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Abstract

This is an expository paper in which we present an introduction to a variational approach
to spline interpolation. We present a sequence of theorems which starts with Holladay's
classical result concerning natural cubic splines and culminates in some general abstract
results.

1. Introduction

It is just over fifty years since Schoenberg [45] introduced "spline functions" or
"splines" to the mathematical literature. Since then, splines have proved to be enor-
mously popular in branches of mathematics such as approximation theory, numerical
analysis and statistics. Also, they have become useful tools in fields of applications,
especially computer-aided methods in manufacturing, in animation, in tomography—
even in surgery! We have now reached a point at which we can look back and trace
the development of various trains of thought in the subject.

The aim of this expository paper is to draw attention to a variational approach
to spline functions. We will see how a beautiful theory has evolved from a simple
beginning. Also, we will observe that this theory exploits the power of functional
analysis to give a clearer understanding of the essential features of a computational
problem, namely, the problem of interpolation.

We wish to draw attention to this approach because, although the ideas are well
known by experts in the field, we believe that the topic ought to be appreciated
by a much wider audience of applied mathematicians, engineers and scientists who
encounter splines in their work. As we will show, the variational approach gives a new
way of thinking about splines and opens up avenues for theoretical developments and
new applications. Despite this, the topic is not mentioned in many relevant texts on

•Division of Mathematics, La Trobe University, PO Box 199, Bendigo 3552, Australia.
© Australian Mathematical Society 2000, Serial-fee code 0334-2700/00

119

https://doi.org/10.1017/S1446181100011652 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011652


120 R. Champion, C. T. Lenard and T. M. Mills [2]

numerical analysis or approximation theory: even books on splines tend to mention
the variational approach only in passing or not at all. We hope that, in a small way,
this paper addresses the lack of exposition of this important topic.

In Section 2, we introduce some notation and the usual definition of a spline.
Then in Sections 3, 4 and 5 we sketch the development of a variational approach to
splines. We do this (as one may do in a lecture) by means of a sequence of theorems of
increasing generality or complexity which culminates in some very general but elegant
theorems. The ideas are presented in an order which is not necessarily chronological:
indeed, some of the very general ideas were known quite early in the piece. Rather,
the order of presentation is designed to illuminate the most general ideas. A feature
of our presentation is that we have tried to state theorems in a certain standard format
in order to facilitate comparisons. In Section 6, we draw some conclusions from our
considerations and make some comments on the literature.

2. Preliminaries

We will need some notation. In this paper, we let R denote the set of real numbers
and / denote the compact interval [a, b] C R. The set of real polynomials of degree
m or less will be denoted by nm. A polynomial spline is usually defined as follows.

DEFINITION 1. Let a = t0 < t\ < • • • < tn < tn+i = b be a partition of / . Then
s : I -> R is a polynomial spline of degree m or less with respect to this partition
if

• s e C""-'(/)and
• for each / 6 {0, 1 , . . . , n], s\Ui,ti+l] e nm.

The interior points [t\, t2,.. • , tn] are known as "knots".

For any natural number m, Hm(I) will denote the set of functions x : I —> R such
that x(m~l) is absolutely continuous on / and x(m) € L2(I). If we define an inner
product on Hm(I) by

(.Xi,X2)

then Hm(I) becomes a Hilbert space.
If X is a vector space, then 0x will denote the zero element of X.

3. Natural cubic splines

We will be concerned with the problem of interpolation which can be stated as
follows. Suppose that tt < t2 < • • • < tn and [zi, z2,... ,zn) C R. The problem
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of interpolation is to find a "nice" function cf> which interpolates the data points
(fi.Zi)O < i <n): that is,

<Kh) = Zi (1 < i < n).

Classical approaches developed by Lagrange, Hermite, Cauchy and others rely on
choosing cf> to be some suitable polynomial. To be sure, polynomials are nice functions
from almost any point of view and they are often used effectively for interpolation.
But are there better functions for solving this interpolation problem? One approach
to this question can be found in a result which was proved by Holladay [29] in 1957.

THEOREM 1 (Holladay). / /

• X = H2(I)
• a < U < h < • • • < tn < b; n > 2,
• {z i ,z 2 , . . . ,zn] C Rand
• /„ = {x € X : x(t,) = Zi (l<i<n)},

then 3! a e /„ :

[a{2)(t)2dt = min\ Ixm(t)2 dt: x e / „ [ . (1)

Furthermore,
• a e C2(I),
• 1 < i < n — 1 =>• f|[»i,i(+,] ^ n 3 anJ
• CT|[o,ri] € FIj anda\[lnM € r^ .

From (1), we see that a is an optimal interpolating function—"optimal" in the sense
that it minimizes / , xi2)(t)2 dt over all functions in /„. The theorem goes on to state
that a is a cubic spline. As a is linear outside [tu tn], it is called a "natural" cubic
spline.

Since a is an optimal interpolating function, we can say that the natural cubic
interpolating spline is better than any interpolating polynomial (which would certainly
be a member of /„). So, in a technical sense, we have found functions which are better
than polynomials for solving the interpolation problem.

Holladay's theorem is most surprising. As the set /„ contains a vast array of
functions, the fact that the form of the optimal function is so simple is amazing. Still
more pleasing is the fact that the proof is quite elementary, relying on nothing more
complicated than integration by parts. (See for example, Ahlberg, Nilson and Walsh
[3, p. 76].)

So, cubic splines provide us with optimal interpolating functions. It is this intrinsic
aspect of splines as solutions to variational problems like (1) that mathematicians have
exploited to develop a variational approach to splines.
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It is natural to ask "Why would one choose to minimize ft x(2)(t)2 dt"l Holladay
gives us a physical interpretation of the significance of this objective function, but
here is another (which was suggested by Schoenberg [46]).

When presented with a set of data points (*,-, z,) (1 < i < ri), a statistician can find
a regression line which is the line of best fit in the least squares sense. This line is
close to the data points.

Now if x were a linear function, then we would have / , x(2) (t)2 dt = 0; but generally
speaking, we cannot find a linear function which interpolates the data. HoUaday's
theorem shows that a minimizes jtx

(2){t)2 dt while still interpolating the data. We
could say that o is an interpolating function which is "close to a straight line" in that
it minimizes this integral.

Thus, linear regression gives us

a straight line passing close to the points

whereas HoUaday's result gives a curve which is

close to a straight line but passing through the points.

As we will see in the next section, HoUaday's simple result has become the starting
point for the development of a beautiful theory.

4. More splines

In this section, we describe a few of the many generalisations and extensions of
HoUaday's theorem.

Dm -splines

The next step was taken in 1963 by Carl de Boor [13] with the following result.

THEOREM 2 (de Boor). / /

• X = Hm(I),
• a < t\ < t2 < • • • < tn < b; n > m,

• {ZuZ2,--- ,zn) C Rand
• In = {x € X : x(tt) = n (1 < i < n)},

then 3! a e /„ :

j o{m\t)2dt = min I Ix(m\t)2dt :.xeln\.
Ji [Ji

Furthermore,
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• a G ^ )

• 1 < i < H - 1 =* a|[fl.,«,.+1] € n 2 m _ i and

• a|[Oi(|] e nm_, anda\{liiM e nm_,.

Today, some would describe a as a Dm-spline because it minimizes fI(D
mx)2 as

x varies over /„. (Here, as elsewhere, Dmx denotes the m-th derivative of x with
respect to its argument.) Clearly, if we let m = 2 in de Boor's result, then we obtain
Holladay's result.

Trigonometric splines

In 1964, Schoenberg [46] changed the setting of the interpolation problem from
the interval [a, b] to the unit circle: that is, from a non-periodic setting to a periodic
setting. Accordingly, we let H%n([0, 2n)) denote the space of 2n-periodic functions
x : [0, 2n) ->• R such that x(k~}) is absolutely continuous on [0, 2n) and x(k) e
L\n([0, 2n)). Schoenberg's result can be stated as follows.

THEOREM 3 (Schoenberg). If

• X = H%+\[0,2n)),
• 0 < ti < h < • • • < tn < 2n;n > 2m + 1,

• {ZuZl,... ,Zn) C R,

• In = {x eX : x(ti) = n (1 < i < n)} and

• T : X -> Z4([0, 2TT)), where T = D(D2 + I2) • • • (D2 + m2),

then 3! a € /„ :

J T[a](t)2 dt = mini j T[x](t)2dt : x 6 /„ j .

The optimal interpolating function a is a trigonometric spline. Schoenberg defines a
trigonometric spline as a smooth function which is constructed in a particular piecewise
manner. He shows that trigonometric splines, so defined, provide the solution of this
problem.

Note that the differential operator T will annihilate x if x is a trigonometric poly-
nomial of order m, that is, of the form

x(t) = ao + ^ ( o , cosj t + bj sinj t).

g-Splines

Just over 200 years ago, Lagrange [35] showed us how to construct a polynomial
of minimal degree whose graph passed through prescribed data points: that is, the
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polynomial assumed prescribed values at given points. (For interesting historical
remarks on Lagrange interpolation, see Elliott [19].) In 1878, Hermite [28] made
an important contribution to the development of interpolation methods. He showed
us how to construct a polynomial of minimal degree such that (i) the polynomial
assumed prescribed values at given nodes, and (ii) the derivatives of certain orders of
the polynomial also assumed prescribed values at the nodes.

In our discussion of splines, we have, up to this point, considered only splines
whose values are prescribed at given points: that is, we have a Lagrange type of
problem. Could we extend these results using Hermite's idea? In 1968, Schoenberg
[47] showed us how to effect such an extension.

To state Schoenberg's result we need a little machinery. As usual we will have
n nodes tt < t2 < • • • < tn in / = [a, b], but we will want to specify the value
of the spline and some of its derivatives at the nodes. Now the actual orders of the
derivatives specified may vary from node to node. To help indicate this, we introduce
an incidence matrix E.

Suppose that, as usual, a < /; < t2 < • • • tn < b. Let I be the maximum of the
orders of the derivatives to be specified at the nodes. We will assume that

where each e(i,j) is 0 or 1. Assume also that each row of E and the last column of
E contain a 1.

DEFINITION 2. If m > 1 is an integer, we will say that the incidence matrix E —
(£('. j)) is /"-poised with respect to t\ < t2 < • • • < tn if

• P e nm_i and

together imply that P = 0.

Now we can state Schoenberg's result.

THEOREM 4 (Schoenberg). If

• X = Hm(I),
• a < ti < t2 < • • • < tn < b,

• E is an m-poised incidence matrix of dimensions n x {I + 1),
• i<m<J2ij:je(i,j),
• {zij : e(ij) = 1) CR and

• /„ = [x e X : x<"«i) = Zn ife(ij) = I),

then 3! a e /„ :

/ a(m\t)2dt = min f Ixim)(t)2 dt: X € In\.
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The optimal function o is known as a "g-spline". It seems that Schoenberg would
have liked to use the term "generalized spline" for a, but this had been coined by
Ahlberg and Nilson for another purpose. So he settled for g-spline (see [47, p. 208]).
In retrospect, naming them H-splines after Hermite or HB-splines after Hermite and
Birkhoff may have been appropriate.

Again, Schoenberg defines g-splines as smooth, piecewise polynomials where the
smoothness is governed by E and then he proves that g-splines solve the above
variational problem.

L -Splines

In an important paper published in 1967, Schultz and Varga [48] discuss a major
extension of the Dm -spline. To give the flavour of this extension we state only one,
simple consequence of the many results in this paper.

THEOREM 5. / /

• X = Hm(I),
• a < t\ < t2 < • • • < tn < b; n > m,

• {ZuZ2, ••• ,Zn} C R ,

• /„ = [x e X : x(ti) = Zi (1 < i < n)},
• L : X -+ L2(I) so that L[x](t) = £JL0a; (t)Dix(t) where a, e O (7)(0 <

j < m) and 3 w > 0 such that am(t) > w > 0 on I and
• L has Polya 's property W on I,

then 3! a e /„ :

IL[o](t)2 dt = min I / L[x](t)2 dt : x € /„

Clearly complexity is increasing with generality! For completeness, we note that
L has P61ya's property Won / if L[x] = 0 has m solutions xx,x2,... ,xm such that,
for all t € / and for all k € {1, 2 , . . . , m),

det

x2(t)
Dx2(t)

xk(t)
Dxk(t)

Dk~lxk(t)__Dk~1Xi(t) Dk~lx2(t) •

The relevance of Polya's property W is contained in the following sentence. To say
that L has Polya's property W on / implies that, if (i) L[x] = 0 and (ii) x has m or
more zeros on / , then x = 0 (see [27]).
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The optimal function a is known as an L-spline. If L = Dm then we obtain the
Dm -spline; so this is a major extension of previously stated results.

Schultz and Varga define an L-spline to be a smooth function constructed in a
piecewise manner, where each piece is a solution of the differential equation L*Lx = 0
where L* is the formal adjoint of the operator L. A consequence of their paper is that
L-splines provide the solution of the above variational problem.

As said earlier, the above result is only one consequence of the paper of Schultz
and Varga. In fact this result was proved in 1964 by Ahlberg, Nilson and Walsh [2]:
they call o a "generalized spline". (Schultz and Varga chose the better name.) The
work of Schultz and Varga allows more complex interpolation conditions. The above
result also follows from the paper by de Boor and Lynch [15]. Perhaps the first paper
along these lines of replacing the operator Dm by a more general differential operator
was by Greville [25] also in 1964. Unfortunately this often cited technical report was
never published.

Greville illustrates his methods with an application to the classical numerical prob-
lem of interpolating mortality tables. Schultz and Varga apply their ideas to the
numerical analysis of nonlinear two-point boundary value problems. Prenter [42] is
one of the few text books which touches this topic.

Lg -Splines

Schoenberg extended the concept of Dm -splines to allow interpolation conditions
of the Hermite type: this led to ̂ -splines. Schultz and Varga (and others) extended the
concept of a Dm -spline in a different direction by replacing the differential operator
Dm by a more general operator: this led to L-splines. Now Schultz and Varga ([48,
Section 5]) noticed that one could combine both these extensions. But it was a paper
by Jerome and Schumaker [33] in 1969 which moulded these two extensions together
in a very effective manner. We now state one of their results.

THEOREM 6 (Jerome and Schumaker). //

• X = Hm(I),
• {A.1, A.2 i . . . , A.n} is a set of linearly independent, continuous linearfunctionals

on X,
• {Z\,Z2, ... ,Zn) C R,
• /„ = {x € X : Xi(x) = Zi (1 < i < n)}.
• L : X - • L2(/) so that L[x](t) = £*= 0a, (?)£>'x(0, where aj € O (I)

(0 < j < m) and 3 w > 0 such that am(t) > w > 0 on I and
• kerL D [x € X : A,(x) = 0 (1 < i < «)} = {9X},
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then 3! a e /„ :

[ L[a](t)2 dt = min I I L[x](t)2 dt : x € /„

The optimal function o is called an Lg-spline. Jerome and Schumaker define an
Lg -spline to be the solution of the variational interpolation problem. As we have seen,
previous writers had defined various types of generalised splines as smooth functions
constructed in some piecewise manner and then proved that these generalised splines
provided the solution of some variational problem. Note also that the hypothesis about
Polya's property W in Theorem 5 has been replaced by an hypothesis with a more
functional-analytic flavour.

In addition to combining the notion of an L-spline and the notion of a g-spline,
Jerome and Schumaker have also extended the notion of a g-spline. Schoenberg's
interpolating g-spline was a function with prescribed values at the nodes and with
prescribed derivatives of certain orders at the nodes. However, Jerome and Schumaker
allow interpolation conditions of the more general form kt(x) = z, (1 < i < n) where
the A, (/ = 1, 2 , . . . , n) are continuous linear functionals on X. This idea could
cover not only Schoenberg's type of interpolation conditions but also others {e.g.

We note also that in Section 7 of their paper, Jerome and Schumaker extend the
interpolation conditions in the variational problem even further. They replace the
conditions A.,(;c) = z,? (1 < i < n) by z, < A,(x) < z,- (1 < i < n), where
{z,. : i = 1,2,... , n} c R, {z,. : i = 1,2,... , n] c R and z,. < z,. (i = 1, 2 , . . . ,«).

Discussion of L-splines and Lg-splines can be found in [30, 34] and [53].

p Lg-Splines

If 1 < p < oo then we define Hm'p (/) to be the space of functions x : I -»• R such
that x(m~u is absolutely continuous on / and x(m) e LP(I). We can define a norm on
Hm-P (I) by

We can now state a result from Copley and Schumaker [12] which was published in
1978.

THEOREM 7 (Copley and Schumaker). If

https://doi.org/10.1017/S1446181100011652 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100011652


128 R. Champion, C. T. Lenard and T. M. Mills [10]

• {A.!, A.2,... , kn} is a set of linearly independent continuous linear functionals
on X,

• { Z l , Z 2 . ••• , Z n ] C R ,

• /„ = {x € X : k,(x) = Zi (1 < i < n)} £ 0,
• L : X -*• Lp(I) so that L[x](t) = Ylj=o°j(0Djx(t) where aj € O(I)

(0 < j < m) and 3 w > 0 such that am(t) > w > 0 on I and
• kerLn[x eX : k,(x) = 0 (1 < i < n)} = {0X},

3! a € /„ :

|L[or](OI" rfr = min j y |L[jc](r)|" rf/ : JC €/„ J .
The optimal function a is called a pLg-spline. Copley and Schumaker define a

pLg-spl'me to be a solution of the variational interpolation problem. One of the main
problems that they investigate is to determine the structure of such splines. Can they
be constructed in a piecewise manner? The complexity of their answers highlights the
simplicity pf their definition of a p Lg-spline.

The above theorem is intended only to give the flavour of [12]: in fact Copley and
Schumaker investigate more general interpolation problems than those in the above
theorem. For example they consider sets of linear functionals {ka : a e A], where
the index set A may be infinite. One of the nice features of this paper is the section
on worked examples.

Vector-valued Lg-splines

Other extensions have come from researchers in electrical engineering: Sidhu and
Weinert [49] presented one such extension in 1979. They consider the problem of
simultaneous interpolation, that is, a method by which one could interpolate several
functions at once.

THEOREM 8 (Sidhu and Weinert). //

• r > 1, n{ > 0 , . . . , nr > 0 are fixed integers,
• X = #"'(/) x . . . x //"-(/),
• {k\,k2,... ,kn) isa set of linearly independent continuous linear functionals

on X,
• [zi,z2 zn] C R,
. In = [x e X : k,(x) = ZiV < i < n)},
• L : X -*• L2(/) x • • • x L2(I) (an r-foldproduct), where

: « = 1,2
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k; aijnj = Stt; aiJk e C*(/) (0 < k < /i,) and
t=o

• kerL n {x e X : k,(x) = 0 (1 < i < »)} = {6X),

then 3! a e X :

j(L[aKt)YL[a](t)dt = min lf(L[x]{t))'L[x](t)dt : x e In J .

(Here A' indicates the transpose of the matrix or vector A.)

The optimal interpolating vector a is known as a vector-valued Lg-spline. The
authors define a vector-valued Lg-spline to be the solution of a variational interpolation
problem, prove the above existence-uniqueness theorem and then discuss an algorithm
for calculating such splines in the special case that the functionals A, are of extended
Hermite-Birkhoff type.

Thin plate splines

So far we have been considering the problem of interpolating functions of a single
variable. In 1976, Jean Duchon [18] proved a result which is regarded as a significant
step towards developing a variational approach to interpolating functions of several
variables. Below we state his result for functions of two variables because it is
relatively simple to state and quite dramatic. We will denote an arbitrary element of
R2 by t = fo, £2), \\t\\

2 := f j2 + £2
2> a n d t n e s e t o f linear polynomials by

n , := [pi(t) = ao + aih + a2£> : fa), au a2] C R}.

THEOREM 9 (Duchon). / /

• X = H2(R2),
• Uu h U C R2 such that ifpt e rij andpi(tt) = • • • = px(tn) = 0 then

Pi =0,
• {ZuZl, . . . ,Zn) C R ,

• /„ = [x 6 X : xfc) = n (1 < / < n)} and
• J : X -*• R such that

then 3! a e /„:

J(a) = min[J(x) : x e /„}.
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Furthermore, Vt e R2,

a if) = £> , | | f - /,||2ln||/ - t,\\+Pl(t),

where
• p\ € FIi and

The optimal function a is known as a "thin plate spline". The dramatic aspect
of this result is the form of the spline a: it is nothing like a piecewise polynomial
function.

This two-dimensional result appeared almost 20 years after Holladay's one-dimen-
sional result. Given the difference in techniques used to prove these results, the
delay is not so surprising. Holladay's proof involves nothing more complicated
than integration by parts whereas Duchon's paper uses tempered distributions, Radon
measures and other tools from functional analysis. A more elementary approach to
Duchon's result is outlined in Powell [41].

Although the present paper is not intended to be a complete survey of the literature, it
is appropriate to point out that Duchon was not the first person to tackle the multivariate
problem. Duchon notes the work of two aircraft engineers Harder and Desmaris [26]
who approached this problem from an applied point of view. In 1974, Fisher and
Jerome [20] addressed the multivariate problem. In his doctoral thesis in 1970, Jean
Thomann [51] considered a variational .approach to interpolation on a rectangle or on
a disk in R2. In any major review of thin plate splines, these three publications deserve
attention. The book by Ahlberg, Nilson and Walsh [3] also deals with multivariate
problems, but from a point of view which is essentially univariate.

Yet more splines

The litany of splines could be continued. There are A-splines [32], LMg-splines
[16], ARM A -splines [56], PDLg-splines [17], spherical splines [54,22], hyperspher-
ical splines [50], vector splines [4, 5], and polyharmonic splines [43]. These too are
splines associated with some variational interpolation problem. In each case we could
state a theorem similar in flavour to those above—but, alas, space does not permit this.

5. Abstract splines

The statements of the theorems above were becoming quite long and complicated.
Indeed, there is a general abstract result which captures the essence of most of them.
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We attribute the following result to M. Atteia and it relates to the following diagram.

X —?—* Y

THEOREM 10 (Atteia). / /

• X, Y, Z are Hilbert spaces,
• zeZ,
• T, A are continuous, linear surjections,
• ker T + ker A is closed in X,
• ker T n ker A = {Gx} and

• / ( * ) = {* eX:Ax = z},

then 3! a e / (z) :

||ra||y = min{||7*||r :*

The optimal a is known as a variational interpolating spline. To illustrate that
this theorem reflects the essence of some results above, let us see how it generalises
Theorem 1 of Holladay. Put* = H2(I), Y = L2(I), Z = R", T(x) := xa\ A(x) :=
(x(ti),x(t2),... ,x(tn)), and then check that the hypotheses of Atteia's theorem are
satisfied. Atteia's theorem does not cover all the above results (e.g. Theorem 7 which
deals withpLg-splines).

We have attributed the above result to Atteia because, as far as we can tell, the ideas
grew out of his 1965 paper [7] and his thesis [8]. An equivalent result is found in the
often cited, but unfortunately never published, report by Golomb [23]. The essential
ideas also can be found in Anselone and Laurent [6] and the classic work by Laurent
[36]. The theorem, as stated above, can be found in Atteia [9].

There are three observations that we would like to make about this theorem.
First, the role of the condition about ker T + ker A is to ensure the existence of o

whereas the role of the condition about ker T n ker A is to ensure the uniqueness of
a. This separation was made clear in Jerome and Schumaker [33].

Second, the above theorem is only an existence-uniqueness theorem. The chal-
lenge for any abstract theory is to generalise a wide variety of particular cases, and
simultaneously, preserve as much of the detail as possible. To a large extent, Atteia
and others have, over many years, being doing this in the case that X is a reproducing
kernel Hilbert space. Details of this program can be found in [9] and [11]. The
origins of this program can be found in a 1959 paper by Golomb and Weinberger [24],
Atteia [8] and de Boor and Lynch [15].

Third, the above general theorem can itself be generalised in many directions.
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One generalisation enables us to consider constrained interpolation problems which
are very important in contemporary numerical mathematics. It is due to Utreras [52]
and relates to the following diagram.

CcX —T—+ Y

4
zeZ

THEOREM 11 (Utreras). / /

• X, Y,Z are Hilbert spaces,
• C is a closed, convex subset ofX,
• zeZ,
• A, T are continuous, linear surjections,
• w € I(C,z) :={x e C: Ax = z],
• ker T + (ker AC\(C — w)) is closed in X and
• ker A n ker 7 = {Gx},

then3\ aeI(C,z):

\\Ta\\y = mm{\\Tx\\Y:xeI(C,z)}.

If we put C = X then we obtain Theorem 10. Utreras' theorem is useful if, for
example, we want to interpolate positive data by positive functions. In this case, we
may have X = Hm(I) and C being the set of positive functions in X.

Other generalisations have extended Atteia's theorem to Banach space settings
rather than Hilbert space settings. Holmes [31] writes about /?-splines, Pai [40] writes
about Lf -splines, and Benbourhim and Gaches [10] write about 7}-splines. A key
work in the Banach space setting is Fisher and Jerome [21]. Perfect splines are
important in this context.

Lucas [38, 39] took abstract splines in quite a different direction with his notion of
an M-spline. See also [1, 44].

In short, a beautiful mathematical theory of variational interpolating splines has
developed from the elementary theorem of Holladay.

6. Conclusions

We have presented an introduction to a variational theory of interpolating splines in
order to draw attention to this approach. This exposition may be helpful as an intro-
duction to the few books which deal with these ideas. The book by Laurent [36] was
perhaps the first book which emphasised the variational approach to splines. Atteia's
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book [9] is a key work in this area for those interested in functional analysis. Wahba
[55] describes applications of these ideas (in smoothing rather than interpolation) to
statistics. Bezhaev and Vasilenko [11] is a recent book in the field but difficult to
obtain.

There are three conclusions that we would like to draw from the above exposi-
tion.

1. Splines may be defined as solutions of variational problems rather than functions
constructed in some piecewise manner. We have seen that, initially, splines were
defined as smooth functions which could be constructed in some piecewise manner.
Eventually, it became convenient to define an interpolating spline as the solution of
some variational problem. We have also seen that these variational problems have
become increasingly abstract and hence the very concept of a "spline" has become
increasingly abstract. This may not be to everyone's liking. For example, in [15],
de Boor and Lynch write "in order not to dilute the notion of spline functions too
much, we prefer to follow Greville's definition of a general spline function"—which
is based on a piecewise, constructive approach. Perhaps the point at which one gets
off the ladder of increasing abstraction is a matter of personal taste. In any case, the
variational theory gives us a new appreciation of the concept of a "spline".

2. The variational approach facilitates a natural, attractive way to extend the classi-
cal theory of interpolating splines, especially to multivariate situations. The works of
Duchon [18] and of Wahba [54] in particular illustrate this conclusion. More recently
de Boor [14] wrote "I am convinced that the variational approach to splines will play a
much greater role in multivariate spline theory that it did or should have in univariate
theory."

3. The theory of variational splines demonstrates the power of functional analysis
to yield a unified approach to computational problems in interpolation. As S. Sobolev
has been quoted as saying [37] "It is impossible to imagine the theory of computations
with no Banach spaces".
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