
Appendix D
Particle-vibration coupling

The purpose of this appendix is to summarize results for particle-vibration coupling ma-
trix elements, which are used in Chapters 8, 9 and 10. The particle-vibration interaction
from equation (8.24) is

δU (r ) = −R0
∂U

∂r

∑
L M

αL M Y ∗L M (r̂ ) = −κ
∑
L M

αL M FL M , (D.1)

where the collective coordinates αL M are nuclear deformation parameters. The dimen-
sionless quantity

FL M = R0

κ

∂U

∂r
Y ∗L M (r̂ ) (D.2)

is a single-particle field peaked at the nuclear surface and κ is a constant fixed by a
self-consistency condition discussed in Section 8.3 (see also (10.27)). The coordinate α
is related to phonon creation and annihilation operators by

α̂L M =
√

�ωL

2CL
(�̂†

L M + (−1)M �L−M ), (D.3)

where �ωL is the energy of the phonon with multipolarity L and CL α̂
2/2 is the potential

energy associated with the collective coordinate. The matrix element of the collective
coordinate between the phonon ground state and a one-phonon excited state is

〈L M |α̂L M |00〉 =
√

�ωL

2CL
= 1√

2L + 1
βL . (D.4)

The quantity βL is the reduced matrix element and is known as the multipole deformation
parameter.

The particle-vibration interaction matrix element V
(

jm, j ′m ′, L M
)

from equations
(D.1) and (D.4) is

V
(

jm, j ′m ′, L M
) = − βL√

2L + 1
〈 j ′|R0

∂U

∂r
| j〉〈l ′ j ′m ′|YL M |l jm〉 . (D.5)

299

https://doi.org/10.1017/9781009401920.016 Published online by Cambridge University Press

https://doi.org/10.1017/9781009401920.016


300 Appendix D

The nucleon self energy and particle-vibration induced interaction involve sums over
magnetic quantum numbers and can be expressed in terms of the quantity∣∣V (

j, j ′, L
)∣∣2 =

∑
mm ′M

β2
L

2L + 1
〈 j ′|R0

∂U

∂r
| j〉2 ∣∣〈l ′ j ′m ′|YL M |l jm〉∣∣2

(D.6)

which is symmetric in j and j ′. Making use of the Wigner–Eckart theorem

〈 j ′m ′|YL M | jm〉 = 〈 jmL M | j ′m ′〉√
2 j ′ + 1

〈l ′ j ′||Y ||l j〉 (D.7)

and the normalization property∑
mm ′

∣∣〈 jmL M | j ′m ′〉∣∣2 =
(
2 j ′ + 1

)
(2L + 1)

(D.8)

of the Clebsch–Gordon coefficients, equation (D.6) simplifies to

V 2
(

j, j ′, L
) = β2

L

2L + 1
〈 j ′|R0

∂U

∂r
| j〉2〈l ′ j ′||YL ||l j〉2, (D.9)

which is equivalent to equation (10.3). The definition (D.7) of the reduced matrix element
is the one used by Bohr and Mottelson (1969).

The self-energy of a nucleon in the single-particle state j is

 j =
∑

j L

1

(2 j + 1)

V 2
(

j, j ′; L
)

ε j − (ε j ′ + �ωL )
, (D.10)

where ε j and ε j ′ are single-particle energies and �ωL are phonon energies. The factor
1/ (2 j + 1) appears because there is an average over the spin orientation m of the initial
state j . The induced interaction matrix element v j j ′ in Chapter 10 involves a scattering
between the normalized two-nucleon initial state | ( j j)0〉 with total angular momentum
J = 0 and the final state | ( j ′ j ′

)
0〉 also with J = 0,

v j j ′ = 〈( j j)0 |v|
(

j ′ j ′
)

0〉 =
∑

mm ′
1

2
√

(2 j ′+1)(2 j+1)
〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉a

=∑
mm ′

1√
(2 j ′+1)(2 j+1)

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉, (D.11)

where the general structure of the antisymmetrized matrix element 〈|v|〉a has been defined
in equation (A.16).

The uncoupled phonon exchange matrix element has the angular momentum structure

〈 jm, j̃m|v| j ′m ′, j̃ ′m ′〉 =
∑
L M

∣∣V (
jm, j ′m ′, L M

)∣∣2

Dλ
, (D.12)

where Dλ is an energy denominator which can be approximated in various ways. The
microscopic calculations reported in Section 10.2 use a Bloch–Horowitz expression for
the energy denominator. In the following equation we substitute the simple estimate
Dλ ≈ −�ωL which is used in Section 10.1. The interaction matrix element reduces to

v j j ′ =
∑

L

vL
j j ′ , (D.13)
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where

vL
j j ′ = −

2√
(2 j ′ + 1) (2 j + 1)

V 2
(

j, j ′, L
)

�ωL
. (D.14)

The factor 2 occurs because two perturbation diagrams (time orderings) contribute to
the induced interaction.

The normalization in the microscopic calculations reported in Section 10.2 is the one
used in Barranco et al. (1999). In their notation the suffix ν refers to a state with a pair
of nucleons with quantum numbers lν jν coupled to zero total angular momentum, and
vνν ′ is defined by

Gνν ′ = −vνν ′ = − 2〈( jν jν)0 |v| ( jν ′ jν ′ )0〉√
(2 jν + 1) (2 jν ′ + 1)

= − 2v jν jν′√
(2 jν + 1) (2 jν ′ + 1)

, (D.15)

where the factor of 2 arises from the antisymmetry of the pairing matrix element (see
equation (A.16)).

Thus the normalization and sign of Gνν ′ is the same as that of the BCS coupling
constant G and the values of Gνν ′ in Tables 10.1, 10.2 and 10.3 can be compared directly
with BCS G-values for 120Sn, G ≈ 27/A = 0.22, where G = Gνν ′ .

D.1 Estimate of 〈l j ||YL||l j〉
The interaction strengths V 2

(
j, j ′, L

)
defined in equation (D.9) are proportional to

squares of reduced matrix elements of spherical harmonics. These can be expressed in
terms of Clebsch–Gordon coefficients and can be calculated using standard formulae.
Some qualitative properties and simple asymptotic expressions are collected in this
appendix.

The reduced matrix elements 〈l ′ j ′||YL ||l j〉 with j = l + 1/2, j ′ = l ′ − 1/2 or j =
l − 1/2, j ′ = l ′ + 1/2 involve a spin-flip at the interaction vertex. There is no spin-
flip in the other two reduced matrix elements. The spin-flip matrix elements are small
compared with the no-spin-flip and become very small when j and j ′ are large. The
spin-flip processes are essentially possible only because of quantal fluctuations, owing
to the parity condition that the matrix elements of YL vanish unless l + l ′ + L is even.
The spin-flip character of the reduced matrix elements 〈l ′ j ′||YL ||l j〉 can be recognized
because j + j ′ + L is even for spin-flip matrix elements and odd for the non-spin-flip
matrix elements.

The square of the reduced matrix element 〈l j ||YL ||l ′ j ′〉 can be expressed in terms of
a Wigner 3- j symbol as

〈l j ||YL ||l ′ j ′〉2 =
(2 j + 1)

(
2 j ′ + 1

)
(2L + 1)

4π

(
j j ′ L
1
2 − 1

2 0

)2

= (2 j + 1) (2L + 1)

4π
〈 j 1

2 L0| j ′ 12 〉2. (D.16)

Diagonal matrix elements have j = j ′ and l = l ′ and the parity condition requires L
to be even. A useful asymptotic formula introduced in equation (10.5) expresses the
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Clebsch–Gordon coefficient in equation (D.16) in terms of a Legendre polynomial

〈 j 1
2 L0| j 1

2 〉 ≈ PL (0) .

This formula is valid when L is even and j � L . Thus

〈 j ||YL || j〉2 ≈ (2 j + 1) (2L + 1)

4π
(PL (0))2 .

Introducing the numerical values of the Legendre polynomial we have

〈 j ||YL || j〉2 ≈ 0.1(2 j + 1) (D.17)

for L = 2, 4 and 6.
The following examples calculated with L = 2 show that this result is quite accurate.

For this purpose, use is made of the relation (Varshalovich et al. (1988), Table 8.4)(
j j ′ 2
1
2 − 1

2 0

)2

= 4( 3
4 − j( j + 1))2

(2 j + 3)(2 j + 2)(2 j + 1)(2 j)(2 j − 1)
.

In the case of j = 11/2( 11
2

11
2 2

1
2 − 1

2 0

)2

= 4( 3
4 − 11

2 × 13
2 )2

14× 13× 12× 11× 10
= 0.02040

and

〈11/2||Y2||11/2〉 = (12)2 × 5

4π
× 0.02040 = 1.17.

In the case j = 7/2,(
7/2 7/2 2

1
2 − 1

2 0

)2

= 4( 3
4 − 7

2 × 9
2 )2

10× 9× 8× 7× 6
= 0.02976.

Thus

〈7/2||Y2||7/2〉2 = 82 × 5

4π
× 0.02976 ≈ 0.76.

In Table D.1 we compare the exact results given in equation (D.16), with the results
obtained from equation (D.17).

There is another approximate relation which is valid for j, j ′ � L when the no-spin-
flip condition is satisfied (when j + j ′ + L is odd or equivalently when j − j ′ + L is
even). The asymptotic formula for the Clebsch coefficients gives (Varshalovich et al.
(1988), Section 8.9) ∣∣〈 j 1

2 L0| j ′ 12 〉
∣∣2 ≈ 4π

2L + 1
(YL M (0, 0))2 , (D.18)

with M = ∣∣ j − j ′
∣∣. When L is large and L + M is even Varshalovich et al. (1988,

Section 5.12) give

(YL M (0, 0))2 ≈ 1

π2
.
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Table D.1. Comparison of the results ob-
tained using the approximate expression
given in equation (D.17) with exact results
obtained using equation (D.16).

〈 j ||Y2|| j〉2

j exact 0.1(2 j + 1)

7/2 0.76 0.8
11/2 1.17 1.2

Combining these results gives a simple approximate expression for the no-spin-flip
reduced matrix elements

〈 j ||YL || j ′〉2 ≈
√

(2 j + 1) (2 j ′ + 1)

π2
≈ 0.1

√
(2 j + 1) (2 j ′ + 1). (D.19)

This is equivalent to equation (D.17) when j = j ′ and is quite accurate even for L � 2
and j and j ′ > 1/2. When j ′ = 1/2 and j = L ± 1/2 then there is an exact formula

〈 j ||YL ||1/2〉2 = 2 j + 1

4π
. (D.20)

D.2 A simple estimate of 〈R0
∂U
∂r 〉

The average 〈R0∂U/∂r〉 will be estimated using a square well approximation for the
Saxon–Woods potential

U (r ) = U0

1+ exp( r−R0
a )
≈ U0"(r − R0), (D.21)

where

"(r − R0) =
{

1 r ≤ R0,

0 r > R0.
(D.22)

Making use of the fact that

∂"(r − R0)

∂r
= δ(r − R0), (D.23)

one can write

〈R0
∂U

∂r
〉 = R0U0

∫
r2 dr R2(r ) δ(r − R0)

= U0 R3
0R2(R0), (D.24)
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where R (r ) is the radial wavefunction. Making use of the fact that (see Bohr and
Mottelson (1969) p. 326, equation (3.22))

R3
0R2(R0) ≈ 1.4, (D.25)

one obtains

〈R0
∂U

∂r
〉 = U0 × 1.4 ≈ −60 MeV, (D.26)

where use was made of U0 ≈ −45 MeV. If one corrects this estimate for the spillout of
the nucleons one has to divide the result shown above by a factor (1+ a/R) ≈ 1.1 (see
Bertsch and Broglia (1994), p. 87), in which case one obtains 〈R0

∂U
∂r 〉 ≈ −50 MeV.
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