf bifurcation point. This normal form algorithm can
be extended to the general reaction–diffusion model, which can be our next work.
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Appendix

(a) The calculation of ProjKer(M1
3 )f

1
3 (z, 0, 0, 0).

The third-order Fréchet derivative of F̃(U, Û,μ) at (�zx,�ẑx, 0) is

F̃3(z, 0, 0, 0) =
∑
|l|=3

Fl1l2l3l4ξ
l1+l2
n1

(x)ξ l3+l4
n2

(x)zl1
1 zl2

2 zl3
3 zl4

4 ,

with l = (l1, l2, l3, l4) ∈N
4
0, |l| =∑4

j=1 lj, Fl1l2l3l4 and Fl1l2l3l4 is the coefficient vector of zl1
1 zl2

2 zl3
3 zl4

4 . Hence,
we can obtain

f 1
3 (z, 0, 0, 0) = �̄

⎛⎝〈βn1 , F̃3(z, 0, 0, 0)〉
〈βn2 , F̃3(z, 0, 0, 0)〉

⎞⎠

= �̄

⎛⎜⎝
∑
|l|=3

Fl1l2l3l4

∫ lπ

0
ξ l1+l2+1

n1
(x)ξ l3+l4

n2
(x)dxzl1

1 zl2
2 zl3

3 zl4
4∑

|l|=3

Fl1l2l3l4

∫ lπ

0
ξ l1+l2

n1
(x)ξ l3+l4+1

n2
(x)dxzl1

1 zl2
2 zl3

3 zl4
4

⎞⎟⎠ .

Therefore,

1

3!ProjKer(M1
3 )f

1
3 (z, 0, 0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

A2100z2
1z2 + A1011z1z3z4

A2100z1z2
2 + A1011z2z3z4

A0021z2
3z4 + A1110z1z2z3

A0021z3z2
4 + A1110z1z2z4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where

A2100 = 1

6lπ
ψ1(0)F2100, A1011 = 1

6lπ
ψ1(0)F1011,

A0021 = 1

4lπ
ψ2(0)F0021, A1110 = 1

6lπ
ψ2(0)F1110,
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with

F2100 = 6τ ∗

⎛⎝F1
2100

F2
2100

⎞⎠ , F1011 = 6τ ∗

⎛⎝F1
1011

F2
1011

⎞⎠ ,

F0021 = 6τ ∗

⎛⎝F1
0021

F2
0021

⎞⎠ , F1110 = 6τ ∗

⎛⎝F1
1110

F2
1110

⎞⎠ ,

and

F1
2100 = 3α3 + (p̄1 + 2p1)α4, F1

1011 = 6α3 + 2(p̄2 + p2 + p1)α4,

F1
0021 = 3α3 + (p̄2 + 2p2)α4, F1

1110 = 6α3 + 2(p1 + p̄1 + p2)α4,

F2
2100 = 3β6 + β7(p̄1 + 2p1) + β8(p2

1 + 2p1p̄1) + 3β9e−iω1τ
∗ + β10(2p1 + p̄1e−2iω1τ

∗
),

F2
0021 = 3β6 + β7(p̄2 + 2p2) + β8(p2

2 + 2p2p̄2) + 3β9e−iω2τ
∗ + β10(2p2 + p̄2e−2iω2τ

∗
),

F2
1011 = 6β6 + 2β7(p̄2 + p2 + p1) + 2β8(p2p̄2 + p1p̄2 + p1p2) + 6β9e−iω1τ

∗

+ 2β10

(
p1 + e−(iω1+iω2)τ∗

p̄2 + e(−iω1+iω2)τ∗
p2

)
,

F2
1110 = 6β6 + 2β7(p1 + p̄1 + p2) + 2β8(p1p̄1 + p1p2 + p̄1p2) + 6β9e−iω2τ

∗

+ 2β10

(
p2 + e−(iω1+iω2)τ∗

p̄1 + e(iω1−iω2)τ∗
p1

)
.

(b) The calculation of ProjKer(M1
3 )

(
Dz f 1

2 (z, 0, 0, 0)U1
2(z, 0)

)
.

From (4.3), we obtain

F2(z, w, ŵ, 0)

= F2(U, Û, 0)

=
∑
|l|=2

Fl1l2l3l4ξ
l1+l2
n1

(x)ξ l3+l4
n2

zl1
1 zl2

2 zl3
3 zl4

4 + S2(w) + S2(ŵ) + o( | w |2, | wŵ |, ŵ2),

(A1)

where S2(w) and S2(ŵ) are the linear terms of w and ŵ, respectively.
By (4.13) and (A1), we obtain

f 1
2 (z, 0, 0, 0) = �̄

⎛⎝〈βn1 , F2(z, 0, 0, 0)〉
〈βn2 , F2(z, 0, 0, 0)〉

⎞⎠ ,

= �̄

⎛⎜⎝
∑
|l|=2

Fl1l2l3l4

∫ lπ

0
ξ l1+l2+1

n1
(x)ξ l3+l4

n2
(x)dxzl1

1 zl2
2 zl3

3 zl4
4∑

|l|=2

Fl1l2l3l4

∫ lπ

0
ξ l1+l2+1

n1
(x)ξ l3+l4

n2
(x)dxzl1

1 zl2
2 zl3

3 zl4
4

⎞⎟⎠ ,
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where the forms of coefficient vectors Fl1l2l3l4 (l1 + l2 + l3 + l4 = 2) are as follows:

F2000 = 2τ ∗

⎛⎝F1
2000

F2
2000

⎞⎠ , F1100 = 2τ ∗

⎛⎝F1
1100

F2
1100

⎞⎠ ,

F1010 = 2τ ∗

⎛⎝F1
1010

F2
1010

⎞⎠ , F1001 = 2τ ∗

⎛⎝F1
1001

F2
1001

⎞⎠ ,

F0020 = 2τ ∗

⎛⎝F1
0020

F2
0020

⎞⎠ , F0011 = 2τ ∗

⎛⎝F1
0011

F2
0011

⎞⎠ ,

with

F1
2000 = α1 + α̃1 + α2p1, F1

1100 = 2(α1 + α̃1) + α2(p1 + p̄1),

F1
1010 = 2α1 + α̃1 + α2(p1 + p2), F1

1001 = 2α1 + α̃1 + α2(p̄2 + p1),

F1
0020 = α1 + α2p2, F1

0011 = 2α1 + α2(p̄2 + p2),

F2
2000 = β1 + β2p1 + β3e

−2iω1τ
∗ + β4p1e−iω1τ

∗ + β5p2
1,

F2
1100 = 2β1 + β2(p1 + p̄1) + 2β3 + β4(p̄1e−iω1τ

∗ + p1eiω1τ
∗
) + 2β5p1p̄1,

F2
1010 = 2β1 + β2(p2 + p1) + 2β3e−(iω1+iω2)τ∗ + β4(p2e−iω1τ

∗ + p1e−iω2τ
∗
) + 2β5p1p2,

F2
1001 = 2β1 + β2(p̄2 + p1) + 2β3e(−iω1+iω2)τ∗ + β4(p̄2e−iω1τ

∗ + p1eiω2τ
∗
) + 2β5p1p̄2,

F2
0020 = β1 + β2p2 + β3e−2iω2τ

∗ + β4p2e−iω2τ
∗ + β5p

2
2,

F2
0011 = 2β1 + β2(p̄2 + p2) + 2β3 + β4(p̄2e−iω2τ

∗ + p2e
iω2τ

∗
) + 2β5p2p̄2,

F0200 = F2000, F0110 = F1001, F0101 = F1010, F0002 = F0020.

Hence,

1

3!ProjKer(M1
3 )

(
Dzf

1
2 (z, 0, 0, 0)U1

2(z, 0)
)=
⎛⎜⎜⎜⎜⎜⎜⎝

B2100z2
1z2 + B1011z1z3z4

B2100z1z2
2 + B1011z2z3z4

B0021z2
3z4 + B1110z1z2z3

B0021z3z2
4 + B1110z1z2z4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

B2100, B1011, B0021 and B1110 have the following representations:

B2100 = ψ1(0)

6lπ iω1τ ∗

[
− F2000ψ1(0)F1100 + F1100ψ̄1(0)F1100 + 2

3
F0200ψ̄1(0)F2000

]
,

B1011 = ψ1(0)

6lπτ ∗

[
−2F2000

iω1

ψ1(0)F0011 + F1100

iω1

ψ̄1(0)F0011 + 2F0020

iω1 − 2iω2

ψ2(0)F1001

+ F0011

iω1

ψ2(0)F1010 + F0011

iω1

ψ̄2(0)F1001 + 2F0002

iω1 + 2iω2

ψ̄2(0)F1010

]
,
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B0021 = ψ2(0)

6lπτ ∗

[
−F1010

iω1

ψ1(0)F0011 − F1001

iω1 − 2iω2

ψ1(0)F0020 + F0110

iω1

ψ̄1(0)F0011

+ F0101

iω1 + 2iω2

ψ̄1(0)F0020

]
,

B1110 = ψ2(0)

6lπτ ∗

[
−F1010

iω1

ψ1(0)F1100 + F0110

iω1

ψ̄1(0)F1100 − F1001

iω1 − 2iω2

ψ̄2(0)F0110

+ F0101

iω1 + 2iω2

ψ̄2(0)F1010

]
.

(c) The calculations of ProjKer(M1
3 )

(
Dwf 1

2 (z, 0, 0, 0)U2
2(z, 0)

)
and ProjKer(M1

3 )

(
Dŵf 1

2 (z, 0, 0, 0)Û2
2(z, 0)

)
.

By (A1) and F̃2(z, w, ŵ, 0) = F2(z, w, ŵ, 0), we obtain

F2(z, w, ŵ, 0) =
∑
|l|=2

Fl1l2l3l4ξ
l1+l2
n1

(x)ξ l3+l4
n2

zl1
1 zl2

2 zl3
3 zl4

4 + S2(ŵ) + S2(w) + o( | w |2, | wŵ |, ŵ2)

= Swz(w)zx + Sŵz(ŵ)zx + o( | w |2, | wŵ |, ŵ2, z2),

(A2)

with zx = (ξn1 z1, ξn1 z2, ξn2 z3, ξn2 z4)T , Swzi and Sŵzi are linear operators from Kerπ to XC:

Swzi (y1) = Fw1zi y
(1)
1 + Fw2zi y

(2)
1 , i = 1, 2, 3, 4,

Sŵzi (y2) = Fŵ1zi y
(1)
2 + Fŵ2zi y

(2)
2 , i = 1, 2, 3, 4,

Fŵ2zi , Fŵ1zi , Fw2zi and Fw1zi represent coefficient vectors. Through some tedious calculation process, we
obtain

1

3!ProjKer(M1
3 )

(
Dwf 1

2 (z, 0, 0, 0)U2
2(z, 0) + Dŵf 1

2 (z, 0, 0, 0)Û2
2(z, 0)

)

=

⎛⎜⎜⎜⎜⎜⎜⎜⎝

(C2100 + Ĉ2100)z2
1z2 + (C1011 + Ĉ1011)z1z3z4

(C2100 + Ĉ2100)z1z2
2 + (C1011 + Ĉ1011)z2z3z4

(C0021 + Ĉ0021)z2
3z4 + (C1110 + Ĉ1110)z1z2z3

(C0021 + Ĉ0021)z3z2
4 + (C1110 + Ĉ1110)z1z2z4

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

C2100, C1011, C0021, C1110, Ĉ2100, Ĉ1011, Ĉ0021 and Ĉ1110 have the following representations:

C2100 = ψ1(0)

6
√

lπ

[
Syz1 (w0,1100) + Syz2 (w0,2000)

]
,

C1011 = ψ1(0)

6
√

lπ

[
Syz1 (w0,0011) + Syz3 (w1,1001) + Syz4 (w1,1010)

]
,

C0021 = ψ2(0)

6
√

lπ

[
Syz3 (w0,0011) + Syz4 (w0,0020) + (Syz3 (w2,0011) + Syz4 (w2,0020)

)
/
√

2
]
,

C1110 = ψ2(0)

6
√

lπ

[
Syz1 (w1,0110) + Syz2 (w1,1010) + Syz3 (w0,1100) + Syz3 (w2,1100)/

√
2
]
,

Ĉ2100 = ψ1(0)

6
√

lπ

[
Sŷz1 (w0,1100) + Sŷz2 (w0,2000)

]
, Ĉ1011 = ψ1(0)

6
√

lπ
Sŷz1 (w0,0011),

Ĉ0021 = ψ2(0)

6
√

lπ

[
Sŷz3 (w0,0011) + Sŷz4 (w0,0020)

]
, Ĉ1110 = ψ2(0)

6
√

lπ
Sŷz3 (w0,1100).
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Note that

Syz1 (w0,1100) = Fy(0)z1 w0,1100(0) + Fy(−1)z1 w0,1100(−1),

Sŷz1 (w0,1100) = Fŷ(0)z1 w0,1100(0),

Syz2 (w0,2000) = Fy(0)z2 w0,2000(0) + Fy(−1)z2 w0,2000(−1).

Similarly, we can calculate Syz3 (w1,1001), Syz4 (w1,1010), · · · , Sŷz4 (w0,0020). Fy(0)z1 and Fy(−1)z1 are as follows:

Fy(0)z1 = 2τ ∗

⎛⎝2α1 + α̃1 + α2p1 α2

2β1 + β2p1 β2 + β4e−iω1τ
∗ + 2β5p1

⎞⎠ ,

Fy(−1)z1 = 2τ ∗

⎛⎝ 0 0

2β3e−iω1τ
∗ + β4p1 0

⎞⎠ .

Fy(0)z3 and Fy(0)z2 are as follows:

Fy(0)z3 = 2τ ∗

⎛⎝2α1 + α2p2 α2

2β1 + β2p2 β2 + β4e−iω2τ
∗ + 2β5p2

⎞⎠ ,

Fy(0)z2 = 2τ ∗

⎛⎝2α1 + α2p̄12 α2

2β1 + β2p̄12 β2 + β4eiω+
0 τ

∗ + 2β5p̄12

⎞⎠ .

Fy(−1)z2 and Fy(−1)z3 are as follows:

Fy(−1)z2 = 2τ ∗

⎛⎝ 0 0

2β3eiω+
0 τ

∗ + β4p̄12 0

⎞⎠ ,

Fy(−1)z3 = 2τ ∗

⎛⎝ 0 0

2β3e−iω2τ
∗ + β4p2 0

⎞⎠ .

Fy(0)z4 and Fy(−1)z4 are as follows:

Fy(0)z4 = 2τ ∗

⎛⎝2α1 + α2p̄32 α2

2β1 + β2p̄32 β2 + β4eiω−
0 τ

∗ + 2β5p̄32

⎞⎠ ,

Fy(−1)z4 = 2τ ∗

⎛⎝ 0 0

2β3eiω−
0 τ

∗ + β4p̄32 0

⎞⎠ .

Fy(0)z2 , Fy(−1)z2 , Fy(0)z4 , Fy(−1)z4 and Fŷ(0)zi , i = 1, 2, 3, 4 are as follows:

Fy(0)z2 = Fy(0)z1 , Fy(−1)z2 = Fy(−1)z1 ,

Fy(0)z4 = Fy(0)z3 , Fy(−1)z4 = Fy(−1)z3 ,

Fŷ(0)z1 = 2τ ∗diag{α̃1, 0},
Fŷ(0)z4 = Fŷ(0)z3 = Fŷ(0)z2 = Fŷ(0)z1 .
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Besides, w0,2000(0) and w0,2000(θ ) are as follows:

w0,2000(0) = 1√
lπτ ∗

[
φ1(0)

−iω1

ψ1(0) − φ̄1(0)

3iω1

ψ̄1(0)

− (−2iω1Id + A + B + Ce−2iω1τ
∗)−1
]

F2000,

w0,2000(θ ) = 1√
lπτ ∗

[
φ1(θ )

−iω1

ψ1(0) − φ̄1(θ )

3iω1

ψ̄1(0)

− e2iω1τ
∗θ(−2iω1Id + A + B + Ce−2iω1τ

∗)−1
]

F2000.

w0,1100(θ ) and w0,0011(θ ) are as follows:

w0,1100(θ ) = 1√
lπτ ∗

[
φ1(θ )

iω1

ψ1(0) − φ̄1(θ )

iω1

ψ̄1(0) − (A + B + C)−1

]
F1100,

w0,0011(θ ) = 1√
lπτ ∗

[
φ1(θ )

iω1

ψ1(0) − φ̄1(θ )

iω1

ψ̄1(0) − (A + B + C)−1

]
F0011.

w1,1001(θ ) and w1,1010(θ ) are as follows:

w1,1001(θ ) = 1√
lπτ ∗

[
− φ̄2(θ )

iω1

ψ̄2(0) + φ2(θ )ψ2(0)

−iω1 + 2iω2

− e(iω1−iω2)τ∗θ(−(iω1 − iω2)Id − D0/l
2 + A + Ce−(iω1−iω2)τ∗)−1

]
F1001,

w1,1010(θ ) = 1√
lπτ ∗

[
φ2(θ )

−iω1

ψ2(0) − φ̄2(θ )ψ̄2(0)

iω1 + 2iω2

− e(iω1+iω2)τ∗θ(−(iω1 + iω2)Id − D0/l
2 + A + Ce−(iω1+iω2)τ∗)−1

]
F1010.

w0,0020(θ ) and w1,0110(θ ) are as follows:

w0,0020(θ ) = 1√
lπτ ∗

[
φ1(θ )ψ1(0)

iω1 − 2iω2

− φ̄1(θ )ψ̄1(0)

iω1 + 2iω2

− e2iω2τ
∗θ(−2iω2Id + A + B + Ce−2iω2τ

∗)−1
]

F0020,

w1,0110(θ ) = 1√
lπτ ∗

[
φ2(θ )

iω1

ψ2(0) + φ̄2(θ )ψ̄2(0)

iω1 − 2iω2

− e(−iω1+iω2)τ∗θ((iω1 − iω2)Id − D0/l
2 + A + Ce(iω1−iω2)τ∗)−1

]
F0110,

where Id is identity matrix. w2,0011(θ ), w2,0020(θ ) and w2,1100(θ ) are as follows:

w2,0011(θ ) = − 1√
2lπτ ∗

(−4D0/l
2 + A + C

)−1
F0011,

w2,0020(θ ) = − 1√
2lπτ ∗ e2iω2τ

∗θ(−2iω2 − 4D0/l
2 + A + Ce−2iω2τ

∗)−1
F0020,

w2,1100(θ ) = (0, 0)T .
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Finally, we can get the formula of g1
3(z, 0, 0, 0):

1

3!g1
3(z, 0, 0, 0) =

⎛⎜⎜⎜⎜⎜⎜⎝

E2100z2
1z2 + E1011z1z3z4

E2100z1z2
2 + E1011z2z3z4

E0021z2
3z4 + E1110z1z2z3

E0021z3z2
4 + E1110z1z2z4

⎞⎟⎟⎟⎟⎟⎟⎠ ,

where the expressions of E2100, E1011, E0021 and E1110 consist of four parts:

E2100 = A2100 + 3

2
(B2100 + C2100 + Ĉ2100),

E1011 = A1011 + 3

2
(B1011 + C1011 + Ĉ1011),

E0021 = A0021 + 3

2
(B0021 + C0021 + Ĉ0021),

E1110 = A1110 + 3

2
(B1110 + C1110 + Ĉ1110).
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