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Abstract
Fish swimming together in schools interact via multiple sensory pathways, including vision, acoustics and hydro-
dynamics, to coordinate their movements. Disentangling the specific role of each sensory pathway is an open and
important question. Here, we propose an information-theoretic approach to dissect interactions between swim-
ming fish based on their movement and the flow velocity at selected measurement points in the environment.
We test the approach in a controlled mechanical system constituted by an actively pitching airfoil and a compli-
ant flag that simulates the behaviour of two fish swimming in line. The system consists of two distinct types of
interactions – hydrodynamic and electromechanical. By using transfer entropy of the measured time series, we
unveil a strong causal influence of the airfoil pitching on the flag undulation with an accurate estimate of the time
delay between the two. By conditioning the computation on the flow-speed information, recorded by laser Doppler
velocimetry, we discover a significant reduction in transfer entropy, correctly implying the presence of a hydrody-
namic pathway of interaction. Similarly, the electromechanical pathway of interaction is identified accurately when
present. The study supports the potential use of information-theoretic methods to decipher the existence of different
pathways of interaction between schooling fish.

Impact Statement
Fish schooling has attracted the interest of the scientific community for centuries. Each school member interacts
with others via hydrodynamic, visual and pressure-based pathways, among others, appraising its surroundings
and coordinating with others. While we are able to study their coordination by correlating their response to each
other’s movements, we do not fully understand the contribution of each individual pathway to the collective
response. This limits our ability to assess the evolutionary basis and resilience/fragility of collective behaviour
and design bio-inspired engineering collectives. In this work, we attempt to segregate the different pathways
of interaction simply using measurement data from experimentation in a mechanical system representing two
inline-swimming fish. Applying information-theoretic methods, we not only identify a causal dependence
between the two fish surrogates but also detect distinct modes of interaction between them. Our data-driven
methodology can be applied to several experimental/simulated bio-mechanical complex systems to decipher
intermingled pathways of interaction between their units.
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1. Introduction
Fish schooling is commonly observed in several species and habitats (Pavlov et al. 2000; Filella et al.
2018; Pitcher, 2001). Fish coordinate their swimming in terms of distance and speed, maintaining differ-
ent spatial formations (Ashraf et al. 2017; De Bie et al. 2020; Saadat et al. 2021; Weihs, 1973). Schooling
may offer an overall reduced cost of swimming to the entire group (Ashraf et al. 2017; Liao et al. 2003;
Marras et al. 2015) and provide advantages in searching for food or route, mating and defending oneself
against predators (Landeau & Terborgh, 1986; Larsson, 2012; Major, 1978; Pitcher et al. 1982). When
swimming in schools, fish interact via different sensory pathways, including hydrodynamic, visual and
acoustic, as illustrated schematically in Figure 1a for a fish pair (Weihs, 1973; Ladich & Winkler, 2017;
Arnold, 1969; Hyacinthe et al. 2019; Kasumyan, 2004; Li et al. 2020; Lombana and Porfiri, 2022; Saadat
et al. 2021; Thandiackal & Lauder, 2023). Fish schooling is the result of complex integration of infor-
mation from an array of sensory pathways. However, disentangling the role of each sensory pathway,
segregated from the others, is an open question.

In this work, we focus on a subsystem of a fish school consisting of two fish swimming in line against
a flow inside a channel. Our goal is to identify causal interactions between the fish in the presence of
multiple distinct modes of interaction. To achieve this goal, we design a robotic platform with an actu-
ated airfoil and a compliant flag that simulates two fish swimming in line against a flow. As shown
in Figure 1b, the pitching motion of the upstream airfoil sheds vortices in the flow that interact with
the downstream flag, which flaps in response to these flow disturbances. This represents a unidirec-
tional hydrodynamic interaction similar to that observed in fish swimming in line (Porfiri et al. 2021;
Thandiackal & Lauder, 2023). The use of the compliant flag downstream allows for a larger response
to the vortices and a potentially stronger hydrodynamic coupling than that produced by an airfoil pitch-
ing downstream, as previously studied by others (Kurt & Moored, 2018; Rival et al. 2011; Zhang et al.
2018). An electromechanical coupling between the airfoil and the flag is used to incorporate an addi-
tional unidirectional interaction pathway from the upstream to the downstream body, portraying, for
instance, the effect of visual interaction. The potential of robotic set-ups for the study of hydrodynamic
interactions in fish schools has been demonstrated in several studies (Ko et al. 2023; Lauder et al. 2011;
Li et al. 2020; Marras and Porfiri, 2012; Thandiackal & Lauder, 2023; Zhang et al. 2019). Overall,
our experimental set-up creates a controlled environment that incorporates distinct interaction pathways
between two fish-like bodies positioned in line.

In order to study the influence of the upstream body on the downstream one, we employ the
information-theoretic measure of transfer entropy (Schreiber, 2000). Transfer entropy is a measure of
asymmetry in the interaction of two coupled stochastic processes (Bossomaier et al. 2016). It is emerging
as the statistical approach of choice for studying pairwise interactions in complex systems in such wide-
ranging fields as climate science, collective behaviour, neuroscience and finance (Staniek & Lehnertz,
2008; Butail et al. 2016; Stetter et al. 2012; Vicente et al. 2011; Shaffer & Abaid, 2020; Camacho
et al. 2021; Campuzano et al. 2018; Hlinka et al. 2013; Valentini et al. 2021; Sandoval Jr, 2014).
Previous work by Zhang et al. (2018) investigated the use of transfer entropy to elucidate the causal
relationships between two tandem pitching airfoils communicating through the flow. The study involved
interaction only via the hydrodynamic pathway and the response of the rigid airfoil downstream was
limited. To address these limitations and to disentangle multiple sensory pathways, in this work: (i) we
study the influence of a pitching airfoil on a compliant flag with multiple coexisting pathways of interac-
tion – hydrodynamic and electromechanical, and (ii) we further conduct flow measurements to acquire
information regarding the hydrodynamic pathway. We combine transfer entropy with experimental diag-
nostics/measurements to segregate the individual pathways of interaction from the airfoil to the flag. We
do so by conditioning transfer entropy on the flow-related information/measurement. This conditional
transfer entropy is demonstrated to reduce the overall interaction between the airfoil and the flag and
predict the appropriate time delays of the interaction pathways.

The remainder of the paper is organised as follows. In § 2, the experimental set-up is described in
detail, followed by a discussion of the three specific experimental conditions examined in this work. This
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Figure 1. Schematic representation of the proposed experimental approach. Top figure shows two fish
swimming in a water channel and interacting via three distinct sensory pathways – visual, hydrody-
namic and acoustic. Bottom figure shows a mechanical set-up that simulates the two fish swimming
steadily against a channel flow, constituted by an actively pitching airfoil upstream and a compliant flag
downstream. The airfoil influences the flag via two separate interaction pathways – hydrodynamics and
electromechanical.

section further details the experimental measurements and movement tracking involved together with
the proposed statistical measures for detecting interactions along different pathways by analysing the
experimental data. § 3 first demonstrates the processing of the recorded time series from experiments
to prepare them for the transfer entropy analysis. Following this, the results and analyses of each of the
three experimental cases are described. Finally, the main conclusions drawn from this study are outlined
in § 4.

2. Methods
2.1. Experimental design
Experiments were conducted in an open water channel from Engineering Laboratory Design, Inc.
The test section, shown in Figure 2(a), is 29 cm long with a rectangular cross-section of dimension
10 cm × 15 cm. The incoming flow was conditioned (straightening and reducing turbulence intensity)
by passing it through a honeycomb section. An extruded airfoil was positioned towards the upstream end
of the test section and a compliant flag was positioned in line with the airfoil and 10.4 cm downstream
from its leading edge.

The airfoil was 3D-printed with a NACA 0012 cross-sectional geometry. It had a chord length of
c = 5 cm, spanwise length of 6.9 cm and was designed to undergo a pitching motion about a pivot
shaft located at 20% of the airfoil chord while remaining stationary otherwise. The airfoil’s pitch-
ing motion was actively regulated by a servo-motor controlled by an Arduino Uno microcontroller
board, programmed with the Arduino 1.8.19 software package. The airfoil was subjected to continuous
low-amplitude periodic pitching interspersed with sudden random startling motions of higher amplitude.
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Figure 2. Experimental set-up in a water channel: (a) three-dimensional view of the test section with
an upstream airfoil and a downstream flag, a camera recording the bottom view of the test section,
and laser Doppler velocimetry system measuring the streamwise flow velocity between the airfoil and
the flag; (b) two-dimensional view of the test section from the bottom of the water channel as captured
by the camera; and (c) a schematic representation of the two-dimensional test section with the tracked
variables marked.

A flag with dimensions of 6.98 cm length × 6.9 cm height was constructed. The design included:
a 1 mm diameter 69 mm long flag pole; a Mylar sheet that covered the entire flag area; two 7 mm ×
69 mm copper strips anchored to the pole and to the two sides of the Mylar sheet forming the first
fixed rib (leading rib); and six pairs of 4 mm × 69 mm copper strips firmly fastened to either side of
the Mylar sheet forming the remaining six ribs of the flag with 5.5 mm gaps between two ribs. The
flag’s design, particularly its mass density and bending stiffness, guaranteed flexibility and capacity to
flap (Giacomello & Porfiri, 2011). It also prevented torsional motion of the flag along the streamwise
and spanwise axes, effectively reducing its motion to two dimensions and led to flutter instability of the
flag at very high flow speeds (≥ 0.5 m/s). The flag was securely positioned 5.4 cm downstream from
the airfoil trailing edge. In the presence of a flow, a major portion of the flag downstream of the first
anchored rib was free to flap passively in response to the fluctuating flow structures produced by the
upstream airfoil’s pitching. The first anchored rib of the flag was actuated to undergo periodic pitching
motion, similar to the airfoil, using a second servo-motor controlled by the same microcontroller board.
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In all experiments, the airfoil’s periodic pitching motion was maintained at a frequency of 3 Hz and
amplitude of 15◦. Additionally, we included a random startling motion of 40◦ angular deflection. The
direction of the startle was chosen randomly and the time duration between two consecutive startles were
sampled from a uniform random distribution in 5 ± 1.5 s. Experiments were conducted in the channel
with static water (no flow) as well as with water flowing steadily through the channel. The inflow speed
in the test section was maintained at U0 = 0.394 m/s at the centreline (recorded using laser Doppler
velocimetry described later in the section). This represents a chord-based Reynolds number of Re =
U0c/ν = 21850 and kinematic viscosity of water at room temperature is ν ≈ 9 × 10−7m2/s.

2.2. Experimental cases
We performed experiments for the following conditions:

(i) Hydrodynamic interaction: to study the effect of hydrodynamic interaction between the airfoil
and the flag, the flow channel was operated at a steady flow speed. The airfoil was subjected
to periodic pitching motion superimposed with startling motions at random time intervals. The
flag was not actuated and underwent flapping motion in response to the vortices generated by the
upstream pitching airfoil.

(ii) Hydrodynamic + electromechanical interaction: to obtain hydrodynamic and electromechanical
interaction between the airfoil and the flag, we maintained a steady flow of water in the channel
and periodic pitching along with random startles in the airfoil. In addition, the first rib of the flag
was electromechanically coupled to the airfoil motion. This was done by imposing the airfoil’s
pitching and startling motion on the flag’s leading rib at a specific time delay (ΔAF = 0.1 s,0.3 s)
along with a certain degree of random noise. The noise was introduced in the form of additional
‘noise startles’ with a mean time gap of Δno = 0.04s,0.08s.

(iii) Electromechanical interaction: to study the case of only electromechanical interaction between
the airfoil and the flag, experiments were conducted in static water. A periodic pitching motion
interspersed with random startles was imposed on the airfoil and also on the flag with a time lag
and added noise, similar to the previous case.

2.3. Measurement and tracking
Two forms of measurement were conducted during the experiments:

(i) Camera recording: a high-resolution camera (Point Grey Flea 3 USB camera; Point Grey,
Richmond, Canada) was utilised to capture a two-dimensional view of the full test section
(29 cm × 15 cm), including the movement of the airfoil and the flag, as observed from below
the water channel (Figure 2b). To document these sequences, the open-source software pack-
age, OBS Studio, was employed. The experimental footage was recorded at a resolution of
1920 × 1080 pixels and at a rate of 60 frames/s. Before experimental trials, the camera was cal-
ibrated by capturing and processing a video with a length-scale marked ruler in the test section.
Correcting for any scale or distortion in the camera recordings, the calibration process enabled
precise measurement of all movements within the test section.

(ii) Laser Doppler velocimetry: high spatial and temporal resolution fluid flow velocity measure-
ments were made using the non-invasive laser Doppler velocimetry (LDV) technique (Foreman
et al. 1965; Kalkert & Kayser, 2006). An optical technique that measures the velocity of passive
tracer particles in a flow by analyzing the frequency shift of the laser light scattered by the mov-
ing particles. A single-component LDV system (Dantec Dynamics, Skovlunde, Hovedstaden,
Denmark) was used to measure the instantaneous streamwise component of the flow velocity, U ,
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at the channel centreline 3 cm downstream from the trailing edge of the airfoil. The BSA Flow
software was used to record the LDV measurement over the course of each experiment. As LDV
is dependent on light scattered by particles passing through the measurement volume, the mea-
surement of U was not uniformly spaced in time. Polyamide particles were added to the flow to
increase the sampling rate.

During each experiment, videos of the test section view and LDV measurement of flow velocity were
recorded for a duration of 180 s. The recorded videos were processed to track the movements of the
airfoil and flag by a program developed in MATLAB R2021b, using utilities available in its image
processing toolbox. Specifically, the following quantities were tracked: the pitching angle of the airfoil,
θ(t), the spanwise deflection of the leading rib of the flag, ΔyL (t), and the spanwise deflection of the
trailing rib of the flag, ΔyT (t), as marked in Figure 2c.

2.4. Information-theoretic measures
Information theory is rooted in the concept of Shannon entropy (Shannon, 1948) that encodes the
uncertainty or information content of a random variable X

H (X ) = −
∑

x∈χ
p(x) log p(x), (2.1)

where p(x) is the probability of an outcome x in the set of all possible outcomes (χ) of X ; we use base
2 for the logarithms throughout the manuscript so that entropy is measured in bits. Similarly, the joint
entropy of two random variables X and Y is given by

H (X,Y ) = −
∑

x∈χ,y∈γ
p(x, y) log p(x, y), (2.2)

where γ is the set of all possible outcomes of Y . The conditional entropy of X given Y is

H (X |Y ) = −
∑

x∈χ,y∈γ
p(x, y) log p(x |y). (2.3)

For two discrete-time stationary random processes, X = {Xn }∞n=1 and Y = {Yn }∞n=1, where n is the time
index, the influence (Wiener, 1956) of X on Y can be discerned by utilising transfer entropy (Schreiber,
2000; Wibral et al. 2013), defined as follows:

TEX→Y (δ) = H (Yn |Yn−1) − H (Yn |Yn−1, Xn−δ )

=
∑

yn,yn−1,
xn−δ

p (yn , yn−1, xn−δ ) log
[

p (yn |yn−1, xn−δ )
p (yn |yn−1)

]
. (2.4)

Transfer entropy from X to Y is the reduction in uncertainty of target Yn given its recent past, Yn−1, due
to the knowledge of the source’s past state, Xn−δ . Therefore, TEX→Y captures the influence of X on Y
with a time lag of δ time steps. Likewise, TEY→X quantifies the influence of Y on X . When X and Y
have an asymmetric causal interaction, net transfer entropy, net TEX→Y =TEX→Y −TEY→X , can be
used to indicate the predominant direction of influence.

If an additional random process Zn is related to the X-Y dynamics, we quantify the causal dependence
through

TEX→Y |Z (δ1, δ2) = H
(
Yn |Yn−1, Zn−δ2

) − H
(
Yn |Yn−1, Xn−δ1 , Zn−δ2

)

=
∑

yn,yn−1,
xn−δ1 ,zn−δ2

p
(
yn , yn−1, xn−δ1 , zn−δ2

)
log

[
p
(
yn |yn−1, xn−δ1 , zn−δ2

)

p
(
yn |yn−1, zn−δ2

)
]
, (2.5)

which is referred to as conditional transfer entropy (Sun & Bollt, 2014). Conditional transfer entropy
from X to Y conditioned on Z represents the influence of the past of X (delay of δ1 steps) on current Y ,
accounting for the knowledge of its own immediate past as well as the past of Z at a delay of δ2 steps.
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Accurate estimation of these measures requires computation of up to a four-dimensional joint proba-
bility mass function (PMF), which can be challenging to estimate with a finite number of data samples.
To circumvent this issue, we symbolised each time series using a dynamics-based approach (Porfiri &
Marín, 2017) with an embedding dimension of m = 2. This approach converts a time series (Xn) to
symbolised time series (πX n) of 1 and 0 based on whether the value is increasing or decreasing, respec-
tively, at a given time instant. The estimated PMF of the symbolised time series is accurate and robust to
noise since the finite dataset is split between only two bins. Once the joint PMFs are estimated, transfer
entropy and conditional transfer entropy are obtained using equations (2.4) and (2.5).

Once the transfer entropy is estimated from experimental data, it is pertinent to conduct statistical
testing in order to infer whether the suggested causal influence is statistically significant. For transfer
entropy, TEX→Y , we generated a surrogate distribution of the transfer entropy by following a random
permutation test. We randomly shuffled the source time series {Xn }, keeping the target time series
unchanged, to maintain the link between it {Yn } and its past {Yn−1}. We computed the corresponding
transfer entropy to generate Nsur = 10000 samples for the surrogate distribution. To test if conditioning
on Z significantly reduces transfer entropy, TEX→Y |Z , we generated a surrogate distribution by shuf-
fling the Z time series Nsur = 10000 times, while maintaining the link between the source and target
(X-Y ). The transfer entropy (or conditional transfer entropy) value was considered to be significant if
the value was in the right (or left) tail of the surrogate distribution with a p-value smaller than 0.05. This
enabled us to assess: (i) whether transfer entropy from a source to a target is significantly greater than
that between a random source to the same target, and (ii) whether conditioning transfer entropy on a
relevant variable Z reduced the transfer entropy as compared with conditioning on a random unrelated
time series.

3. Results
In this section, we analyse the experimental observations using transfer entropy-based methods. First,
the recorded time series of movements and flow velocity are illustrated, followed by a discussion on
the processing of the time series prior to conducting information-theoretic analysis. Then, results of
the three experimental conditions of interaction between the airfoil and the flag outlined in § 2.2 are
discussed individually.

3.1. Pre-processing of time series
The experimental measurement and tracking (§ 2.3) yields raw time-series data of the airfoil pitching
angle θ, flag leading rib deflection ΔyL , flag trailing rib deflection ΔyT and LDV-recorded streamwise
flow speed U , as shown in the left panel of Figure 3. The airfoil angle θ demonstrates the periodic pitch-
ing motion interspersed with high-magnitude startles appearing at random time instants. The flag (both
ΔyL and ΔyT ) responds to the unsteady flow vortices generated by the pitching airfoil and demonstrates
similar periodic and startling motions as the airfoil, only with a discernible time delay. The instantaneous
streamwise flow speed U , on the other hand, does not exhibit a periodic behaviour and appears to be rela-
tively more noisy, characteristic of a turbulent flow. Towards preparing the time series for the calculation
of the information-theoretic measures, we sought to temporally match all the time series, suppress the
effects of measurement noise, and address superfluous periodicity. These goals were pursued through
the following steps.

Seasonal adjustment: the first three time series, θ,ΔyL and ΔyT , were recorded at uniformly spaced
frequency of 60 Hz with a distinct seasonality in their behaviour. The periodic pitching helps maintain
a continuous interaction between the airfoil and the flag, but it is the random startles and other mechan-
ical noise that sustain the stochastic nature of the time series and is essential in applying statistical
methods for causal inference. Therefore, prior to conducting the information-theoretic analysis, the time
series must be seasonally adjusted, as commonly done in econometrics (Porfiri et al. 2019). We per-
formed a seasonal adjustment on the θ, ΔyL and ΔyT time series, employing the multiple seasonal-trend
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Figure 3. Portion of the raw time series (left) and corresponding processed time series (right) of (from
top to bottom): airfoil pitching angle (raw: θ and processed: A), flag’s leading rib deflection (ΔyL and
FL), flag’s trailing rib deflection (ΔyT and FT ) and streamwise flow speed recorded by LDV (U and u).
The coloured dots in the plots on the right represent the downsampled time series used for symbolisation
and later for transfer entropy analysis.

decomposition using LOESS (locally estimated scatterplot smoothing) package in Python 3.9.7 to elim-
inate the “seasonal” trends in the data. This results in the processed time series of A for the airfoil’s
motion, FL for the flag’s leading rib motion and FT for the flag’s trailing rib motion as depicted in
the right column of Figure 3. Disregarding the oscillations, these time series primarily encapsulate the
startling motions. To remove experimental noise linked to mechanical movements or measurements, the
time series were downsampled from the recorded 60 frames per second to 30 data points per second.

Interpolation: unlike the image-tracked motion of the airfoil and the flag, U was measured whenever
a particle was tracked crossing the LDV measurement volume and was therefore non-uniformly spaced
in time (∼ 15 data points per second on average). Thus, U was interpolated and resampled to obtain a
time series u that aligned in time with the uniformly spaced downsampled time series of A, FL and FT .

Symbolisation: finally, these time series were symbolised with an embedding dimension of m = 2 (as
explained in § 2.4) to yield πA, πFL , πFT and πu (Figure 4). The symbolised time series were assigned
binary values of 0 and 1, depending on whether it decreased or increased in value from one time step
to the next. This results in probability estimation that is more robust to noise. These symbolised time
series at a constant time increment ofΔt = 1/30s ≈ 0.033 s were finally used for the information-theoretic
analysis. Such a symbolic representation is often adapted in information-theoretic analysis (López et al.
2010; Ruiz-Marin et al. 2010) when the relative change in the time series is more important than the
precise values they attain at each time instance.

3.2. Hydrodynamic interaction
First, we analyse the experimental case of an actively controlled airfoil and passive flag in a steady flow
inside the water channel. In this case, the leading rib of the flag remains fixed parallel to the streamwise
axis and the airfoil and the flag interact primarily via the flow (hydrodynamic pathway). We compute
transfer entropy from the airfoil to the flag’s trailing rib and vice versa using Equation (2.4) and illus-
trate its variation with the time delay (δ) between the airfoil and the flag in Figure 5a. We observe that
TEA→FT is typically higher than TEFT→A at nearly all time lags, suggesting a positive net TEA→FT .
This implies that the airfoil has a stronger influence on the flag than the flag has on the airfoil, due to the
fact that the compliant flag responds to the vortices shed by the pitching motion of the airfoil. The figure
further shows that TEA→FT attains a maximum at a time delay of δ0 = 10Δt ≈ 0.33 s, consistent with
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Figure 4. Portion of the symbolised time series of the airfoil pitching angle (raw: πA), flag’s leading rib
deflection (πFL ), flag’s trailing rib deflection (πFT ) and streamwise flow speed recorded by LDV (πu),
directly used for the transfer entropy analysis.

our estimated time taken by the flow (based on the maximum streamwise speed U0 at the centreline) to
reach the flag’s trailing rib from the airfoil’s trailing edge of ∼ 0.3 s.

To test the statistical significance of TEA→FT (δ0) against chance, we compare with its surrogate
distribution created by randomly shuffling the source time series (πA) Nsur = 10 000 times while pre-
serving the dynamics of the target (πFT ), as described in § 2.4. The surrogate probability distribution is
illustrated in Figure 5b along with the peak value of TEA→FT . It is evident that TEA→FT (δ0) is higher
than chance (p < 0.0001), suggesting that there exists a causal relationship from the actively actuated
upstream airfoil to the passively flapping downstream flag with a time delay of ∼ 0.33 s.

Since the airfoil interacts with the flag through the flow, we condition the transfer entropy on the
instantaneous flow-speed information encoded in the symbolised time series πu . The conditional trans-
fer entropy from airfoil to flag’s trailing rib, conditioned on flow speed at an intermediate point,
TEA→FT |u (δ0, δ2), is plotted as a function of the time delay (δ2) between the flow speed and the flag’s
tip deflection in Figure 5c. The figure illustrates that transfer entropy can decrease or increase upon con-
ditioning, depending on the time lag between u and FT . The conditional transfer entropy is minimum at
δ2 = δ20 = 6Δt = 0.2 s, suggesting that u can help predict the behaviour of FT , 0.2 s ahead of time, due
to the existence of the hydrodynamic pathway of interaction. This delay is close to our estimated time
lag of 0.23 s, between the location of LDV measurement (u) and the tip of the flag (FT ) based on the
centreline flow speed and the distance along the centreline.

The significance of the conditional transfer entropy with respect to a surrogate distribution obtained
by shuffling the symbolised time series πu is tested in Figure 5d. As described in § 2.4, such a surrogate
distribution of the time series breaks the link with u, keeping the A-FT dynamics intact. The value of
TEA→FT |u (δ0, δ20) is found to be significantly reduced (p = 0.0001), demonstrating that conditioning
on the LDV-recorded flow information significantly reduces the transfer entropy from the upstream
airfoil to the downstream flag. This finding suggests that fluid flow is a primary information pathway in
the airfoil–flag interaction.

3.3. Hydrodynamic and electromechanical interactions
Second, we study the experimental case in which both airfoil and flag are actively controlled in the
presence of a steady flow. The actuation of the flag’s leading rib follows that of the airfoil with a time
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Figure 5. Analysis of experiments with only hydrodynamic interaction: (a) transfer entropy from airfoil
to trailing rib of the flag (TEA→FT ) and from flag to airfoil (TEFT→A) for different delays δ between
A and FT . Peak TEA→FT is observed at a delay of δ0 = 10Δt. At delay δ0, (c) conditional transfer
entropy from airfoil to flag conditioned on streamwise flow speed, TEA→FT |u (δ0, δ2), as a function of
time-delay (δ2) between u and FT . Minimum TEA→FT |u is observed at delay δ20 = 6Δt. Statistical tests:
(b) TEA→FT (δ0) with respect to its surrogate distribution and (d) TEA→FT |u (δ0, δ20) with respect to its
surrogate distribution. In (b) and (d), green solid lines represent TEA→FT (δ0) and TEA→FT |u (δ0, δ20),
black solid lines represent their surrogate distributions and red dashed lines mark the 95 (or 5) percentile
cutoff of the surrogate distributions.

delay and added random noise. In this scenario, there are two major pathways of interaction between
the airfoil and the flag – hydrodynamic and electromechanical. Figure 6a shows the variation of transfer
entropies, TEA→FT and TEFT→A, with the time delay between the airfoil and the flag’s trailing rib (δ).
Similar to the previous case, TEA→FT > TEFT→A for most δ values, suggesting a stronger influence of
the airfoil on the flag than vice versa. The peak TEA→FT occurs at δ0 = 11Δt = 0.37 s, which is greater
than the time delay of interaction identified in the presence of the hydrodynamic pathway alone in the
previous case (δ0 = 0.3 s). This indicates that the combined presence of the electromechanical interac-
tion in addition to the hydrodynamic interaction increases the effective time lag of the causal influence
of the airfoil’s motion on the flag’s tip to 0.37 s. Such a finding is reasonable since the flag’s leading rib
is actuated with a delay of 0.3 s with respect to the airfoil and the transmission of the deflection from
the leading rib of the flag to its trailing rib takes additional time. Therefore, the overall time delay in
this experimental case is expected to be greater than the previous one. Further, the peak transfer entropy
TEA→FT (δ0) is statistically significant (Figure 6b), illustrating that in this experimental case as well,
the airfoil has an overall causal influence on the flag.

In this experimental condition, the airfoil interacts with the flag via two distinct pathways –
hydrodynamic and electromechanical. The LDV-measured speed u encodes part of the flow information
while the deflection of the flag’s leading rib FL encodes the electromechanical information. First, we
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Figure 6. Analysis of experiments with hydrodynamic and electromechanical interaction: (a) transfer
entropy from airfoil to trailing rib of the flag (TEA→FT ) and from flag to airfoil (TEFT→A) for different
delays δ between A and FT . Peak TEA→FT is observed at a delay of δ0 = 11Δt. At delay δ0, (c) con-
ditional transfer entropy from airfoil to flag conditioned on streamwise flow speed, TEA→FT |u (δ0, δ2),
as a function of time delay δ2 between u and FT (minimum TEA→FT |u is observed at delay δ20 = 6Δt)
and (e) conditional transfer entropy from airfoil to flag conditioned on flag’s leading rib deflection
(TEA→FT |FL (δ0, δ3)) as a function of time delay δ3 between FL and FT (minimum TEA→FT |FL is
observed at delay δ20 = 2Δt). Statistical tests: (b) TEA→FT (δ0) with respect to its surrogate distri-
bution, (d) TEA→FT |u (δ0, δ20) with respect to its surrogate distribution and (f) TEA→FT |FL (δ0, δ30)
with respect to its surrogate distribution. In (b), (d) and (f), green solid lines represent TEA→FT (δ0),
TEA→FT |u (δ0, δ20) and TEA→FT |FL (δ0, δ30), black solid lines represent their surrogate distributions
and red dashed lines mark the 95 (or 5) percentile cutoff of the surrogate distributions.

study the conditional transfer entropy conditioned on u, TEA→FT |u , at a fixed FT -A time delay (δ = δ0)
and for different time lags (δ2) between FT and u, as illustrated in Figure 6c. It is evident that condition-
ing on u is most effective in reducing the transfer entropy at a time delay of δ20 = 6Δt = 0.2 s. This is
identical to the time delay observed by transfer entropy analysis in the absence of the mechanical cou-
pling, which one would expect since the hydrodynamic coupling is independent of the electromechanical
coupling. Compared with the surrogate distribution with shuffled u time series in Figure 6d, the condi-
tional transfer entropy TEA→FT |u (δ0, δ20) value is significantly less (p = 0.0001). Even in the presence
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Figure 7. Analysis of experiments with only electromechanical interaction: (a) transfer entropy from
airfoil to trailing rib of the flag (TEA→FT ) and from flag to airfoil (TEFT→A) for different delays δ
between A and FT . Peak TEA→FT is observed at a delay of δ0 = 11Δt. At delay δ0, (c) conditional
transfer entropy from airfoil to flag conditioned on streamwise flow speed, TEA→FT |u (δ0, δ2), as a
function of timedelay ( δ2) between u and FT . Minimum TEA→FT |u is observed at delay δ20 = 4Δt.
Statistical tests: (b) TEA→FT (δ0) with respect to its surrogate distribution and (d) TEA→FT |u (δ0, δ20)
with respect to its surrogate distribution. In (b) and (d), green solid lines represent TEA→FT (δ0) and
TEA→FT |u (δ0, δ20), black solid lines represent their surrogate distributions and red dashed lines mark
the 95 (or 5) percentile cutoff of the surrogate distributions.

of other pathways of interaction, conditioning on the flow-speed information successfully reduces the
transfer entropy from airfoil to flag, compared with conditioning it on a randomly shuffled time series.
This suggests that the causal influence of airfoil on flag significantly reduces with the knowledge of the
flow speed.

Next, we analyse conditional transfer entropy conditioned on FL , TEA→FT |FL , at a fixed FT -A time
delay (δ = δ0) and for different time delays (δ3) between FT and FL , in Figure 6e. The FL-conditioning
reduces transfer entropy from the airfoil to the flag’s tip the most at a time lag of δ30 = 2Δt = 0.07 s.
This indicates that the time required for the deflection at the leading rib of the flag to propagate to its
trailing rib is ≈ 0.07 s. The secondary minima at a time lag of δ30 = 9Δt = 0.3 s indicates the presence
of multi-time-scale information flow through the length of the slender flag from the leading rib to the
trailing rib. Additionally, Figure 6f demonstrates that conditional transfer entropy is significantly less
than the null distribution with a p-value of p = 0.0001. Therefore, conditioning on the mechanical cou-
pling information significantly reduces the transfer entropy, as compared with conditioning the same on
a randomly shuffled timeseries. This indicates that the overall causal influence of the airfoil on the flag
significantly decreases on account of the knowledge of the motion of the flag’s leading rib.

3.4. Electromechanical interaction
In the third case, the experiments were conducted in the absence of a flow, which implies that the
airfoil and the flag primarily interact via electromechanical coupling only without any hydrodynamic
interaction. As illustrated in Figures 7a and 7b, the transfer entropy analysis shows a significant influence
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of the airfoil’s motion on the flag’s tip deflection at a time delay of δ0 = 11Δt = 0.37 s. However, upon
conditioning on u, conditional transfer entropy is greater than transfer entropy value for all time delays
δ2, as shown in Figure 7c. In addition, the minimum conditional transfer entropy, TEA→FT |u (δ0, δ20), is
not significantly (p = 0.07) smaller than transfer entropy conditioned on a randomly shuffled time series
(Figure 7d). We can infer that conditioning on flow information only reduces transfer entropy from air-
foil to flag if a hydrodynamic interaction is present. Therefore, such a conditional transfer entropy can
be used to test the presence or absence of hydrodynamic interaction pathway in an unknown case.

4. Discussion and conclusions
A controlled robotic set-up in a water channel was designed to recreate a simplified fish schooling sub-
system. Experiments were conducted using an upstream pitching airfoil and a downstream flapping flag
representing two fish swimming inline. The airfoil’s motion influenced the flag’s behaviour via two inde-
pendent pathways – hydrodynamic and eletromechanical. The hydrodynamic coupling was constituted
by vortex-induced pressure variations generated by the pitching of the upstream airfoil that causes the
compliant flag downstream to flap in response. Further, the leading rib of the flag was actuated to follow
the motion of the airfoil with a delay, therefore causing the flag to flap in response to the electrome-
chanical coupling. Experiments were conducted under three conditions – (i) with only hydrodynamic
coupling, (ii) with hydrodynamic and electromechanical coupling and (iii) with only electromechani-
cal coupling. Besides monitoring the movements of both the airfoil and the flag, the LDV technique
was employed to measure the streamwise flow speed at a midpoint. This data served as a source of
information on the hydrodynamic interaction pathway between the airfoil and the flag.

The information-theoretic analysis was conducted using properly conditioned experimental data of
the airfoil, flag and flow speed. It was demonstrated that transfer entropy from the airfoil to the flag can
recognise and quantify the causal influence of the airfoil on the flag under all three experimental con-
ditions. In addition, the method identifies the appropriate time delay of the interaction with reasonable
accuracy. Our findings suggest that transfer entropy can be adapted to identify causal influence between
units of a system that are interacting via single or multiple pathways.

By conditioning on a measurable physical quantity related to one pathway, that is, flow-speed infor-
mation related to hydrodynamic coupling, one can reduce transfer entropy from the airfoil to the flag
significantly. This conditional transfer entropy is competent in reducing the information flow from the
airfoil to the flag on account of knowledge about the flow, if the hydrodynamic interaction exists.
Similarly, conditioning on information related to the electromechanical coupling (undulation of the
flag’s leading rib) reduces the transfer entropy from the airfoil to the flag, only if the electromechanical
coupling is present. This implies that conditional transfer entropy based on measured experimental data
related to one particular interaction pathway helps disentangle the other pathways from this one.

The current study employs an experimental set-up with unidirectional interactions only, from the air-
foil to the flag. In future work, transfer entropy based method will be formulated for similar systems
to disentangle bidirectional interactions. While the present work demonstrates the ability of conditional
transfer entropy in accounting for the contributions of different interaction pathways, it does not precisely
quantify the contributions of each pathway of interaction. Overall, the study suggests that conditioning
transfer entropy on experimentally measured relevant information, one can identify unknown interac-
tions between different components of a fluid–structure interaction system and estimate the associated
time lags of the processes of the system. In the future, this mechanism will be extended to distinguish the
contributions of various interaction pathways within biological complex systems, such as fish schools.
Our approach is expected to apply directly to spatially disperse schools where fish are far apart, so that
one may hypothesise weak coupling between the units of the complex system (Porfiri & Marín, 2017,
2018). Prudence is warranted when dealing with dense schools for which the direct application of trans-
fer entropy may lead to false inferences due to common driver and chain effects. Addressing these issues
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may require the use of causation entropy (Sun & Bollt, 2014; Sun et al. 2015) or the inclusion of coarse
observables for the entire school (Wang et al. 2012).
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