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Abstract

The duality results of Wolfe for scalar convex programming problems and some of the more recent
duality results for scalar nonconvex programming problems are extended to vector valued programs.
Weak duality is established using a 'Pareto' type relation between the primal and dual objective
functions.
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1. Introduction

The scalar optimization problem may be expressed as

(P) minimize f(x) subject to g(x) < 0

where / : W -» R and g: U" -» R"1. If / and g are differentiable functions the
duality results of Wolfe [23] are well known and widely quoted. Wolfe showed
that the problem
(D) maximize /(«) + y'g(u)

subject to V/(M) + Vy'g(u) = 0, y > 0
is a dual to (P) if / and g are convex.

Various other approaches to duality for the scalar convex program (P) have
also been widely studied; these include Lagrangian convex duality, see Geoffrion
[8]; the use of the conjugate convex function concept, see Fenchel [6], Whinston
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22 T. Weir [2]

[20], Rockafellar [16]; and the use of minimax theory, see Stoer [17], Mangasarian
and Ponstein [13]. Some of these methods have been used as well in dealing with
nonconvex programs see Crouziex [5] and Luenberger [10].

Many of the duality results for the scalar optimization problem have been
extended to the vector optimization problem which may be expressed as
(PV) minimize f(x) subject to g(x) < 0
where / : U " -» U k and g: R" -> U m are both real vector valued functions. This is
the problem of finding the set of efficient or Pareto [15] optimal points for (PV):
x0 is said to be efficient if it is feasible for (PV) and there exists no other feasible
point x such that f(x) < f(x0) and f(x) # f(x0).

The concept of proper efficiency is a slightly restricted definition of efficiency
which eliminates efficient points of certain anomalous type: x0 is said to be
properly efficient if it is efficient for (PV) and if there exists a scalar M > 0 such
that, for each i,

fj(x)-fj(xo)
<M

for some j such that fj(x)>fj(x0) whenever x is feasible for (PV) and
fi(x) < fj(x0); thus unbounded tradeoffs between the various objectives {/,} are
not allowed. An efficient point that is not properly efficient is said to be
improperly efficient.

By studying a natural generalization of the scalar Lagrangian,

f(x)+y'g(x)e ( e = ( l , l , . . . , l ) ' e R * ) ,

Tanino and Sawaragi [18] (for properly efficient points) and White [22] have
developed a Lagrangian duality theory for convex (PV), generalizing that of the
scalar case. In addition, Tanino and Sawaragi [19] have extended the scalar
Fenchel duality theory to the vector valued optimization problem. Using
Lagrangians incorporating matrix Lagrange multipliers, Bitran [2], Corely [3],
Craven [4] and Ivanov and Nehse [9] have also given duality results for (PV).

In this paper, using the Lagrangian f(x) + y'g(x)e, some of the duality results
of Wolfe [23], Bector et al. [1], Mahajan and Vartak [11] and Mond and Weir [14]
are extended to the vector optimization problem. The relation for weak duality
comparing the objective functions of the primal and dual may be loosely
described as 'Pareto' and is similar to that given in [18].

2. Duality for convex programs

Before proceeding to duality theorems we give a definition of duality for vector
valued optimization problems and some preliminary results.
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DEFINITION. Given a vector valued optimization problem

(P°) minimize ip(x) subject to x e F
where \p: W -» Uk and F c W we define the problem
(D°) maximize <j>(x) subject t o x e G

where <f>: R" -» Rk and G c R" to be a dual for (/>°) if
(i) (Weak Duality). Whenever x is feasible for (P°) and u is feasible for (Z)°)

where > ^ means there is no x feasible for (P°) and u feasible for (D°) such
that for some i e (1,2,.. . , k}

ypi(x) < <>,(u) and ^j(x) < <t>j(u) for all 7 ¥= i.

(ii) (Strong Duality). If (P°) has a properly efficient point x0 then (D°) has a
properly efficient point M0 and ^(x0) = <|>(Mo)-

In Section 3 we will allow a slight weakening of this definition so that if (i)
holds and (ii) holds with efficient u0 rather than properly efficient w0, then (D°)
will be called a dual for (P°). Note that the definition of weak duality accords
with definition of efficiency.

In relation to(PV) consider the scalar minimization problem

(PVX) minimize X'f(x)
(1) subject to g(x) < 0

where X > 0, X'e = 1, e = (1,2,..., 1)' e R * Geoffrion [7] has established the
following results:

LEMMA 2.1. (i) Le? X, > 0 (/ = 1,2,..., k) be fixed. Jfx0 is optimal in (PVX),
then x0 is properly efficient in (PV).

(ii) Iffand g are convex, then x0 is properly efficient in (PV) if and only ifx0 is
optimal in (PVX) for some X > 0.

REMARK 2.2. Note that in part (i) of Lemma 2.1 no convexity hypothesis is
made. Similar results may be established for the problems

maximize f(x) subject to g(x) < 0,
maximize X'f(x) subject to g(x) < 0,

where X > 0, X'e = 1, e = (1,1, . . . , 1)' e R k

In relation to (PVX) consider the scalar maximization problem

(DVX) maximize X'f(xu) + y'g(u) = X'(f(u) + y'g(u)e)

subject to vX'/(u) + Vy'g(u) = 0, y > 0

where X > 0, X'e = 1, e = (1,1, . . . , 1)' £R*.
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The results of Wolfe [23] establish the following theorem showing that (DFX) is a
dual to (PV\) (for fixed X).

THEOREM 2.3. Let X > 0 be fixed. If x is feasible for (PVX) and (u, y) feasible

for (DV\) and if f and g are convex for all feasible (x, u, y) then

X'f(x)>X'f(u)+y'g(u).

Further, if x0 is a local or global optimal solution for (PVX) and if a constraint
qualification [12] is satisfied at x0, then there exists y > 0 such that y'g(x0) = 0
and (x0, y) are global optimal solutions for (PVX) and (DVX) respectively.

Now in relation to (PV) consider the vector valued optimization problem

(DF) maximize/(M) +y'g(u)e subject to

(2) vX'/(«) + v / g ( « ) = 0

(3) y > 0, X> 0, X'e = 1.

THEOREM 2.4. (Weak Duality). Let x be feasible for (PV) and (u, X, y) feasible
for (DV). Iff and g are convex for all feasible (x, u, X, y) then

f(x)>Pf(u)+y'g(u)e.

PROOF.

* ' { / ( * ) - ( / ( « ) + / * ( « ) « ) } = X(f(x) -f(u))-y'g(u) (from (3))

> (x ~ u)'vX'f(u) -y'g(u) (by convexity of/)

> (x - u)'{vX'/(w) + Vy'g(u)} -y'g(x) (by convexity of g)

= - /*(*) (by (2))

> 0 (by (1) and (3)).

Thus f(x) >Pf(u) +y'g(u)e.

THEOREM 2.5. (Strong Duality). Let f and g be convex and let x0 be a properly
efficient solution for (PV) at which a constraint qualification is satisfied. Then there
exist (X, y) such that (x0, X, y) is a properly efficient solution of (DV) and the
objective values of (PV) and (DV) are equal.

PROOF. Since / and g are convex and x0 is a properly efficient solution of
(PV) then, by Lemma 2.1 part (ii), x0 is optimal for (PVX) for some X > 0,
X'e = 1. Since, also, a constraint qualification is satisfied at x0 then, by Theorem
2.3, there is a y > 0 such that (x0, X, y) is optimal for (DVX). Since (x0, X, y) is
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optimal for (DV\), by Lemma 2.1 part (i) and Remark 2.2, (x0, X, y) is properly
efficient for (DV). Clearly the optimal values of (PV) and (DV) are equal since

REMARK 2.6. (i) If k = 1, then (PF) and (-DF) becomes the scalar minimiza-
tion problem (P) and its Wolfe dual (D), with duality holding if / and g are
convex.

(ii) White [21] establishes the result that if / and g are convex and the
Kuhn-Tucker constraint qualification is satisfied on the feasible set then every
efficient point of (PV) is properly efficient and thus Theorems 2.4 and 2.5 could
be strengthened. Unfortunately this result appears to be in error as the following
simple counterexample shows:

minimize f(x) = {fl{x),f2(x))' = (x,x2)' subject to g(x) = x < 0;

clearly x = 0 is efficient; however the loss to gain ratio of fx to f2 is -1/x which,
for feasible x of sufficiently small magnitude, can be made arbitrarily large.

The next result and corollary show that under certain conditions the dual
objective function is (component-wise) unbounded from above. These are simple
extensions of the corresponding results for the scalar minimization problem given
by Mangasarian [12] and Wolfe [23].

THEOREM 2.7. If there exists a dual feasible point (x, X, y) such that the system

g(x) + Vg(x)z < 0

has no solution z e R", then every component of the dual objective function is
unbounded (from above) on the set of dual feasible points.

COROLLARY 2.8. If the problem (DV) has a feasible point (x, X, y) and if (PV)
has no feasible point, then, if g is concave at x or linear, the dual problem (DV)
has a (component-wise) unbounded objective function (from above) on the set of
dual feasible points.

Finally, for problems with linear functions, we give a theorem which tells when
the primal problem (PV) has no efficient solutions.

THEOREM 2.9. Let f and g be linear functions on R", and let the feasible set of
(PV) be nonempty. If the dual problem (DV) has no feasible point, (PV) has no
solution.
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PROOF. A proof similar to that of Mangasarian [11] shows that, for X > 0 and
X'e = 1,

g(x + z) < 0 and \'f(x + z) < X'f(x)

for ||z|| sufficiently small and x feasible for (PV). Hence there is no solution to
(PVX) for each X > 0, X'e = 1. Thus, by Lemma 2.1 (ii), there are no properly
efficient solutions for (PV). For problems with linear functions every efficient
point is properly efficient; hence there is no solution to (PV).

3 . Duality for nonconvex programs

In this section some of the duality results for scalar minimization problems
given by Bector et al. [1], Mahajan and Vartak [11] and Mond and Weir [14] are
extended to the vector valued optimization problem. However, the results in this
section are not as strong as that given in Section 2 because the dual optimal
solution is not guaranteed to be properly efficient, but only efficient, whenever
the solution to the primal is properly efficient.

Consider again (PV) and (DV).

THEOREM 3.1. (Weak Duality). Let x be feasible for (PV) and (u, A, y) feasible
for (DV). If, for all feasible (x, u, X, y), f + y'ge is pseudoconvex then

f(x)>Pf(u)+y'g(u)e.

PROOF. Suppose to the contrary that there is x feasible for (PV) and (u, X, y)
feasible for (DV) such that /,(x) < ft(u) + y'g(u) for some / e {1,2,..., k} and
fj(x) < fj(u) + y'g(u) for all j # i. then

f(x) + y'g(x) < ft(u) + y'g(u) (by (1) and (3))

and

fJ(x)+y'g(x)^fJ(u)+y'g(u), j * i ( b y (1 ) a n d ( 3 ) ) .

Since f + y'ge is pseudoconvex then (x - M)'V(/,(M) + y'g(u)) < 0 and
(x - u)'v(fj(u) + y'g(u)) < 0 for j # /. Thus

(x - u)!{vX'f(u) + vy'g(u)) < 0 (by (3))

contradicting the constraint (2) of (DV). Thus f(x) > Pf(u) + y'g(u)e.
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THEOREM 3.2. (Strong Duality). Let x0 be a properly efficient solution for (PV)
at which the Kuhn-Tucker constraint qualification is satisfied. Then there exist
(X, y) such that (x0, X, y) is feasible for (DV) and the objective values of (PV)
and (DV) are equal. If, also, f + y'ge is pseudoconvex then (x0, X, y) is efficient
for (DV).

PROOF. Assuming that the Kuhn-Tucker constraint qualification [12] is satisfied
at x0, then by the Kuhn-Tucker necessary conditions [7], there exists X > 0,
X'e = 1, y > 0 such that

Thus (x0, X, y) is feasible for (DV) and clearly the objective values of (PV) and
(DV) are equal.

If (x0, X, y) is not an efficient solution of (DV) then there exists feasible
(«*, X*, y*) for (DV) such that

/,(«•) + y*'g(u*) > ft(x0) + y*'g(x0) for some i e {1,2 , . . . ,*}

and

/,(«*) + y*'g(u) >fj(x0) +y*'g(x0) for; # /.

Since f + y'ge is pseudoconvex (x0 - u*)'v(fj(u*) + y*'g(u*)) < 0 and
(x0 - u*)'v(fj(u*) + y*'g(u*)) < 0 for j * i. Thus

(jc0 - «* ) ' (VX*V) + Vy*'g(u*)) < 0

contradicting the feasibility of (u*, X*, y*). Thus (x0, X, y) is an efficient solution
oi(DV).

REMARK 3.3. Theorems 3.1 and 3.2 extend the results of Bector et al. [1] and
Mahajan and Vartak [11] for the scalar minimization problem to the vector valued
minimization problem.

Mond and Weir [14] proposed a number of different duals to the scalar
minimization problem (P). Here it is shown, as for the Wolfe dual, that there are
analogous results for the vector valued optimization problem (PV).

In relation to (PV) consider the problem

(DVl) maximize/(u) subject to

(A) vX'f(u) + vy'g(u) = Q,

(5) y'g(u) > 0

(6) y > 0, X > 0, X'e = 1.
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THEOREM 3.4. (Weak Duality). Let x be feasible for (PV) and (u, X, y) feasible
for (DVl). If for all feasible (x, u, X, y) f is pseudoconvex and y'g is quasiconvex,
then

f(x)>Pf(u).

PROOF. Suppose to the contrary that there is x feasible for (PV) and (w, X, y)
feasible for (DVl) such that f,(x) < f(u) for some / <= (1,2,..., k} and fj(x) <
fj(u) for j + i. Since / is pseudoconvex (x - w)'v/,(«) < 0 and (x - u)'vfj(u)
< 0 for j ¥= i. Hence

(7) ( x - « ) ' v X ' / ( « ) < 0 (by (6))

Also, from (1), (5), (6)

(8) y'g(x)-y'g(u)^0

and since y'g is quasiconvex (x - u)'\7y'g(u) < 0. Combining (7) and (8) gives
(x - M)'(V/(M) + v/g(w)) < 0 contradicting the constraint (4) of (DVl). Thus
(fx)>Pf(u).

THEOREM 3.5. (Strong Duality). Let x0 be a properly efficient solution for (PV)
at which the Kuhn-Tucker constraint qualification is satisfied. Then there exists
(XQ, X, y) is feasible for (DVl) and the objective values of (PV) and (DVl) are
equal. Ifalso fis pseudoconvex and y'g is quasiconvex then (x0, X, y) is efficient for
(DVl).

PROOF. Assuming that the Kuhn-Tucker constraint qualification [12] is satisfeid
at x0, then by the Kuhn-Tucker necessary conditions [7], there exists X > 0,
X'e = 1, y > 0 such that

vX'/(x0) + Vy'g(x0) = 0, y'g(x0) = 0.

Thus (x0, X, y) is feasible for (DVl) and the objective values of (PV) and (DVl)
are equal since the objective functions are the same.
' If (x0, X, y) is not an efficient solution for (DVl) there exists feasible

(u*, A*, y*) for (DVl) such that /,(«*) > ft(x0) for some i € {1,2,..., k} and
//("*) > fj(xo) f°r j * '• Since / is pseudoconvex (x0 - M*)'V/,(M*) < 0 and
(x0 - u*)'vfj(u*) < 0. Thus

(9) (xo-u*)'vX*'f(u*)<0 (by (6)).

Also y*'g(x0) — y'g(u*) < 0 (by (1),(5),(6)) and since y*'g is quasiconvex

(10) (xo-u*)'vy*'g(u*)^O.
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Combining (9) and (10) gives

(x0 - u*)'(vX*'f(u*) + Vy*'g(u*)) < 0

contradicting the feasibility of («*, X*, y*).
In a manner similar to that given in [14] we state a general dual for the vector

value optimization problem. For completeness we shall consider the case where
the primal problem has equality as well as inequality constraints.

Consider the problem:

(PEV) minimize f(x) subject to

(11) g(x) < 0, h(x) = 0

where/: U" -» Uk, g: W -* Um, h: U" -* U' are all differentiable.
Let M = {1,2, . . . , m}, L= { 1 , 2 , . . . , / } , /„ c M, a = 0 ,1 ,2 , . . . , r, with Ia

C\Ip= 0, a * /?, and Dr
a=0Ia = M and /„ c L, a = 0 ,1 ,2 , . . . , r, with /„ n J^

= 0,a*0, mdl)r
a_0Ja = L.

Note that any particular Ia or Ja may be empty. Thus if M has rl disjoint
subsets and L has r2 disjoint subsets, r = Max^, r2]. So that if rx > r2, then Ja,
a > rx is empty.

In relation to (PEV) consider the problem:

(DEV) Maximize/(M) + ^ ^,-g,-(«)e + X zj^j(u)e subject to

(12) vX'/(«) + V/g (« ) + Vz'h(u) = 0

(13) L ^ , ( « ) + 1 ^ . ( ^ 0 , « = l,2,...,r,

(14) >;> 0, X > 0, X'e = 1.

THEOREM 3.6. (Weak Duality). Let x be feasible for (PEV) and (u,X,y,z)
feasible for (DEV). If f + E , e / y^e + Hj^jZjhje is pseudoconvex for all
(x, u, X, y, z) and if I ^ ^ g , + ZjeJZjhj, a = 1,2,..., r, is quasiconvex for all
feasible (x, u, X, y, z), then

/ ( * ) > pf(u) + L y,g,(u)e + I Zjhj(u)e.
ie/0

PROOF. Suppose to the contrary that there is x feasible for (PEV) and
(u, X, y, z) feasible for (DEV) such that

fP(x)<fp(u)+ I E ( « ) + I ZMU) tor some pe {1,2,..., k)
»e/0 7G70

and

/ , (* )< /» + E >-,g,(") + E W«)' ?#^-
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Since / + E , e /0J,g,e + HJ(£joZjhje is pseudoconvex

(x - «)'v /,(«) + I yigi{u) + X zMu)) < 0

and

( ( « ) + E >>,*,(«) + E

Thus, by (14),

(15) (* - u)'{vX'f(u) + v E ^g/(«) + V I z,A,.(«)\ < 0.

Also, by (11), (13), (14),

E yigM + E Zy*y(*) - E 7(ft(«) - E ^ A ( " ) < °> « = l ,2 , . . . , r .

Since E; e /a.F,g, + £7- e J o z A is quasiconvex, a = 1,2,..., r, then

Thus

(16)

a = l a = l

Combining (15) and (16) gives

(x - u)'{vX'f(u) + Vy'g(u) + Vz'h(u)} < 0

which contradicts the constraint (12) of (DEV). Thus

f(x)>Pf(u)+ E *&(«)*+ I>A(")*-
ie/0

THEOREM 3.7. (Strong Duality). Let x0 be a properly efficient solution for
(PEV) at which the Kuhn-Tucker constraint qualification is satisfied. Then there
exists (X,y,z) such that (x0, X, y, z) is feasible for (DEV) and the objective
values of (PEV) and (DEV) are equal. If, also, f + E,e/0.y,g,e + T.jsJ/jhje is
pseudoconvex and if £,e/a.y,g, + Hj^jZjh^ is quasiconvex, a = 1,2,...,r, then
(x0, X,y,z) is efficient for "(DEV).

PROOF. Assuming that the Kuhn-Tucker constraint qualification [12] is satisfied
at x0, then by the Kuhn-Tucker necessary conditions [7], there exists X > 0,
X'e = 1, y > 0, z, such that

o) + Vz'h(x0) = 0, y'g(xo) = O, z'h(xo) = 0.
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Thus (x0, X, y, z) is feasible for (DEV) and the objective values of (PEV) and
(DEV) are equal there.

If (xQ,X,y,z) is not an efficient solution for (DEV) there exists feasible
(«*, X*, y*, z*) for (DEV) such that

/,(«•) + E #&(«•) + I */*,•(«•) >
ie/0 jejo

fp(xo) + E .V*&(*o) + E z*hj(xo) f o r s o m e /> G {1,2,. . ., fc }
I'G/0

and

/,(*o) + E jV&(*o) + E */*/*«>)> ? ^ P-
IG/0 ye/0

The pseudoconvexity of / + E, e /0^g,-e + £, e jo
zj^je implies that

(*0 - u*)'v(fp(u*) + E yfiiAu*) + E ^ C « * ) ) < o

and

(*0 - «*)V(/,(«*) + E >>*£,("*) + E ^ ( « * ) ) < 0, q

Thus

(17) (JC0 - U*)vU*'f(u*) + E ^*ft(«*) " E */*;(«•)) < 0.

Also, for a = 1,2,..., r,

E tfg,(*o) + E ^7(^o) - E tfg,-(«*) - E ^,(«*) < o.

Since E, e Ia j,g, + £7- ey/yA,- is quasiconvex, a = 1,2,..., r,

( J C O - « * ) ' V ( Ej,*g,(«*)+ E « ; M « * ) ) < 0 ' « = l ,2 , . . . , r ,

and so

E ^*g,(«*)+ E
r r

/eU/o

(18)

Combining (17) and (18) gives

(x0 - u*)'(v\*'f(u*) + Vy*'g(u*) + Vz*'h(u*)) < 0

contradicting the feasibility of (u*, X*, >>*, z*) for (DEV).
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Special cases of the pair (PEV) and (DEV) and their corresponding duality
theorems follow in a similar fashion to those presented in [14] for scalar
minimization problems.

4. Nonnegative variables

Consider now the vector valued problem with nonnegative variables

(PV) minimize/(x)
subject to g(x) < 0, x > 0.

Corresponding to the vector analog of the Wolfe dual given in Section 2 we
have

(DV) maximize/(M) +y'g(u)e - u'[vX'f(u) + Vy'g(u)]e
subject to VX'/(M) + Vy'g(u) > 0, y > 0, X > 0, X'e = 1.

Duality holds, relating properly efficient solutions of the primal and dual, if /
and g are convex.

One can also show that if / - y'ge — s '(-)e for all s > 0, is pseudoconvex,
then duality (in the sense used in Section 3) also holds. By applying some of the
earlier results of Section 3 to (PV), or directly, one can establish different dual
problems to (PV) that will hold under certain convexity conditions. Two such
duals are stated below.
(DVV) maximize/(M)

subject to vX'f(u) + Vy'g(u) > 0, y > 0, X > 0, X'e = 1,
y'g(u) - u'[vX'f(u) + Vy'g(u)] > 0.

(DVT) maximize f(u) + y'g(u)e
subject to vX'f(u) + Vy'g(u) > 0, y > 0, X > 0, X'e = 1,

COROLLARY 4.1. (a) If f is pseudoconvex andy'g + s'(-), s > 0, is quasiconvex
for all feasible (x, u, X, y) of (PV) and (DVV), then

f(x)>Pf(u).

(b) / / / + y'ge is pseudoconvex for all feasible (x, u, X, y) of (PV) and (DV2'),
then

f(x)>Pf(u)+y'g(u)e.
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The corollary, as well as the corresponding strong duality result, can be
obtained directly, or by applying Theorems 3,6 and 3.7, respectively, to (PV) and
then eliminating from the dual problems the multiplier corresponding to the
constraints x > 0.

5. Examples

Consider again the example given in Section 2:
minimize (x, x2)' subject to x < 0;

the objective and constraint function are convex and every x < 0 is properly
efficient. The dual problem as given in Section 2 is

maximize (x, x2)' + (yx, yx)'
subject toX! + 2X2x + y = 0

X2 > 0, Xj > 0, Xx + \ 2 = 1, y > 0.
The constraints give x = -(y + Xi)/2(1 - Xx). Since y>0 and Xx e (0,1),
x < 0. The properly efficient solutions of the objective are given by x < \y for
any y > 0. The global properly efficient maximal set then corresponds to y = 0;
that is, x < 0. Furthermore, corresponding to every properly efficient x0 < 0 for
the primal is a properly efficient (x0, Xx = 2xo/(2xo — 1), X2 = 1 — \ , y = 0)
for the dual problem and the objective functions are equal there.

As another example consider the nonconvex problem
minimize (-e~x , x2)' subject to 1 — x < 0.

the only properly efficient point is x = 1. The dual as given in Section 3 is the
problem

maximize (-e x ,x )
xsubject to2X1xe"x + 2X2JC = y

y(l ~ x) > 0
\ >0,\2>0,\1 + \ 2 = l,y> 0.

The point (x = 1,0 < X1 < 1,1 - X1,2X1e"1 + 2(1 - Xx)) is efficient for the
dual problem. Weak duality holds, since the objective is pseudoconvex and the
constraint linear, and the optimal values of the primal and dual are equal.
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