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Analytical solutions are found for both longitudinal and transverse shear flow, at zero
Reynolds number, over immobilized superhydrophobic surfaces comprising a periodic
array of near-circular menisci penetrating into a no-slip surface and where the menisci
are no longer shear-free but are taken to be no-slip zones. Explicit formulae for the
associated longitudinal and transverse effective slip lengths are derived; these are
then compared with analogous results for superhydrophobic surfaces of the same
characteristic geometry but where the menisci are shear-free. The new formulae give
results that are consistent with recent experimental observations that have prompted
suggestions that menisci that are assumed to be free of shear have in fact been
immobilized. Significantly, for transverse shear flow, it is found that at critical
downward meniscus protrusion angles of around 47◦, for many surface geometries, it
is impossible to distinguish, purely from the effective slip length, between a no-shear
and a no-slip boundary condition. We also find that immobilized menisci bowing into
the grooves at supercritical angles just below 90◦ can be almost twice as slippery
to transverse shear as no-shear menisci. The results are relevant to recent discussion
as to whether surface immobilization, due to contamination by surfactants or other
physical mechanisms, is compromising drag reduction properties expected from an
assumed no-shear condition.

Key words: drag reduction, flow control, interfacial flows (free surface)

1. Introduction

Superhydrophobic surfaces are a special class of patterned surfaces on which the
presence of free surface menisci spanning surface protrusions in the microstructure
of the surface is presumed to supply close to no-shear regions that can enhance slip
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re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
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(Rothstein 2010). Over the last decade, there has been huge research effort in trying to
understand the slip properties of such surfaces. However, the historical development
of these endeavours has been characterized by contradictory observations with large
discrepancies among the slippage levels reported across the literature. A useful recent
review with many of the relevant references has been given by Lee, Choi & Kim
(2016).

There is now mounting evidence that contamination by surfactants, even in
trace amounts (Peaudecerf et al. 2017), can immobilize superhydrophobic surfaces,
rendering them, essentially, no-slip surfaces. Kim & Hidrovo (2012) performed
experiments in a rectangular microchannel with regular sidewall patterning to visualize
the location of the air–water interface within the roughness elements. One of their
principal conclusions from this study of Poiseuille flow through the microchannel
was that the air–water interface more closely resembles a no-slip boundary than a
shear-free one, and that a Wenzel state can have better friction reducing properties
than the Cassie state. In a joint experimental and numerical study of a longitudinal
flow scenario, Bolognesi, Cottin-Bizonne & Pirat (2014) tracked the effects of the
meniscus shape, and the liquid–air interfacial friction properties, to examine the
surface drag reduction properties. In this way, they were able to test the no-shear
assumption on the menisci. These authors also suggested that their observed results
were more consistent with immobilized no-slip free surfaces than those exhibiting
zero shear. Bolognesi et al. (2014) suggested surfactants or other surface contaminants
as possible causes for this surface immobilization. In a very recent study, Peaudecerf
et al. (2017) focused on examining the effect of surfactants on hydrodynamic slip in
longitudinal flows along unidirectionally patterned surfaces. Careful pressure control
was used to maintain flat menisci, with the conclusion that even trace amounts of
surfactants can cause a dramatic reduction in the expected slip enhancement properties
of the surfaces, again, by causing an immobilization of these surfaces into effective
no-slip zones.

The purpose of this paper is to offer complementary theoretical insights into the
question of which surface condition is active on curved menisci in unidirectional
superhydrophobic surfaces: an explicit comparison of the effective slip lengths for
both no-shear and no-slip boundary conditions in longitudinal and transverse shear
flows is performed. To elucidate further, an important class of superhydrophobic
surfaces consists of those with a periodic unidirectional patterning of no-slip pillars
separated by grooves that, in the Cassie state, are spanned by free surface menisci
that trap a second fluid (e.g. air) in the subphase grooves (here, we ignore subphase
fluid effects). Often, due to high pressures in the working fluid, the menisci will
bow down into the grooves. Assuming, in the zero-capillary-number limit, that the
menisci are shear-free, then they will be circular arcs with curvature determined
by a Laplace–Young force balance. For steady longitudinal semi-infinite shear flow
(u, v, w) = (0, 0, w(x, y)) with shear rate γ̇ over such surfaces, the longitudinal
effective slip length λ|| is defined as the quantity such that, as y→∞,

w(x, y)→ γ̇ (y+ λ||). (1.1)

For a steady transverse shear flow (u, v, 0), the effective transverse slip length λ⊥ is
such that, as y→∞, the velocity has the form

(u, v, 0)→ (γ̇ (y+ λ⊥), 0, 0). (1.2)

It is important to note that these two effective slip lengths can be defined whatever
the nature of the boundary condition imposed on the curved meniscus. If a curved
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FIGURE 1. Downward protruding circular meniscus in a period-L superhydrophobic
surface. This paper compares effective slip lengths when the meniscus is both no-shear
and no-slip.

meniscus happens to be a no-slip surface – that is, it has been immobilized by some
means – then we are equivalently dealing with a corrugated no-slip wall with circular-
arc ‘riblets’, and it is more common then to refer to these effective slip lengths as
protrusion heights (Bechert & Bartenwerfer 1989; Luchini, Manzo & Pozzi 1991). In
the latter context, since the choice of the y-origin is arbitrary, the only physically
significant quantity is the difference λ|| − λ⊥, which is independent of the choice of
y-origin, and quantifies how much a corrugated no-slip wall impedes a transverse shear
relative to a longitudinal shear.

We now summarize our results. Consider the unidirectional superhydrophobic
surface whose period window of length L is shown in figure 1: a meniscus, of
width 2c, protrudes into the groove by angle φ (here, we will not consider menisci
protruding above y = 0). On introducing the usual complex variable z = x + iy, we
introduce a family of approximating surfaces described by the image of a unit ζ -circle
in a parametric ζ -plane under the conformal map

z= x+ iy= z(ζ )=−
iL
2π

log ζ +
a

ζ − ζ0
−

a
1− ζ0

, (1.3)

with parameters a and ζ0 given in terms of c, L and φ as

ζ0 =

[
2c
L

cot(φ/2)
(
φ cosec2φ − cot φ −

π

4
tan2(φ/2)

)
− 1
]−1

,

a=
ic tan(φ/2)

2
(1− ζ 2

0 ).

 (1.4)

Clearly, ζ0 is real and a is purely imaginary. This class of mappings is found to give
images of the unit ζ -disc that are very close to the semi-infinite period window with
the same values of c, L and φ as shown in figure 1. Figure 2 shows the image of the
map (1.3) for φ= 90◦ and the values c= d= 0.1, 0.3, 0.5 together with superpositions
of actual semicircular arcs separated by straight lines along y= 0 characterized by the
same geometry. The domains are almost indistinguishable in all cases, with just mild
smoothing out of the corner points. This is found to be the case for all choices of the
parameters c, L and φ.
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d

c

FIGURE 2. Surface shapes with period L = 1 described by (1.3) and (1.4) for c = d =
0.5, 0.3 and 0.1 (this is the case φ= 90◦; other protrusion angle choices with c 6= d can be
taken). The menisci are very close to being semicircular with near-flat inter-groove spacing
of length approximately L − 2d. The broken lines show exactly semicircular menisci of
radius d separated by straight lines along y=0; these broken lines are barely visible except
near mildly smoothed-out corners, indicating the accuracy of the approximation.

The significance of this observation is that, for the special class of surfaces (1.3)
approximating the superhydrophobic surface geometry, we are able to solve explicitly
for both longitudinal and transverse shear flow over these surfaces if the menisci are
taken to be no-slip surfaces. Consequently, we derive the following analytical slip
length formulae:

λ||

c
=

c
L

[
φ cosec2φ − cot φ −

π

4
tan2(φ/2)

]
, (1.5)

λ⊥

c
=

tan(φ/2)
8ζ0

{
3+ 4ζ0 + ζ

2
0 +

1
π

(1− ζ 2
0 )

2

[2(c/L)ζ0 tan(φ/2)+ (1/π)(1− ζ 2
0 )]

}
, (1.6)

with ζ0 given in terms of the geometrical parameters c, L and φ by (1.4). We expect
(1.5) and (1.6) – which are the exact effective slip lengths for the approximating
surfaces – to give excellent approximations to the effective slip lengths for shear flow
over the no-slip circular-arc geometries of figure 1. On a physical note, it is by no
means clear that the actual shape of a steady immobilized meniscus will be a circular
arc – this will be a function of precisely what physical mechanism is immobilizing it
(e.g. surfactant or thermally induced Marangoni stresses, transition to a Wenzel state)
– but, for purposes of comparing effective slip lengths with the zero-capillary-number
limit of a no-shear meniscus, we proceed under this assumption.

With formulae (1.5) and (1.6) to hand, we then compare them with analogous
results for longitudinal and transverse shear flows over the same surfaces but where
the menisci are now shear-free; the required results already exist in the literature.
(Concerning the arbitrary choice of y-origin just discussed, since we compare the
quantities λ|| and λ⊥ for the same surface geometry but two different choices
of boundary condition, the results have physical significance in quantifying the
difference between the effective slip properties for shear flow over surfaces with
these two boundary condition choices.) The implications of these new results for
possible immobilization of superhydrophobic surfaces by impurities or surfactant
contamination are examined in § 5.
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Effective slip lengths for immobilized superhydrophobic surfaces

A

A
B

B

C C

L

Meniscus

FIGURE 3. Conformal mapping from the unit ζ -disc with logarithmic branch cut to a
single period of the surface. Points labelled by the same letter correspond under the
mapping (1.3). The area Ag beneath y= 0 is also indicated. Point A in the physical plane
is at z= 0.

2. A special class of surfaces

The class of surfaces to be studied will be described mathematically by conformal
mappings (1.3) from the cut unit disc in a complex parametric ζ -plane to a single
period window of the flow pattern over the L-periodic surface (figure 3). We need
|ζ0| > 1 so that the mapping avoids a simple pole inside the unit ζ -disc. Other
constraints on a and ζ0 arise from the need to ensure univalency of the mapping. The
branch of the logarithm (the two sides of the branch cut represent the two period
window edges) is chosen to be along the positive real ζ -axis. The preimage of infinity
is ζ = 0. The constant term in (1.3) ensures that z(1)= 0. It should be noted that Ag,
defined as the fluid area below y= 0, is

Ag =
1
2i

∮
|ζ |=1

z(1/ζ )z′(ζ ) dζ +
1
2i

∫ 0

L
z dz= L Im

[
a

1− ζ0
+

a
ζ0

]
+

π|a|2

(1− |ζ0|
2)2
. (2.1)

Suppose now that we seek maps within this class that are ‘close’ to a circular-arc
groove of length 2c with protrusion angle downwards φ. The geometry is clearly
parametrized by c and φ, but we now seek the corresponding mapping parameters
a and ζ0. From simple geometrical considerations, it can be shown that

R=
c

sin φ
, d= R− R cos φ = c tan(φ/2), Ag =

c2

sin2 φ
(φ − sin φ cos φ). (2.2a−c)

To construct the class of mappings (1.3)–(1.4), we now insist that the image of ζ =
eiπ
= −1 under (1.3) is at L/2 − id, with d given as in (2.2), and that the area Ag

beneath the surface is given by the formula in (2.2). This leads, on use of (2.1) and
(2.3), to

ζ0 =

[
2

dL

(
Ag −

πd2

4

)
− 1
]−1

, a=
id
2
(1− ζ 2

0 ). (2.3a,b)

On substituting for Ag and d from (2.2), where they are given as functions of c
and φ, we arrive after some algebra at (1.4). While the boundary shapes encoded
in the class of conformal mappings (1.3)–(1.4) are approximations to the circular-
arc boundaries in figure 1, by construction, the area Ag beneath the y = 0 surface
is exactly the same for both – an important fact given that, for longitudinal flow
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with a no-slip boundary condition, any effective slip is intuitively associated with
changes in the cross-sectional area of the flow. Figure 2 gives evidence of how closely
these mappings approximate downward protruding circular arcs. One should note the
serendipity of this: we have no right to expect, a priori, that the fitting of just two
parameters will produce conformal mappings with images that are uniformly close to
the desired target curve. That it happens to be successful is pure mathematical luck.

3. Longitudinal flow

Assuming no driving pressure gradient, the longitudinal flow w(x, y) satisfies

∇
2w= 0 (3.1)

in the fluid region above the surface, so it is natural to introduce the complex potential
(Crowdy 2011b) h(z)= χ + iw. Since w→ γ̇ y as |z|→∞, then we require

h(z)→ γ̇ z (3.2)

as z→∞ with the no-slip condition

w= Im[h(z)] = 0, on the surface. (3.3)

Now, consider the function

H(ζ )≡ h(z(ζ ))=−
iγ̇L
2π

log ζ . (3.4)

It can be directly verified that this function satisfies all requirements. Since, from (1.3),
we can write

−
iL
2π

log ζ = z−
a

ζ − ζ0
+

a
1− ζ0

, (3.5)

then, on comparison with (1.1), the slip length λ|| can be determined as

λ|| = Im
[

a
1− ζ0

+
a
ζ0

]
=

d
2

(
1+

1
ζ0

)
. (3.6)

On use of (1.4) and (2.2) to substitute for d and ζ0 in terms of c and φ, we arrive
at (1.5).

4. Transverse flow

The transverse flow problem is more difficult, not least because it is not conformally
invariant, but, remarkably, it is exactly solvable for domains described by conformal
mappings of the form (1.3), as we now show. Our mathematical derivation of the
transverse flow solution is similar in spirit to that of Richardson (1973), but we have
eschewed his approach based on Taylor series, since, for our class of solutions (1.3),
it would require an infinite number of terms. We adopt a more function theoretic
approach.

The streamfunction ψ(x, y) associated with a two-dimensional Stokes flow of a fluid
of viscosity µ satisfies the biharmonic equation (Langlois 1964; Crowdy 2011a)

∇
4ψ = 0. (4.1)

With z= x+ iy, the general solution to (4.1) is available in the form

ψ(x, y)= Im[zf (z)+ g(z)], (4.2)
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Effective slip lengths for immobilized superhydrophobic surfaces

where f (z) and g(z) are two analytic functions in the fluid region. Let

(u, v)= (∂ψ/∂y,−∂ψ/∂x) (4.3)

denote the components of the fluid speed and let p denote the fluid pressure. It can
be shown (Langlois 1964; Crowdy 2011a) that

p
µ
− iω= 4f ′(z), u− iv =−f (z)+ zf ′(z)+ g′(z), ω=

∂v

∂x
−
∂u
∂y
, (4.4a−c)

where primes denote differentiation with respect to the argument of the function. For
the required shear flow as y→∞, we need

f (z)→
iγ̇ z
4
+ const., g′(z)→−

iγ̇ z
2
+ const. (4.5a,b)

Henceforth, we take γ̇ = 1. It is convenient to define the Schwarz function (Davis
1974)

S(z)≡ z(1/ζ ) = −
iL
2π

log ζ +
aζ

1− ζ ζ0
−

a
1− ζ0

= z(ζ )−
a

ζ − ζ0
+

a
1− ζ0

+
aζ

1− ζ ζ0
−

a
1− ζ0

, (4.6)

where we have used (1.3); hence, S(z)= z on the meniscus. Now, we define

F(ζ )≡ f (z(ζ )), G(ζ )≡ g′(z(ζ )). (4.7a,b)

It will be shown that a class of explicit solutions is given by

F(ζ )=
iz(ζ )

4
+

F1

ζ − ζ0
, G(ζ )=−

iz(ζ )
4
− S(z)f ′(z)+

G−1

ζ − 1/ζ0
+G0 +

G1

ζ − ζ0
,

(4.8a,b)
where F1, G0, G1 and G−1 are constants to be determined. Two of these are related
by

G−1 =−
a
ζ0

2

[
i
4
−

F1ζ
2
0

(1− ζ 2
0 )

2z′(1/ζ0)

]
. (4.9)

To understand why (4.7) is the required solution, it should be noted first that the
function S(z)f ′(z) appearing in G(ζ ) can be written as a function of ζ on use of (4.6)
and the chain rule f ′(z) = F′(ζ )/z′(ζ ). Condition (4.9) removes the simple pole of
G(ζ ) due to the term −S(z)f ′(z) at ζ = 1/ζ0, which is inside the unit disc. Both F(ζ )
and G(ζ ) are then analytic in the unit ζ -disc except for singularities at ζ = 0 which
are chosen to ensure that the far-field conditions (4.5) are satisfied. Since, from (4.6),
S(z)→ z+ const. as |z|→∞, then it is easy to check that F(ζ ) and G(ζ ) satisfy (4.5)
as ζ→ 0. The corresponding (complex) velocity field is

u− iv =
iz(ζ )

4
−

F1

ζ − ζ0
+ [z(ζ )− S(z)]

[
i
4
−

F1

(ζ − ζ0)2

1
z′(ζ )

]
−

iz(ζ )
4
+

G−1

ζ − 1/ζ0
+G0 +

G1

ζ − ζ0
, (4.10)
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which can be shown to be L-periodic. On the surface where |ζ | = 1, and on use of
(4.6), this becomes

u− iv =
{
−

ia
4
+G1

}
1

ζ − ζ0
+

{
−

ia
4ζ0

2 +
F1

ζ0
2 +G−1

}
1

ζ − 1/ζ0

+

{
F1

ζ0
+G0 −

1
2

Im
[

a
1− ζ0

]
−

ia
4ζ0

}
. (4.11)

We can therefore satisfy the no-slip condition everywhere on the surface if we make
all of the curly-bracketed terms vanish. This implies the conditions

−
ia
4
+G1 = 0, −

ia
4ζ0

2 +
F1

ζ0
2 +G−1 = 0, −

1
2

Im
[

a
1− ζ0

]
−

ia
4ζ0
+

F1

ζ0
+G0 = 0.

(4.12a−c)
These three equations, together with (4.9), determine the four constants F1, G−1, G0
and G1. On elimination of G−1 between (4.9) and (4.12b), we find

F1 =
iaD

2(a−D)
, D=−a−

iL
2πζ0

(1− ζ 2
0 )

2. (4.13a,b)

With F1 thus determined, the parameters G−1,G0 and G1 follow explicitly from (4.9)
and (4.12). Finally, the slip length is obtained by analysis of expression (4.10) as ζ→
0 and comparison with (1.2):

λ⊥ =
F1

ζ0
+ Im

[
a

1− ζ0

]
−

ia
2ζ0

. (4.14)

After some algebra, on use of expression (4.13) for F1, we arrive at (1.6).

5. Comparison of no-slip and no-shear assumptions

Since the consensus in much previous work has been that the menisci in
superhydrophobic surfaces are close to shear-free, there has been great effort in
seeking to quantify the effective slip properties under a shear-free assumption. Those
prior results, coupled with the complementary results derived here for the same
class of superhydrophobic surface geometries, allow us to test this assumption. For
longitudinal flow, Crowdy (2016) has derived a formula for the effective slip length
for exactly circular no-shear menisci. The effective slip length in (1.4) of Crowdy
(2016) is plotted as a function of φ in figure 4 along with the new slip length result
(1.5) for a no-slip surface with the same fixed value of 2c/L= 0.5, corresponding to
the no-shear fraction used in the experiments of Bolognesi et al. (2014). (Formula
(1.4) of Crowdy (2016) is known to be accurate to within 1 %–2 % for this normalized
groove width.) An immediate observation is that, as φ increases, the slip associated
with a no-shear surface decreases while the slip associated with a no-slip surface
increases. In two experiments, referred to as M1 and M2, Bolognesi et al. (2014)
observed that a more depressed groove associated with experiment M1 is associated
with a larger slip length than experiment M2, where the interface invaded the groove
to a lesser degree. As those authors pointed out, this is precisely not what is expected
if the meniscus is a no-shear surface. Bolognesi et al. (2014) went on to suggest that
the observed behaviour is more consistent with the meniscus being a no-slip surface.
Figure 4 provides theoretical evidence to support this.
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1.0 1.5

FIGURE 4. Normalized longitudinal slip length for grooves of aspect ratio 2c/L= 0.5 as a
function of downward protrusion angle φ. The no-shear results are based on a slip length
formula of Crowdy (2016); the no-slip results are from (1.5). Data points for φ = 0.1870
and φ=0.1 corresponding to estimates of the meniscus geometries of experiments M1 and
M2 of Bolognesi et al. (2014) are shown. The no-slip results show behaviour consistent
with the experiments.

From figure 3 of Bolognesi et al. (2014), we fitted our theoretical profiles to the
experimental meniscus profiles by visually estimating the geometrical parameters
d/c = 1.5 µm/16 µm for experiment M1 and d/c = 0.8 µm/16 µm for experiment
M2. On use of (2.2), the associated downward protrusion angles φ can be calculated,
and these are indicated by the two dotted ordinates shown in figure 4. It is found
that the slip associated with M1 is approximately 80 % greater than that associated
with M2. Bolognesi et al. (2014) reported an increase of 40 %, but full quantitative
agreement cannot be expected since the experiments were carried out in a closed
geometry, while our formula (1.5) does not take a no-slip upper wall into account.
Moreover, the experimentally observed menisci display flattened bottoms, while the
results here are for near-circular arcs – a fact that reminds us of the comment made
earlier that it is not clear what the true shape of any immobilized meniscus will
actually be. Nevertheless, the results here are in corroborative qualitative agreement
with the experimental observations. Bolognesi et al. (2014) compared their observed
global slip length against the prediction of a flat-meniscus no-shear result due to
Philip (1972) and noticed that the former is approximately a tenth of that predicted
by the no-shear model. It is clear from the ordinates drawn on figure 4 that the slip
length according to the no-slip model is close to 10 % of that predicted by a no-shear
model, in broad agreement with the experiments (Bolognesi et al. 2014).

The results for the transverse flow case are also revealing. Figure 5 shows results
for 2c/L = 0.2, which has been deliberately chosen to be sufficiently small that
we can make use of the dilute limit slip length formula found by Davis & Lauga
(2009). Figure 5 shows the predictions of this no-shear model for an exactly circular
arc together with the results from the new formula (1.6) for no-slip surfaces of
very nearly the same shape. Once again, we find that the slip length for a no-slip
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FIGURE 5. Normalized transverse slip length for grooves of aspect ratio 2c/L = 0.2 as
a function of downward protrusion angle φ. The no-shear results are based on the slip
length formula of Davis & Lauga (2009); the no-slip results are from (1.6). Cross-over
occurs at a critical angle of φ ≈ 46.8◦

surface increases with the downward protrusion angle φ, in contrast to the decrease
in slip length under the assumption that the menisci are shear-free. A new feature,
not observed for longitudinal flow, is that we find a critical downward protrusion
angle φ ≈ 0.816≈ 46.8◦ at which the effective slip length associated with a no-shear
surface exactly coincides with that associated with a no-slip surface. This means
that, for this critical surface geometry, it is impossible to tell the nature of the
boundary condition on the surface by looking at the effective slip length. Expressed
differently, close to such critical meniscus geometries, one might believe that a
no-shear boundary condition is active on the interface, and is thus responsible for
enhanced slip, but really the enhanced slip is caused by the downward deformation
of an immobilized no-slip meniscus. Indeed, albeit with respect to longitudinal flows,
Bolognesi et al. (2014) made the comment ‘Discriminating between the effects of
a deformed meniscus, on one side, and the interfacial friction at the liquid–air
interface, on the other side, is not an easy task as this requires measuring the flow
nearby the meniscus while simultaneously determining its shape and position’. Our
theoretical results here underline this concern: the crossing of graphs in figure 5
provides evidence of a source of possible error in interpreting experimental results
based purely on effective slip data. Figure 5 shows that for angles well above critical,
a no-slip meniscus can be significantly more slippery than a no-shear surface. Indeed,
by changing the normalized groove width 2c/L in the interval [0, 0.47] (where Teo &
Khoo (2016) have shown the formula of Davis & Lauga (2009) to be 10 % accurate),
we find that for downward protrusion angles around 80◦, the surface can be almost
twice as slippery if immobilized as if it is free of shear (cf. Kim & Hidrovo 2012).

In confined longitudinal microchannel flows with a lower superhydrophobic wall,
say, the effective slip length is usually defined by equating the pressure-driven flux
through the channel with that in a channel having a Navier slip condition, λNS dw/dy=
w, imposed on the lower wall; the value of λNS for which these fluxes are equal
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(for the same driving pressure gradient) is the effective slip length. It is easy to show
that for channels whose height is large compared with the pitch of the surface, this
effective slip length λNS coincides, at leading order in an aspect ratio expansion, with
the effective slip lengths found here.

Finally, a different interpretation of our results is that we have found new analytical
solutions for simple shear over a periodic array of near-circular surface notches (or
‘riblets’) in the Wenzel state with fully penetrated grooves and no free surfaces
(Bechert & Bartenwerfer 1989; Luchini et al. 1991).
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