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1. Introduction

In this paper, we consider the two Dirichlet problems

−ΔEu + λu = up, (t, x, y) ∈ E0,

u � 0,

u = 0, (t, x, y) ∈ ∂E

⎫⎪⎬
⎪⎭ (P1)

and

−ΔEu = g(t, x, y)up + fλ(t, x, y)uq, (t, x, y) ∈ E0,

u � 0,

u = 0, (t, x, y) ∈ ∂E,

⎫⎪⎬
⎪⎭ (P2)

where 1 < q < 2 < p < 2∗ − 1 (2∗ = 2N/(N − 2), N � 3) and λ ∈ R. Here, the
domain E = [0, 1) × X × Ω is regarded as a local model near the boundary of the
stretched manifold, which is associated with a manifold with edge singularity, E0 denotes
the interior of E, the boundary of E is denoted by ∂E, ∂E = {0} × X × Ω, X is a closed
set in Rn, n � 1, Ω is an open domain in Rd, d � 1, the dimension of E is N = n+d+1.
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The so-called edge-Laplacian ΔE = (t∂t)2 + (∂x1)
2 + · · · + (∂xn

)2 + (t∂y1)
2 + · · · + (t∂yd

)2

is an elliptic operator with edge degeneracy on the boundary ∂E, and the corresponding
gradient operator is denoted by ∇E = (t∂t, ∂x1 , . . . , ∂xn , t∂y1 , . . . , t∂yd

). Our goal is to
find the existence of solutions for (P1) and (P2) in edge Sobolev space H1,N/2

2,0 (E). The
definition of such distribution spaces is given in § 2. Of course, we need the nonlinear
terms of (P2) to satisfy suitable conditions.

(H1) fλ = λf+ + f− (f± = ± max{±f, 0}), f+ �= 0 and f+ ∈ L
N/(rq)
rq (E), where rq =

r/(r−(q+1)) for some r ∈ (q+1, 2∗); f− ∈ L
N/(r′

q)
r′

q
(E), where r′

q = r′/(r′ −(q+1))
for some r′ ∈ (q + 1, 2∗].

(H2) g± = ± max{±g, 0}, g+ �= 0 and g+ ∈ L
N/sp
sp (E), where sp = s/(s−(p+1)) for some

s ∈ (p+1, 2∗); g− ∈ L
N/s′

p

s′
p

(E), where s′
p = s′/(s′ − (p+1)) for some s′ ∈ (p+1, 2∗].

The definition of the distribution space L
N/l
l (E) (0 < l < ∞) is still given in § 2.

The analysis on manifolds with edge singularities and the properties of elliptic,
parabolic and hyperbolic equations in this setting have been intensively studied over
the last decades. More specially, for aspects of partial differential equations and pseudo-
differential theory of configurations with piecewise smooth geometry, the work of Kon-
drat′ev (see [8]) has to be mentioned here as the starting point of the analysis of operators
on manifolds with conical singularities. The foundations of this analysis were developed
through fundamental work by Schulze, and subsequently further expanded by him and
his collaborators, such as Gil, Seiler, Krainer, and so on. The main subject of their
work is the calculus on manifolds with singularities (see [5, 13, 14] and the references
therein). On the other hand, Melrose and his collaborators gave various methods and
ideas on the pseudo-differential calculus on manifolds with singularities (see Melrose
and Mendoza [10], Melrose and Piazza [11] and Mazzeo [9]). All these mathematicians
deeply investigated the underlying pseudo-differential calculi and the connected func-
tional spaces. While these theories are nowadays well established, many aspects are still
of interest, for instance, the existence theorem for the corresponding nonlinear elliptic
equations on manifolds with singularities.

Recently, the authors in [5] established the so-called edge Sobolev inequality (see
Proposition 2.4) and the Poincaré inequality (see Proposition 2.5) for the weighted
Sobolev spaces (2.3) (see [5] for details). Such inequalities seem to be of fundamental
importance in proving the existence of the solutions for such nonlinear problems with
totally characteristic degeneracy, and they are expected to be very useful in solving some
geometry problems, e.g. the Yamabe problem on manifolds with edge singularities. In [5],
the authors already obtained the existence theorem for a class of semilinear degenerate
equations on manifolds with edge singularities, that is, for the Dirichlet problem

−ΔEu − μV (t, x, y)u = λu + up, (t, x, y) ∈ E0,

u = 0, (t, x, y) ∈ ∂E,
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there exist non-trivial weak solutions in H1,N/2
2,0 (E) if λ > 0 and the singular potential

function V (t, x, y) satisfies the edge-Hardy inequality

∫
E

V (t, x, y)u2 dt

t
dx

dy

t
�

(
2

N − 1 − q

)2 ∫
E

|∇Eu|2 dt

t
dx

dy

t
.

For a more detailed account of this subject, we refer the interested reader to [1–7].
Of course, the existence of weak solutions of (P1) and (P2) is also an interesting prob-

lem. It is well known that the mountain pass theorem is usually used to solve problems
similar to (P1), and the decomposition of the Nehari (see [12]) manifold is a good method
with which to solve the problems with concave and convex nonlinearities. In this paper,
we first obtain the existence of weak solutions for (P1) by applying the mountain pass
theorem. Furthermore, we establish the so-called Nehari manifold on H1,N/2

2,0 (E), and
then, using that result, we obtain some results about (P2). Although the proof in § 4
closely follows [17], we point out that using a similar analysis to that in this paper can
also give an improvement of [17]. The main results of our work are as follows.

Theorem 1.1. The problem (P1) has a non-negative weak solution in H1,N/2
2,0 (E) if

and only if λ > −λ1(E), where λ1(E) is defined in § 2.

Theorem 1.2. Assume that the conditions (H1) and (H2) hold. There then exists
μ0 > 0 such that, for λ ∈ (0, μ0), (P2) admits at least two non-negative weak solutions
in H1,N/2

2,0 (E).

Moreover, of course we know that L∞(E) � L
N/l
l (E), 0 < l < ∞ (for example,

a(t, x, y) ≡ 1 on E), and if we change conditions (H1) and (H2) into

(H′
1) f+ = max{f, 0} �= 0 and f ∈ L∞(E),

(H′
2) g+ = max{g, 0} �= 0 and g ∈ L∞(E),

we also can obtain the same result.

Theorem 1.3. Assume that conditions (H′
1) and (H′

2) hold. There then exists μ′
0 > 0

such that, for λ ∈ (0, μ′
0), (P2) admits at least two non-negative weak solutions in

H1,N/2
2,0 (E).

This paper has the following structure. In § 2 we introduce the edge Sobolev spaces
and their corresponding properties. In § 3 we give the proof of Theorem 1.1. In § 4 we
first introduce the so-called Nehari manifold on H1,N/2

2,0 (E), and then, using that result,
we give the proofs of Theorems 1.2 and 1.3.

In this paper, positive constants (possibly different) are denoted by c.

2. Weighted p-Sobolev spaces

In this section we introduce the definition of weighted p-Sobolev spaces and some results
on them. We first give the definition of manifolds with edges.
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Definition 2.1 (manifolds with edges). A manifold E with edges Y, Y ⊂ E is a
topological space with the following properties.

(i) E \ Y and Y are C∞-manifolds: d = dimY , N = n + 1 + d = dimE.

(ii) Every y ∈ Y has a neighbourhood V in E with an associated non-empty system
Φ(V ) of singular charts

χ : V → XΔ × Rq (2.1)

for a certain closed compact C∞-manifold X = X(y), n = dimX, and

XΔ = (R × X)/({0} × X).

The restrictions χ0 = χ|V \Y , χ1 = χ|V ∩Y give the mappings

χ0 : V \ Y → X∧ × Rd, χ1 : V ∩ Y → Rd,

where X∧ := R+ × X.

(iii) Let V , Ṽ be neighbourhoods of y and let χ ∈ Φ(V ), χ̃ ∈ Φ(Ṽ ) as in (ii); then, for
U = V ∩ Ṽ , the corresponding restrictions are

ψ := χ|U : U → XΔ × Ω, ψ̃ := χ̃|U : U → XΔ × Ω̃

for certain open Ω, Ω̃ ⊆ Rd. The transition mappings

ψ̃ ◦ ψ−1 : X∧ × Ω → X∧ × Ω̃

are independent of t ∈ R+ for 0 < t < ε, ε > 0.

All manifolds here are assumed to be compact.

The following is a typical example for a manifold E with boundary ∂E such that ∂E is
an X-bundle over Y . Let πsing : ∂E → Y denote the canonical projection. We then have
a continuous map π : E → E that restricts to a diffeomorphism

πreg : E \ ∂E → E \ Y

and to a projection
πsing : ∂E → Y.

We call E the stretched manifold associated with E.
We often pass to the open stretched wedge X∧×Rq � (t, x, y), on which the Riemannian

metric (dt/t)2 + dx2 + (dy/t)2 can be formed, with the corresponding gradient operator
given by

∇E = (t∂t, ∂x1 , . . . , ∂xn
, t∂y1 , . . . , t∂yd

).

Therefore, the typical degenerate differential operator A on the open stretched wedge
X∧ × Rd has the following form:

A =
∑

j+|α|�ν

ajα(t, y)(t∂t)j(t∂y)α, (2.2)
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with ajα ∈ C∞(R+ × Rd, Diffν−(j+|α|)(X)) for all j, α. Here, Diffν(X) means the set of
differential operators on X of order ν.

Let the open stretched wedge X∧ × Rd := R+ × X × Rd � (t, x, y), with closed subset
X ⊆ Rn, and let N = n + 1 + d. Assume that u(t, x, y) ∈ D′(X∧ × Rd); we say that

u(t, x, y) ∈ Lp

(
X∧ × Rd,

dt

t
dx

dy

t

)

if

‖u‖Lp
=

( ∫
X∧×Rd

tN |u(t, x, y)|p dt

t
dx

dy

t

)1/p

< +∞.

Moreover, the weighted Lp spaces with weight data γ ∈ R are denoted by

Lγ
p

(
X∧ × Rd,

dt

t
dx

dy

t

)
,

which means that if

u(t, x, y) ∈ Lγ
p

(
X∧ × Rd,

dt

t
dx

dy

t

)
,

then

t−γu(t, x, y) ∈ Lp

(
X∧ × Rd,

dt

t
dx

dy

t

)
and

‖u‖Lγ
p

=
( ∫

X∧×Rd

tN |t−γu(t, x, y)|p dt

t
dx

dy

t

)1/p

< +∞.

From now on we define
dσ =

dt

t
dx

dy

t

for short. We can now define the weighted Sobolev space with natural scale for all
1 � p < ∞ on the open stretched wedge X∧ × Rd.

Definition 2.2. For m ∈ N, and γ ∈ R, we define the spaces

Hm,γ
p (X∧ × Rd) := {u ∈ D′(X∧ × Rd) : tN/p−γ(t∂t)k∂α

x (t∂y)βu ∈ Lp(X∧ × Rd, dσ)}

for arbitrary k ∈ N, multi-index α ∈ Nd and k+|α|+|β| � m. In other words, if u(t, x, y) ∈
Hm,γ

p (X∧ × Rd), then (t∂t)k∂α
x (t∂y)βu ∈ Lγ

p(X∧ × Rd, dσ). Therefore, Hm,γ
p (X∧ × Rd)

is a Banach space with the norm

‖u‖Hm,γ
p (X∧×Rd) =

∑
k+|α|+|β|�m

( ∫
X∧×Rd

tN |t−γ(t∂t)k∂α
x (t∂y)βu(t, x, y)|p dσ

)1/p

.

Moreover, let the subspace Hm,γ
p,0 (X∧ × Rd) of Hm,γ

p (X∧ × Rd) denote the closure of
C∞

0 (X∧ × Rd) in Hm,γ
p (X∧ × Rd).

Furthermore, we give the definition of Hm,γ
p (E) and Hm,γ

p,0 (E).
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Definition 2.3. Let E be the stretched manifold to a manifold E with edge singular-
ities. Then, Hm,γ

p (E) for m ∈ N, γ ∈ R is defined to be the set of all u ∈ Wm,p
loc (E0) such

that
Hm,γ

p (E) = {u ∈ Wm,p
loc (E0); χ−1ϕωu ∈ Hm,γ

p (X∧ × Rd)}

with the norm

‖u‖Hm,γ
p (E) =

N∑
j=1

‖χ−1
j ϕjωu‖2

Hm,γ
p (X∧×Rd) + ‖(1 − ω)u‖2

W m,p
0 (E),

where E0 denotes the interior of E, ω is a cut-off function on E, supported by a collar
neighbourhood of [0, ε) (for some ε > 0), χj is determined by singular charts χj : Vj →
(XΔ × Rd) as in (2.1), and ϕj form a partition of unity of Y , subordinate to the open
covering Vj ∩ Y , j = 1, . . . , N . The classic Sobolev spaces Wm,p

0 (E) denote the closure of
C∞

0 (E0) in Wm,p(Ẽ) for Ẽ a closed compact C∞-manifold of dimension N that contains
E as a submanifold with boundary.

Moreover, the subspace Hm,γ
p,0 (E) of Hm,γ

p (E) denotes the closure of C∞
0 (E0) in

Hm,γ
p (E), defined as

‖u‖Hm,γ
p,0 (E) =

N∑
j=1

‖χ−1
j ϕjωu‖2

Hm,γ
p,0 (X∧×Rd) + ‖(1 − ω)u‖2

W m,p
0 (E).

We then recall some results on weighted p-Sobolev spaces; for details we refer the
reader to [5].

Proposition 2.4 (edge Sobolev inequality). Assume that 1 � p < N , 1/p∗ =
1/p − 1/N , N = n + 1 + d and γ ∈ R. Let RN

+ := R+ × Rn × Rd, t ∈ R+, and let
x = (x1, . . . , xn) ∈ Rn, y = (y1, . . . , yq) ∈ Rd. The estimate

‖u‖
Lγ∗

p∗ (RN
+ ) � c1‖(t∂t)u‖Lγ

p(RN
+ ) + (c1 + c2)

n∑
i=1

‖∂xiu‖Lγ
p(RN

+ )

+ (c1 + c2)
q∑

j=1

‖(t∂yj
)u‖Lγ

p(Rn
+) + c3‖u‖Lγ

p(RN
+ ) (2.3)

holds for all u(t, x, y) ∈ C∞
0 (RN

+ ), where γ∗ = γ − 1,

c1 =
α

N
, c2 =

α

N

∣∣∣∣ (N − 1)(N − pγ)
N − p

∣∣∣∣
1/N

, c3 =
1
N

∣∣∣∣ (N − 1)(N − pγ)
N − p

∣∣∣∣
1/N

for α = (N − 1)p/(N − p). Moreover, if u(t, x, y) ∈ H1,γ
p,0(RN

+ ), we have that

‖u‖
Lγ∗

p∗ (RN
+ ) � c‖u‖H1,γ

p (RN
+ ), (2.4)

where the constant c = c1 + c2, and c1, α and c2 are given in (2.2).
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Proposition 2.5 (Poincaré inequality). Let E = [0, 1) × X × Ω be a subspace
in RN

+ , with N = n+1+d, where X denotes a set closed in Rn, and Ω is an open domain
in Rq. If u(t, x, y) ∈ H1,γ

p,0(E), for 1 < p < +∞, γ ∈ R, then

‖u(t, x, y)‖Lγ
p(E) � c‖∇Eu(t, x, y)‖Lγ

p(E), (2.5)

where ∇E = (t∂t, ∂x1 , . . . , ∂xn , t∂y1 , . . . , t∂yd
) is the gradient operator in E, and the con-

stant c only depends on E and p.

Proposition 2.6. For p > 1, p + 1 < 2∗ = 2N/(N − 2), the embedding

H1,N/2
2,0 (E) ↪→ H0,N/(p+N)

p+1,0 (E)

is compact.

For the proof of Theorem 1.1, we need the following result; we refer the reader to [7]
for details.

Proposition 2.7 (variational principle for the principal eigenvalue).

(i) We have

λ1(E) = min{(−ΔEu, u)
L

N/2
2 (E) | u ∈ H1,N/2

2,0 (E), ‖u‖
L

N/2
2 (E) = 1}. (2.6)

(ii) Furthermore, the above minimum is attained for a function ω1, positive within E,
that solves

−ΔEω1 = λ1(E)ω1, (t, x, y) ∈ E0,

ω1 = 0, (t, x, y) ∈ ∂E.

(iii) Finally, if u ∈ H1,N/2
2,0 (E) is any weak solution of

−ΔEu = λ1(E)u, (t, x, y) ∈ E0,

u = 0, (t, x, y) ∈ ∂E,

then u is a multiple of ω1.

3. Proof of Theorem 1.1

We first introduce the following energy functional on the Banach space H1,N/2
2,0 (E)

for (P1):

Φ(u) = 1
2

∫
E

|∇Eu|2 dσ +
λ

2

∫
E

u2 dσ − 1
p + 1

∫
E

(u+)p+1 dσ, (3.1)

where u ∈ H1,N/2
2,0 (E) and u+ = max{0, u}. From Proposition 2.6, we have that Φ(u) ∈

C1(H1,N/2
2,0 (E); R). Thus, (P1) is the Euler–Lagrange equation of the variational problem

for the energy functional (3.1). We say that u ∈ H1,N/2
2,0 (E) is a weak solution of (P1) if

〈Φ′(u), v〉 =
∫

E

[∇Eu · ∇Ev + λuv̄ − (u+)pv̄] dσ (3.2)
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for any v ∈ H1,N/2
2,0 (E), where Φ′(u) denotes the Fréchet differentiation. Thus, the critical

point of Φ(u) in H1,N/2
2,0 (E) is the weak solution of (P1).

We now claim that the functional Φ(u) satisfies the so-called PSc condition (Palais–
Smale condition), which is defined in the following way.

Definition 3.1. Let E be a Banach space, let I ∈ C1(E; R) and let c ∈ R; we say that
I satisfies the PSc condition, if, for any sequence {uk} ⊂ E with the properties

I(uk) → c and ‖I ′(uk)‖E′ → 0,

there exists a subsequence that is convergent, where I ′(·) is the Fréchet differentiation
and E′ is the dual space of E. If it holds for any c ∈ R, we say that I satisfies the
PS condition.

To prove that the PS condition is satisfied, we check the following lemma.

Lemma 3.2. If λ > −λ1(E) and any sequence {uk} ⊂ H1,N/2
2,0 (E) such that

Φ(uk) → c, ‖Φ′(uk)‖H−1,−N/2
2,0 (E) → 0, (3.3)

where H−1,−N/2
2,0 (E) is the dual space of H1,N/2

2,0 (E), then {uk} contains a convergent
subsequence.

Proof. Since λ > λ1(E), we can define

c1 := 1 + min
{

0,
λ

λ1(E)

}
> 0.

From Proposition 2.5 and the properties of λ1(E) (see Proposition 2.7), we obtain that

‖∇Eu‖2
L

N/2
2 (E)

+ λ‖u‖2
L

N/2
2 (E)

� c1‖∇Eu‖2
L

N/2
2 (E)

.

Thus, we can choose the norm

‖u‖H1,N/2
2,0 (E) = (‖∇Eu‖2

L
N/2
2 (E)

+ λ‖u‖2
L

N/2
2 (E)

)1/2.

For k large enough, we have that

c + 1 + ‖uk‖H1,N/2
2,0 (E) � Φ(uk) − 1

p + 1
〈Φ′(uk), uk〉

=
(

1
2

− 1
p + 1

)
(‖∇Euk‖2

L
N/2
2 (E)

+ λ‖uk‖2
L

N/2
2 (E)

)

=
(

1
2

− 1
p + 1

)
‖uk‖2

H1,N/2
2,0 (E)

.

Thus, ‖uk‖H1,N/2
2,0 (E) is bounded. There then exist u ∈ H1,N/2

2,0 (E) and a subsequence, still
denoted by {uk}, such that uk ⇀ u weakly in H1,N/2

2,0 (E). Thus, from compact embedding
in Proposition 2.6, we know that uk → u strongly in L

N/(p+1)
p+1 (E), which means that

(u+
k )p → (u+)p in L

Np/(p+1)
(p+1)/p (E).
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Observe that

‖uk − u‖H1,N/2
2,0 (E) = 〈Φ′(uk) − Φ′(u), uk − u〉 +

∫
E

((u+
k )p − (u+)p)(uk − u) dσ

and, by the condition (3.3), we know that 〈Φ′(u), ψ〉 = 0 for any ψ ∈ C∞
0 (E). Since

C∞
0 (E) is dense in H1,N/2

2,0 (E) and Φ′(uk) → 0 in H−1,−N/2
2,0 (E), we can deduce that

〈Φ′(uk) − Φ′(u), uk − u〉 → 0 as k → +∞.

By the Hölder inequality, we have that∣∣∣∣
∫

E

((u+
k )p − (u+)p)(uk − u) dσ

∣∣∣∣ � ‖(u+
k )p − (u+)p‖

L
N/(p+1)
p+1 (E)‖uk − u‖

L
N/(p+1)
p+1 (E).

Thus, ‖uk − u‖H1,N/2
2,0 (E) → 0 as k → +∞, which completes the proof. �

Next, we use the following mountain pass theorem (see [16]) to prove the existence of
a critical point for the functional (3.1).

Lemma 3.3 (mountain pass theorem). Let E be a Banach space and let I ∈
C1(E; R). Suppose that I(0) = 0 and that it satisfies the following.

(i) There exist R > 0, α > 0 such that if ‖u‖E = R, then I(u) � α.

(ii) There exists e ∈ E such that ‖e‖E > R and I(e) < α.

If I satisfies the PSc condition with

c = inf
h∈Γ

max
t∈[0,1]

I(h(t)),

where Γ = {h ∈ C([0, 1]; E); h(0) = 0 and h(1) = e}, then c is a critical value of I and
c � α.

We now give the proof of Theorem 1.1.

Proof of Theorem 1.1. Necessary condition. Suppose that u is a non-trivial weak
solution of (P1) in H1,N/2

2,0 (E). From Proposition 2.7, we can find that ω1 ∈ H1,N/2
2,0 (E) is

an eigenfunction of −ΔE corresponding to λ1(E) with ω1 > 0; we then have

λ

∫
E

uω1 dσ =
∫

E

(up + ΔEu)ω1 dσ

>

∫
E

ΔEuω1 dσ

= −λ1(E)
∫

E

uω1 dσ.

Thus, λ > −λ1(E).
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Sufficient condition. We verify the assumptions of the mountain pass theorem. The
PSc condition follows from Lemma 3.2. By Proposition 2.6, we get that

‖u‖
L

N/(p+1)
p+1 (E) � c‖u‖H1,N/2

2,0 (E).

Hence, we obtain

Φ(u) � 1
2‖u‖2

H1,N/2
2,0 (E)

− 1
p + 1

‖u‖p+1
L

N/(p+1)
p+1 (E)

� 1
2‖u‖2

H1,N/2
2,0 (E)

− cp+1

p + 1
‖u‖p+1

H1,N/2
2,0 (E)

.

Thus, there exists R > 0 such that

α := inf
‖u‖

H1,N/2
2,0 (E)

=R
Φ(u) > 0 = Φ(0).

Let u ∈ H1,N/2
2,0 (E) with u > 0 on E. We have, for s � 0,

Φ(su) =
s2

2
‖u‖2

H1,N/2
2,0 (E)

− sp+1

p + 1
‖u‖p+1

L
N/(p+1)
p+1 (E)

.

Since p > 1, there exists e := su such that

‖e‖H1,N/2
2,0 (E) > R, Φ(e) � 0.

By the mountain pass theorem, Φ has a positive critical value and the problem

−ΔEu + λu = (u+)p, (t, x, y) ∈ E0,

u = 0, (t, x, y) ∈ ∂E,

admits a non-trivial weak solution in H1,N/2
2,0 (E). Multiplying this equation by u− and

integrating over E with dσ, where u− = − max{0,−u}, we find that

0 = ‖∇Eu−‖2
L

N/2
2 (E)

+ λ‖u−‖2
L

N/2
2 (E)

= ‖u−‖2
H1,N/2

2,0 (E)
.

Hence, u− = 0 and u is a non-trivial weak solution of (P1) in H1,N/2
2,0 (E). �

4. Proof of Theorems 1.2 and 1.3

We first establish the so-called Nehari manifold on H1,N/2
2,0 (E). Consider the following

problem:
−ΔEu = h(t, x, y, u(t, x, y)), (t, x, y) ∈ E0,

u � 0,

u = 0, (t, x, y) ∈ ∂E,

⎫⎪⎬
⎪⎭ (P3)
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where h is differentiable on E × R. The weak solutions of (P3) in H1,N/2
2,0 (E) correspond

to critical points of the functional J : H1,N/2
2,0 (E) → R,

J(u) = 1
2

∫
E

|∇Eu|2 dσ −
∫

E

H(t, x, y, u(t, x, y)) dσ,

where H(t, x, y, u) =
∫ u

0 h(t, x, y, s) ds.
When J is bounded below on H1,N/2

2,0 (E), J has a minimizer on H1,N/2
2,0 (E) that is a

critical point of J . In many problems such as (P2), J is not bounded below on H1,N/2
2,0 (E),

but is bounded below on an appropriate subset of H1,N/2
2,0 (E), and a minimizer on this set

(if it exists) may give rise to weak solutions of the corresponding differential equation.
A good candidate for an appropriate subset of H1,N/2

2,0 (E) is the so-called Nehari man-
ifold

N = {u ∈ H1,N/2
2,0 (E); 〈J ′(u), u〉 = 0},

where 〈·, ·〉 denotes the usual duality between H1,N/2
2,0 (E) and H−1,−N/2

2,0 (E). It is clear
that all critical points of J must lie on N and, as we see below, local minimizers on N

are usually critical points of J .
It is easy to see that u ∈ N if and only if∫

E

|∇Eu|2 dσ =
∫

E

h(t, x, y, u)u dσ.

It is useful to understand N in terms of stationary points of mappings of the form
φu(s) = J(su) (s > 0). We refer to such maps as fibrering maps. It is clear that, if u is a
local minimizer of J , φu has a local minimum at s = 1.

Lemma 4.1. Let u ∈ H1,N/2
2,0 (E) \ {0} and let s > 0. Then, su ∈ N if and only if

φ′
u(s) = 0.

Proof. The result is an immediate consequence of the fact that

φ′
u(s) = 〈J ′(su), u〉 =

1
s
〈J ′(su), su〉.

�

Thus, points in N correspond to stationary points of the maps φu, and so it is natural
to divide N into three subsets N+, N− and N0 corresponding to local minima, local
maxima and points of inflexion of fibrering maps, respectively. We have

φ′
u(s) = s

∫
E

|∇Eu|2 dσ −
∫

E

h(t, x, y, su)u dσ

and

φ′′
u(s) =

∫
E

|∇Eu|2 dσ −
∫

E

hu(t, x, y, su)u2 dσ.
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Hence, if we define

N+ =
{

u ∈ N ;
∫

E

(|∇Eu|2 − hu(t, x, y, u)u2) dσ > 0
}

,

N− =
{

u ∈ N ;
∫

E

(|∇Eu|2 − hu(t, x, y, u)u2) dσ < 0
}

,

N0 =
{

u ∈ N ;
∫

E

(|∇Eu|2 − hu(t, x, y, u)u2) dσ = 0
}

,

we have the following.

Lemma 4.2. Let u ∈ N . Then,

(i) φ′
u(1) = 0,

(ii) u ∈ N+, N−, N0 if φ′′
u(1) > 0, φ′′

u(1) < 0, φ′′
u(1) = 0, respectively.

The following lemma shows that minimizers on N are usually critical points for J .

Lemma 4.3. Suppose that u0 is a local minimizer for J on N and that u0 is not
in N0. Then, J ′(u0) = 0.

Proof. If u0 is a local minimizer for J on N , then u0 is a solution of the opti-
mization problem of minimizing J(u) subject to γ(u) = 0, where γ(u) =

∫
E
(|∇Eu|2 −

hu(t, x, y, u)u2) dσ = 0. Hence, by the theory of Lagrange multipliers, there exists θ ∈ R
such that J ′(u0) = θγ′(u0). Thus,

〈J ′(u0), u0〉 = θ〈γ′(u0), u0〉.

Since u0 ∈ N but u0 /∈ N0, we obtain that θ = 0 and the proof is completed. �

We now investigate the Nehari manifold for (P2) and from now on we define

‖u‖2
H1,N/2

2,0 (E)
=

∫
E

|∇Eu|2 dσ,

and Sl is the best Sobolev constant for the compact embedding of H1,N/2
2,0 (E) into L

N/l
l (E)

(see Proposition 2.6). The energy functional is given by

Jλ(u) = 1
2

∫
E

|∇Eu|2 dσ − 1
p + 1

∫
E

g|u|p+1 dσ − 1
q + 1

∫
E

fλ|u|q+1 dσ,

and u ∈ Nλ if and only if

ϕλ(u) := 〈J ′
λ(u), u〉 = ‖u‖2

H1,N/2
2,0 (E)

−
∫

E

g|u|p+1 dσ −
∫

E

fλ|u|q+1 dσ = 0.
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Then, for u ∈ Nλ,

〈ϕ′
λ(u)u〉 = 2‖u‖2

H1,N/2
2,0 (E)

− (p + 1)
∫

E

g|u|p+1 dσ − (q + 1)
∫

E

fλ|u|q+1 dσ

= (1 − p)‖u‖2
H1,N/2

2,0 (E)
− (q − p)

∫
E

fλ|u|q+1 dσ (4.1)

= (1 − q)‖u‖2
H1,N/2

2,0 (E)
− (p − q)

∫
E

g|u|p+1 dσ. (4.2)

Then, similarly, we split Nλ into three parts:

N+
λ = {u ∈ Nλ; 〈ϕ′

λ(u)u〉 > 0},

N−
λ = {u ∈ Nλ; 〈ϕ′

λ(u)u〉 < 0},

N0
λ = {u ∈ Nλ; 〈ϕ′

λ(u)u〉 = 0}.

Then, motivated by Lemma 4.3, we get conditions for N0
λ = φ.

Lemma 4.4. There exists μ1 > 0 such that, for each λ ∈ (0, μ1), we have N0
λ = φ.

Proof. Suppose that N0
λ �= φ for all λ > 0. If u ∈ N0

λ, then we obtain, from (4.1), (4.2)
and Proposition 2.6, that

‖u‖2
H1,N/2

2,0 (E)
� λSq+1

r ‖f+‖
L

N/rq
rq (E)

‖u‖q+1
H1,N/2

2,0 (E)

and

‖u‖2
H1,N/2

2,0 (E)
� Sp+1

p ‖g+‖
L

N/sp
sp (E)

‖u‖p+1
H1,N/2

2,0 (E)
.

Thus, we get
c1 � ‖u‖H1,N/2

2,0 (E) � λ1/(1−q)c2,

where c1, c2 > 0 and are independent of the choice of u and λ. If λ is sufficiently small,
this is a contradiction. Hence, there exists μ1 > 0 such that, for λ ∈ (0, μ1), we have
N0

λ = φ. �

Let Zg = {u ∈ H1,N/2
2,0 (E);

∫
E

g|u|p+1 dσ � 0}; then, for each u ∈ H1,N/2
2,0 (E) \ Zg, we

write

smax =

[ (1 − q)‖u‖2
H1,N/2

2,0 (E)

(p − q)
∫

E
g|u|p+1 dσ

]1/(p−1)

> 0.

We then have the following lemma.

Lemma 4.5. There exists μ2 > 0 such that, for each u ∈ H1,N/2
2,0 (E) \ Zg and λ ∈

(0, μ2), we have the following.

(i) There exists a unique s− = s−(u) > smax > 0 such that s−u ∈ N−
λ and Jλ(s−u) =

maxs�smax Jλ(su).
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(ii) s−(u) is a continuous function for non-zero u.

(iii)

N−
λ =

{
u ∈ H1,N/2

2,0 (E) \ Zg; s−(u) =
1

‖u‖H1,N/2
2,0 (E)

s−
(

u

‖u‖H1,N/2
2,0 (E)

)
= 1

}
.

(iv) If
∫

E
fλ|u|q+1 dσ > 0, then there exists a unique 0 < s+ = s+(u) < smax such that

s+u ∈ N+
λ and Jλ(s+u) = min0�s�s− Jλ(su).

Proof. (i) Let

T (s) = s1−q‖u‖2
H1,N/2

2,0 (E)
− sp−q

∫
E

g|u|p+1 dσ for s � 0.

We have T (0) = 0, T (s) → −∞ as s → +∞, T (s) is concave and achieves its maximum
at smax. Moreover, by Proposition 2.5, we have

T (smax) =
( (1 − q)‖u‖2

H1,N/2
2,0 (E)

(p − q)
∫

E
g|u|p+1 dσ

)(1−q)/(p−1)

‖u‖2
H1,N/2

2,0 (E)

−
( (1 − q)‖u‖2

H1,N/2
2,0 (E)

(p − q)
∫

E
g|u|p+1 dσ

)(p−q)/(p−1) ∫
E

g|u|p+1 dσ

= ‖u‖q+1
H1,N/2

2,0 (E)

[(
1 − q

p − q

)(1−q)/(p−1)

−
(

1 − q

p − q

)(p−q)/(p−1)]

×
( ‖u‖p+1

H1,N/2
2,0 (E)∫

E
g|u|p+1 dσ

)(1−q)/(p−1)

� ‖u‖q+1
H1,N/2

2,0 (E)

(
p − 1
p − q

)(
1 − q

p − q

)(1−q)/(p−1)( 1
Sp+1

s ‖g+‖Lsp
N/sp (E)

)(1−q)/(p−1)

.

(4.3)

Case 1 (
∫

E
fλ|u|q+1 dσ � 0). There exists a unique s− > smax such that

T (s−) =
∫

E

fλ|u|q+1 dσ and T ′(s−) < 0.

Thus, s−u ∈ N−
λ .

Since s > smax, we have

T ′(s) = (1 − q)s−q‖u‖2
H1,N/2

2,0 (E)
− (p − q)sp−q−1

∫
E

g|u|p+1 dσ < 0 (4.4)

and
d
ds

Jλ(su) = s‖u‖2
H1,N/2

2,0 (E)
− sp

∫
E

g|u|p+1 dσ − sq

∫
E

fλ|u|q+1 dσ. (4.5)
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Therefore, by (4.4), (4.5) and T (s−) =
∫

E
fλ|u|q+1 dσ, we obtain that Jλ(s−u) =

maxs�smax Jλ(su).

Case 2 (
∫

E
fλ|u|q+1 dσ > 0). By (4.3) and

T (0) = 0 <

∫
E

fλ|u|q+1 dσ � λ‖f+‖Lrq
N/rq (E)S

q+1
r ‖u‖q+1

H1,N/2
2,0 (E)

� T (smax)

for λ ∈ (0, μ2), it follows that there exist unique numbers s+ and s− such that s+ <

smax < s−,

T (s+) =
∫

E

fλ|u|q+1 dσ = T (s−)

and T ′(s−) < 0 < T ′(s+). Similarly, we have that s+u ∈ N+
λ , s−u ∈ N−

λ , Jλ(s+u) �
Jλ(su) � Jλ(s−u) for each s ∈ [s+, s−] and Jλ(s+u) � Jλ(su) for each s ∈ [0, smax].
Hence,

Jλ(s+u) = min
0�s�smax

Jλ(su), Jλ(s−u) = max
s�smax

Jλ(su).

(ii) By the uniqueness of s−(u) and the external property of s−(u), we have that s−(u)
is a continuous function of u �= 0.

(iii) For u ∈ N−
λ , by (4.2) we have u ∈ H1,N/2

2,0 (E) \ Zg. Let

v =
u

‖u‖H1,N/2
2,0 (E)

;

by (i), there exists a unique s−(v) > 0 such that s−(v)v ∈ N−
λ . Thus,

s−
(

u

‖u‖H1,N/2
2,0 (E)

)
1

‖u‖H1,N/2
2,0 (E)

= 1,

because u ∈ N−
λ . Therefore,

N−
λ ⊂

{
u ∈ H1,N/2

2,0 (E) \ Zg; s−(u) =
1

‖u‖H1,N/2
2,0 (E)

s−
(

u

‖u‖H1,N/2
2,0 (E)

)
= 1

}
.

Conversely, if u ∈ H1,N/2
2,0 (E) \ Zg is such that

s−
(

u

‖u‖H1,N/2
2,0 (E)

)
1

‖u‖H1,N/2
2,0 (E)

= 1.

Then,

s−
(

u

‖u‖H1,N/2
2,0 (E)

)
u

‖u‖H1,N/2
2,0 (E)

∈ N−
λ .

(iv) By Case 2 of (i). �
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Applying Lemma 4.4, for 0 < λ < μ1, we write Nλ = N+
λ ∪ N−

λ and define

αλ = inf
u∈Nλ

Jλ(u), α+
λ = inf

u∈N+
λ

Jλ(u), α−
λ = inf

u∈N−
λ

Jλ(u).

We then have the following results.

Lemma 4.6.

(i) Jλ is coercive and bounded below on Nλ.

(ii) If λ ∈ (0, μ1), then αλ � α+
λ < 0.

(iii) There exists 0 < μ0 � min{μ1, μ2} such that, for λ ∈ (0, μ0), α−
λ � d0 > 0, where

d0 is independent of the choice of u.

Proof. (i) For u ∈ Nλ, by Proposition 2.6 and the Hölder inequality, we get

Jλ(u) =
(

1
2

− 1
p + 1

)
‖u‖2

H1,N/2
2,0 (E)

−
(

1
q + 1

− 1
p + 1

) ∫
E

fλ|u|q+1 dσ

� p − 1
2(p + 1)

‖u‖2
H1,N/2

2,0 (E)
− λ

p − q

(q + 1)(p + 1)
‖f+‖Lrq

N/rq (E)S
q+1
r ‖u‖q+1

H1,N/2
2,0 (E)

� p − 1
2(p + 1)

‖u‖2
H1,N/2

2,0 (E)
− p − 1

2(p + 1)
‖u‖2

H1,N/2
2,0 (E)

− D0λ
2/(1−q)

= −D0λ
2/(1−q), (4.6)

where D0 is a positive constant depending on p, q and ‖f+‖Lrq
N/rq (E). Thus, Jλ is coercive

and bounded below on Nλ.

(ii) Let u ∈ N+
λ ; then

1 − q

p − q
‖u‖2

H1,N/2
2,0 (E)

>

∫
E

g|u|p+1 dσ

and

Jλ(u) =
(

1
2

− 1
q + 1

)
‖u‖2

H1,N/2
2,0 (E)

+
(

1
q + 1

− 1
p + 1

) ∫
E

g|u|p+1 dσ

<

(
1
2

− 1
q + 1

)
‖u‖2

H1,N/2
2,0 (E)

+
1 − q

(p + 1)(q + 1)
‖u‖2

H1,N/2
2,0 (E)

=
1 − q

q + 1

(
1

p + 1
− 1

2

)
‖u‖2

H1,N/2
2,0 (E)

< 0.

Thus, αλ � α+
λ < 0.
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(iii) Let u ∈ N−
λ ; then

1 − q

p − q
‖u‖2

H1,N/2
2,0 (E)

�
∫

E

g|u|p+1 dσ � ‖g+‖Lsp
N/sp (E)S

p+1
s ‖u‖p+1

H1,N/2
2,0 (E)

.

This implies that

‖u‖H1,N/2
2,0 (E) >

(
1 − q

p − q

1
‖g+‖Lsp

N/sp (E)S
p+1
s

)1/(p−1)

(4.7)

for any u ∈ N−
λ . From (4.6), we obtain that

Jλ(u) � ‖u‖q+1
H1,N/2

2,0 (E)

[
p − 1

2(p + 1)
‖u‖1−q

H1,N/2
2,0 (E)

− λ
p − q

(q + 1)(p + 1)
‖f+‖Lrq

N/rq (E)S
q+1
r

]
.

(4.8)
Hence, by (4.7) and (4.8), we get the assertion of (iii). �

Lemma 4.7. If λ ∈ (0, μ0), then the following hold.

(i) There exists a sequence {uk} ⊂ Nλ such that

Jλ(uk) = αλ + o(1) = α+
λ + o(1), J ′

λ(uk) = o(1) in H−1,−N/2
2,0 (E).

(ii) There exists a sequence {uk} ⊂ N−
λ such that

Jλ(uk) = α−
λ + o(1), J ′

λ(uk) = o(1) in H−1,−N/2
2,0 (E).

Proof. First we prove (i). By Lemma 4.6 and the Ekeland variational principle
(see [15]) we get a sequence {uk} ⊂ Nλ such that

Jλ(uk) = αλ +
1
k

, (4.9)

Jλ(uk) = Jλ(ω) +
1
k

‖uk − ω‖H1,N/2
2,0 (E) (4.10)

for all k ∈ N, ω ∈ Nλ. By Lemma 4.6 (i), we have that {‖uk‖H1,N/2
2,0 (E)} is bounded. Now,

since αλ < 0, there exists k0, where 2 � −k0αλ such that

αλ � Jλ(uk) =
(

1
2

− 1
p + 1

)
‖u‖2

H1,N/2
2,0 (E)

−
(

1
q + 1

− 1
p + 1

) ∫
E

fλ|u|q+1 dσ <
αλ

2

for k � k0. We then obtain that(
1
2

− 1
p + 1

)
‖uk‖2

H1,N/2
2,0 (E)

� p − q

(p + 1)(q + 1)

∫
E

fλ|u|q+1 dσ

� λ
p − q

(p + 1)(q + 1)
‖f+‖Lrq

N/rq (E)S
q+1
r ‖uk‖q+1

H1,N/2
2,0 (E)
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and

−αλ

2
(p + 1)(q + 1)

p − q
� λ‖f+‖Lrq

N/rq (E)S
q+1
r ‖uk‖q+1

H1,N/2
2,0 (E)

.

This implies that

Sr

(
−αλ

2λ

(p + 1)(q + 1)
p − q

1
‖f+‖Lrq

N/rq (E)

)1/(q+1)

� ‖uk‖H1,N/2
2,0 (E)

�
(

2(p − q)
(p − 1)(q + 1)

‖f+‖Lrq
N/rq (E)S

q+1
r

)1/(1−q)

. (4.11)

We now show that ‖J ′
λ(uk)‖H−1,−N/2

2,0 (E) → 0 as k → ∞. For this, we need the following
result.

Claim 4.8. Let λ ∈ (0, μ0) be arbitrary. For any u ∈ Nλ(N−
λ ), there exist ε(u) > 0 and

η : B(0, ε(u)) ⊂ H1,N/2
2,0 (E) → R differentiable such that η(0) = 1, η(ω)(u−ω) ∈ Nλ(N−

λ )
for all ω ∈ B(0, ε(u)) and, for all z ∈ H1,N/2

2,0 (E), it holds that

η′(0) · z =
2

∫
E

∇Eu∇Ev dσ − (p + 1)
∫

E
g|u|p−1uz̄ dσ − (q + 1)λ

∫
E

fλ|u|q−1uz̄ dσ

(1 − q)‖u‖2
H1,N/2

2,0 (E)
− (p − q)

∫
E

g|u|p+1 dσ
.

(4.12)

Assume for a while that the claim holds. Apply Claim 4.8 for uk ∈ Nλ; we obtain a
function ηk : B(0, εk) ⊂ H1,N/2

2,0 (E) → R differentiable with ηk(0) = 1 and ηk(ω)(uk−ω) ∈
Nλ for all ω ∈ B(0, εk). Fix any 0 < ρ < εk, and let vρ = ηk(ωρ)(uk − ωρ), where

ωρ =
ρu

‖u‖H1,N/2
2,0 (E)

and u ∈ H1,N/2
2,0 (E).

Since vρ ∈ Nλ, by (4.10) it follows that

Jλ(vρ) − Jλ(uk) > −1
k

‖vρ − uk‖H1,N/2
2,0 (E),

and thus, by the mean-value theorem, we get that

〈J ′
λ(uk), vρ − uk〉 + o(‖vρ − uk‖H1,N/2

2,0 (E)) � −1
k

‖vρ − uk‖H1,N/2
2,0 (E).

By the definition of vρ we obtain that

−1
k

‖vρ − uk‖H1,N/2
2,0 (E) � o(‖vρ − uk‖H1,N/2

2,0 (E)) − ρ

〈
J ′

λ(uk),
u

‖u‖H1,N/2
2,0 (E)

〉

+ (ηk(ωρ) − 1)〈J ′
λ(uk), uk − ωρ〉

= o(‖vρ − uk‖H1,N/2
2,0 (E)) − ρ

〈
J ′

λ(uk),
u

‖u‖H1,N/2
2,0 (E)

〉

+ (ηk(ωρ) − 1)〈J ′
λ(uk) − J ′

λ(vρ), uk − ωρ〉.
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Hence, for all 0 < ρ < εk, we have that〈
J ′

λ(uk),
u

‖u‖H1,N/2
2,0 (E)

〉
� (ηk(ωρ) − 1)

ρ
〈J ′

λ(uk) − J ′
λ(vρ), uk − ωρ〉

+
‖vρ − uk‖H1,N/2

2,0 (E)

kρ
+ o(‖vρ − uk‖H1,N/2

2,0 (E)).

Since limρ→0+ � ‖η′
k(0)‖H−1,−N/2

2,0 (E), and noting that the sequence {uk} is bounded, and
also that J ′

λ is continuous and limρ→0+ vρ = uk, we infer that there exists c > 0, inde-
pendent of ρ and k, satisfying〈

J ′
λ(uk),

u

‖u‖H1,N/2
2,0 (E)

〉
� c

k
‖η′

k(0)‖H−1,−N/2
2,0 (E). (4.13)

We now demonstrate that ‖η′
k(0)‖H−1,−N/2

2,0 (E) is bounded for all k ∈ N. By (4.11)
and (4.12) we have that there exists c > 0 independent of k ∈ N such that

|η′
k(0) · ω| �

c‖ω‖H1,N/2
2,0 (E)

|(1 − q)‖uk‖2
H1,N/2

2,0 (E)
− (p − q)

∫
E

g|uk|p+1 dσ| .

Hence, it is enough to prove that there exists c > 0 such that∣∣∣∣(1 − q)‖uk‖2
H1,N/2

2,0 (E)
− (p − q)

∫
E

g|uk|p+1 dσ

∣∣∣∣ > c (4.14)

for k large. Suppose that there exists a subsequence, still denoted by {uk}, such that

(1 − q)‖uk‖2
H1,N/2

2,0 (E)
− (p − q)

∫
E

g|uk|p+1 dσ = o(1). (4.15)

Since {uk} ⊂ Nλ, by (4.11), (4.15) and arguing as in the proof of Lemma 4.4, we can
obtain a contradiction. Thus, there exists c > 0 such that (4.14) is satisfied and we obtain
the assertion of Lemma 4.7.

Proof of Claim 4.8

Consider u ∈ Nλ. Define F : R × H−1,−N/2
2,0 (E) → R by

F (η, ω) = 〈J ′
λ(η(u − ω)), η(u − ω)〉

= η2‖u − ω‖2
H1,N/2

2,0 (E)
− ηq+1

∫
E

fλ|u − ω|p+1 dσ − ηp+1
∫

E

g|u − ω|p+1 dσ.

Now, since

F (1, 0) = 0 and
∂

∂x1
F (1, 0) = 〈ϕ′

λ(u), u〉 �= 0
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because N0
λ = φ, it follows by the implicit function theorem that there exists ε(u) > 0

and η : B(0, ε(u)) ⊂ H1,N/2
2,0 (E) → R is differentiable such that η(0) = 1, F (η(ω), ω) = 0

for all ω ∈ B(0, ε(u)), i.e. η(ω)(u − ω) ∈ Nλ for all ω ∈ B(0, ε(u)). We also get that

η′(0) · ω = − (∂F (1, 0)/∂x2) · ω

∂F (1, 0)/∂x1

for all ω ∈ H1,N/2
2,0 (E). Hence, (4.12) holds.

Now consider the case u ∈ N−
λ . In a similar way, we get ε(u) > 0 and η : B(0, ε(u)) ⊂

H1,N/2
2,0 (E) → R is differentiable such that η(0) = 1, η(ω)(u − ω) ∈ Nλ for all ω ∈

B(0, ε(u)), verifying (4.12). Since 〈ϕ′
λ(u), u〉 < 0 and due to the continuity of the functions

ϕ′
λ(u) and η, we have, if ε(u) is sufficiently small, that η(ω)(u−ω) ∈ N−

λ . This concludes
the proof of Claim 4.8. The proof of (ii) is similar to that of (i). �

Lemma 4.9. Let λ ∈ (0, μ0); then,

(i) Jλ has a minimizer u1 in N+
λ and it satisfies

Jλ(u1) = αλ = α+
λ ,

(ii) Jλ has a minimizer u2 in N−
λ and it satisfies

Jλ(u2) = α−
λ .

Proof. (i) By Lemma 4.7 (i), it follows that there exists a sequence {uk} ⊂ Nλ such
that

Jλ(uk) = αλ + o(1) = α+
λ + o(1), J ′

λ(uk) = o(1) in H−1,−N/2
2,0 (E).

By Lemma 4.6 (i) we infer that {uk} is bounded on H1,N/2
2,0 (E). Thus, passing to a subse-

quence if necessary, there exists u1 ∈ H1,N/2
2,0 (E) such that uk ⇀ u1 weakly in H1,N/2

2,0 (E).
First, we claim that

∫
E

fλ|u1|q+1 dσ �= 0. If not, by Proposition 2.6 we can conclude that
∫

E

fλ|uk|q+1 dσ → 0 as k → ∞.

Thus,

‖uk‖2
H1,N/2

2,0 (E)
=

∫
E

g|uk|p+1 dσ + o(1)

and

Jλ(uk) =
(

1
2

− 1
p + 1

)
‖uk‖2

H1,N/2
2,0 (E)

+ o(1) � 0 as k → ∞.

This contradicts Jλ(uk) → αλ < 0 as k → ∞. In particular, u1 ∈ N+
λ is non-trivial. We

now prove that uk → u1 strongly in H1,N/2
2,0 (E). Supposing the contrary,

‖u1‖H1,N/2
2,0 (E) < lim

k→∞
inf ‖uk‖H1,N/2

2,0 (E).
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Thus,

‖u1‖2
H1,N/2

2,0 (E)
−

∫
E

g|u1|p+1 dσ −
∫

E

fλ|u1|q+1 dσ

< lim
k→∞

inf
(

‖uk‖2
H1,N/2

2,0 (E)
−

∫
E

g|uk|p+1 dσ −
∫

E

fλ|uk|q+1 dσ

)
= 0.

This contradicts u1 ∈ Nλ. Hence, uk → u1 strongly in H1,N/2
2,0 (E). This implies that

Jλ(uk) → Jλ(u2) = αλ as k → ∞.

(ii) By Lemma 4.7 (ii), it follows that there exists a sequence {uk} ⊂ N−
λ such that

Jλ(uk) = αλ + o(1) = α−
λ + o(1), J ′

λ(uk) = o(1) in H−1,−N/2
2,0 (E).

By Lemma 4.6 (i) we infer that {uk} is bounded on H1,N/2
2,0 (E). Thus, passing to a subse-

quence if necessary, there exists u2 ∈ H1,N/2
2,0 (E) such that uk ⇀ u2 weakly in H1,N/2

2,0 (E).
First, we claim that

∫
E

g|u2|p+1 dσ �= 0. If not, by Proposition 2.6 we can conclude that∫
E

g|uk|p+1 dσ → 0 as k → ∞.

Thus,

‖uk‖2
H1,N/2

2,0 (E)
=

∫
E

fλ|uk|p+1 dσ + o(1)

and

Jλ(uk) =
(

1
2

− 1
q + 1

)
‖uk‖2

H1,N/2
2,0 (E)

+ o(1) � 0 as k → ∞.

This contradicts Jλ(uk) → α−
λ > 0 as k → ∞. In particular, u2 ∈ N−

λ is non-trivial. We
now prove that uk → u2 strongly in H1,N/2

2,0 (E). Supposing the contrary,

‖u2‖H1,N/2
2,0 (E) < lim

k→∞
inf ‖uk‖H1,N/2

2,0 (E).

Thus,

‖u2‖2
H1,N/2

2,0 (E)
−

∫
E

g|u2|p+1 dσ −
∫

E

fλ|u2|q+1 dσ

< lim
k→∞

inf
(

‖uk‖2
H1,N/2

2,0 (E)
−

∫
E

g|uk|p+1 dσ −
∫

E

fλ|uk|q+1 dσ

)
= 0.

This contradicts u2 ∈ Nλ. Hence, uk → u2 strongly in H1,N/2
2,0 (E). This implies that

Jλ(uk) → Jλ(u2) = α−
λ as k → ∞.

�
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We now give the proofs of Theorems 1.2 and 1.3.

Proof of Theorem 1.2. Since N+
λ ∩N−

λ = φ, by Lemmas 4.3 and 4.9, we can obtain
that there exist two different non-trivial weak solutions for

−ΔEu = g(t, x, y)up + fλ(t, x, y)uq, (t, x, y) ∈ E0,

u = 0, (t, x, y) ∈ ∂E.

If we change the definition of the functional Jλ(u) to

Jλ(u) = 1
2

∫
E

|∇Eu|2 dσ − 1
p + 1

∫
E

g|u+|p+1 dσ − 1
q + 1

∫
E

fλ|u+|q+1 dσ,

where u+ = max{u, 0}, then all steps in the above proof hold and we can obtain two
different non-trivial weak solutions for

−ΔEu = g(t, x, y)(u+)p + fλ(t, x, y)(u+)q, (t, x, y) ∈ E0,

u = 0, (t, x, y) ∈ ∂E.

Multiplying this by u− and integrating over E with dσ, where u− = − max{−u, 0}, we
find

‖u−‖2
H1,N/2

2,0 (E)
= 0.

Hence, u− = 0 and we complete the proof of Theorem 1.2. �

Proof of Theorem 1.3. By conditions (H′
1), (H′

2) and Proposition 2.6, we obtain
that ∫

E

fλ|u1|q+1 dσ � λ‖f+‖L∞Sq+1
q+1‖u‖q+1

H1,N/2
2,0 (E)

and ∫
E

g|u2|p+1 dσ � λ‖g+‖L∞Sp+1
p+1‖u‖p+1

H1,N/2
2,0 (E)

.

Thus, we complete the proof of Theorem 1.3 if we change

‖f+‖
L

N/rq
rq (E)

Sq+1
r into ‖f+‖L∞Sq+1

q+1

and change

‖g+‖
L

N/sp
sp (E)

Sp+1
s into ‖f+‖L∞Sp+1

p+1

in the proof of Theorem 1.2. �
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