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Abstract

Let S be a sub-Markovian semigroup on L2(Rd) generated by a self-adjoint, second-order, divergence-
form, elliptic operator H with W1,∞(Rd) coefficients ckl, and let Ω be an open subset of Rd . We prove
that if either C∞c (Rd) is a core of the semigroup generator of the consistent semigroup on Lp(Rd) for some
p ∈ [1,∞] or Ω has a locally Lipschitz boundary, then S leaves L2(Ω) invariant if and only if it is invariant
under the flows generated by the vector fields

∑d
l=1 ckl∂l for all k. Further, for all p ∈ [1, 2] we derive

sufficient conditions on the coefficients for the core property to be satisfied. Then by combination of
these results we obtain various examples of invariance in terms of boundary degeneracy both for Lipschitz
domains and domains with fractal boundaries.
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1. Introduction

Let S be a sub-Markovian semigroup on L2(Rd) generated by a self-adjoint second-
order elliptic operator H in divergence form. If the operator is strongly elliptic then
S acts ergodically, that is, there are no nontrivial S -invariant subspaces of L2(Rd).
Nevertheless there are many examples of degenerate elliptic operators for which there
are subspaces L2(Ω) invariant under the action of S (see, for example, [8, 10, 11, 25]).
Our aim is to examine operators with coefficients which are Lipschitz continuous and
characterize the S -invariance of L2(Ω) by the invariance under a family of associated
flows. In order to formulate our main result we need some further notation.

First, define the positive symmetric operator H0 with domain D(H0) = C∞c (Rd) and
action

H0ϕ = −

d∑
k,l=1

∂kckl∂lϕ,

Part of this work was supported by the Marsden Fund Council from Government funding, administered
by the Royal Society of New Zealand.
c© 2011 Australian Mathematical Publishing Association Inc. 1446-7887/2011 $16.00

317

https://doi.org/10.1017/S1446788711001315 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001315


318 A. F. M. ter Elst et al. [2]

where the coefficients ckl = clk ∈W1,∞(Rd) are real and C = (ckl) is a positive
semidefinite matrix over Rd. Then the corresponding quadratic form h0, given by

h0(ϕ) =

d∑
k,l=1

(∂kϕ, ckl∂lϕ),

with domain D(h0) = C∞c (Rd), is closable. The closure h = h0 determines in a canonical
manner a positive self-adjoint extension H of H0, the Friedrichs extension [13] (see,
for example, [22, Section 124], or [19, Ch. VI]). The closed form h is a Dirichlet
form and the self-adjoint semigroup S generated by H is automatically sub-Markovian
(for details on Dirichlet forms and sub-Markovian semigroups see [3, 14]). For all
p ∈ [1,∞] and t > 0, there exists a unique continuous operator S (p)

t on Lp(Rd) such
that S (p)

t ϕ = S tϕ for all ϕ ∈ L2(Rd) ∩ Lp(Rd). Then S (p) is a continuous contraction
semigroup on Lp(Rd). Note that the continuity on L∞(Rd) is with respect to the weak∗

topology. Let Hp denote the generator of S (p). We will refer to H2 (or just H) as the
degenerate elliptic operator with coefficients (ckl).

Second, if b1, . . . , bd ∈W1,∞(Rd) then the first-order partial differential operator

ϕ 7→

d∑
k=1

bk∂kϕ −
1
2

d∑
k=1

(∂kbk)I,

with domain C∞c (Rd), is essentially skew-adjoint (see, for example, [23, Theorem 3.1]).
Therefore the principal part is closable and generates a positive, continuous, one-
parameter group on L2(Rd). We refer to such a group as a flow. Specifically we are
interested in the flows associated with the coefficients (ckl) of H. For all k ∈ {1, . . . , d},
let Yk denote the L2 closure of the first-order partial differential operator

ϕ 7→

d∑
l=1

ckl∂lϕ

with domain C∞c (Rd). Then denote by T (k) the flow generated by Yk. The operators
Y1, . . . , Yd were used by Oleı̆nik and Radkevič [20] to analyse hypoellipticity and
subellipticity properties of degenerate elliptic operators H with C∞ coefficients (ckl)
(see [18] for a review of these and related results). We, however, use the flows to
characterize the invariant subspaces of the semigroup generated by H.

T 1.1. Let Ω be a measurable subset of Rd. Consider the following conditions.

(I) S tL2(Ω) ⊆ L2(Ω) for all t > 0.
(II) T (k)

t L2(Ω) = L2(Ω) for all k ∈ {1, . . . , d} and t ∈ R.

Then (I) implies (II). Moreover, if C∞c (Rd) is a core of Hp for some p ∈ [1,∞], or if Ω

is an open set with locally Lipschitz boundary, then (I) and (II) are equivalent.

Recall that an open set Ω is defined to have locally Lipschitz boundary if, for every
y ∈ ∂Ω, there exist an isometry Ψ : Rd → Rd, a real function τ ∈W1,∞(Rd−1) and r > 0,
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such that

Ω ∩ By(r) = {Ψ(x1, x′) : (x1, x′) ∈ R × Rd−1, τ(x′) < x1} ∩ By(r), (1.1)

where By(r) = {x ∈ Rd : |x − y| < r}. Thus, in a neighbourhood of y, the boundary ∂Ω

of Ω is the graph of a Lipschitz function τ and Ω lies on one side of it, up to an
isometry Ψ.

The condition that C∞c (Rd) is a core of Hp can be phrased in a different way.
If p <∞, then it is equivalent to the statement that the operator H0, viewed as
an operator in Lp(Rd), has a unique extension that generates a strongly continuous
semigroup (see [1, Theorem 1.33]). One also says that H0 is Lp unique. For more
characterizations, see [7, Appendix A, Theorem 1.2].

We shall show in Section 2 that the flows extend consistently to continuous one-
parameter groups on Lp(Rd). Although the invariance properties of Theorem 1.1 are
stated for the subspaces L2(Ω), these are equivalent to similar invariance properties of
the subspaces Lp(Ω). For example, the S -invariance of L2(Ω) and the sub-Markovian
property of S give

S t(L2(Ω) ∩ Lp(Ω)) ⊂ L2(Ω) ∩ Lp(Rd) = L2(Ω) ∩ Lp(Ω).

Therefore S (p)
t Lp(Ω) ⊆ Lp(Ω) by continuity. Similarly, the S (p)-invariance of Lp(Ω)

implies the S -invariance of L2(Ω). The argument for the flows is identical.
There is another variant of the theorem that we first establish. For all ψ ∈C∞c (Rd),

define Yψ as the L2 closure of the first-order partial differential operator

ϕ 7→

d∑
k,l=1

(∂kψ)ckl∂lϕ

with domain C∞c (Rd), and let Tψ be the associated flow. Then invariance of L2(Ω)
under the T (k) is equivalent to invariance under the family of flows Tψ. More precisely,
the following proposition holds.

P 1.2. Let Ω be a measurable subset of Rd. The following conditions are
equivalent.

(I) Tψ
t L2(Ω) = L2(Ω) for all ψ ∈C∞c (Rd) and t ∈ R.

(II) T (k)
t L2(Ω) = L2(Ω) for all k ∈ {1, . . . , d} and t ∈ R.

This will be established in Section 2. Then we prove Theorem 1.1 in Section 3,
and we derive various core criteria in Section 4. Our results are illustrated by several
examples in Section 5.

2. Flows

In this section, we derive some properties of the flows defined in Section 1 and
prove Proposition 1.2. Although we deal primarily with the flows on L2(Rd), we will
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need some properties of their extensions to L∞(Rd) in Section 3. Therefore we begin
by summarizing some general features of the flows.

Let b1, . . . , bd ∈W1,∞(Rd) and define Y as the L2 closure of the first-order
differential operator ϕ 7→

∑d
k=1 bk∂kϕ with domain W1,2(Rd). Further, let T denote

the flow generated by Y . Then for all p ∈ [1,∞], the group T leaves the subspace
L2(Rd) ∩ Lp(Rd) of L2(Rd) invariant, and T extends from L2(Rd) ∩ Lp(Rd) to a flow
T [p] on Lp(Rd) such that T [p] is strongly continuous if p ∈ [1,∞) and T [∞] is weakly∗

continuous. The groups act in a consistent and compatible manner on the Lp spaces.
Moreover, T [∞] is a group of automorphisms of L∞(Rd), that is,

T [∞]
t (ψϕ) = (T [∞]

t ψ)(T [∞]
t ϕ)

for all ψ, ϕ ∈ L∞(Rd) and t ∈ R. Then since the L∞ functions are multipliers on the Lp

spaces, one deduces that

T [p]
t (τϕ) = (T [∞]

t τ)(T [p]
t ϕ) (2.1)

for all τ ∈ L∞(Rd), ϕ ∈ Lp(Rd), p ∈ [1,∞] and t ∈ R. If Y[p] is the generator of T [p],
then W1,p(Rd) ⊆ D(Y[p]) and Y[p]ϕ =

∑d
k=1 bk∂kϕ for all ϕ ∈W1,p(Rd).

These properties depend critically on the fact that Y is a first-order partial
differential operator with coefficients bk ∈W1,∞(Rd). They can be verified either by
general arguments of functional analysis (see, for example, [24, Theorem V.4.1]) or
by the methods of ordinary differential equations. The crucial observation in the latter
context is that if ϕ ∈C∞c (Rd), then (Ttϕ)(x) = ϕ(ωt(x)), where t 7→ ωt(x) is the unique
solution of the differential equation (d/dt)ωt(x) = b(ωt(x)) with initial value ω0(x) = x
(see, for example, [16, Chs 2 and 3]). We write ωt(x) = etY x.

Our first result is an approximation result that will be needed on L2(Rd) but whose
proof extends to the Lp spaces.

P 2.1. Let p ∈ [1,∞]. Let Y[p] denote the generator of the flow T [p] on
Lp(Rd). Further, let τ ∈C∞c (Rd) with

∫
τ = 1 and for all n ∈ N define τn ∈C∞c (Rd)

by τn(x) = ndτ(nx). Then limn→∞ Y[p](τn ∗ ϕ) = Y[p]ϕ in Lp(Rd) for all ϕ ∈ D(Y[p])
if p <∞. If p =∞, then limn→∞ Y[∞](τn ∗ ϕ) = Y[∞]ϕ weakly∗ in L∞(Rd) for all
ϕ ∈ D(Y[∞]).

P. First, for all n ∈ N define the bounded operator Bn : Lp(Rd)→ Lp(Rd) by

Bnϕ =

d∑
k=1

τn ∗ ((∂kbk)ϕ) +

d∑
k=1

∫
dy(∂kτn)(y)((I − Ly)bk)(Lyϕ),

where L denotes the left regular representation of Rd, that is, (Lyψ)(x) = ψ(x − y).
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Second, if ϕ ∈C∞c (Rd) and n ∈ N, then

Y[p](τn ∗ ϕ) =

d∑
k=1

bk

∫
dyτn(y)Ly∂kϕ

=

d∑
k=1

∫
dyτn(y)(bk − Lybk)Ly∂kϕ

+

d∑
k=1

bk

∫
dyτn(y)Ly(bk∂kϕ).

The second term is equal to τn ∗ Y[p]ϕ. For the first term, use Ly∂kϕ = −∂Lyϕ/∂yk.
Then integration by parts gives

Y[p](τn ∗ ϕ) − τn ∗ Y[p]ϕ =

d∑
k=1

∫
dy

∂

∂yk
(τn(y)(bk − Lybk))(Lyϕ) = Bnϕ.

Since Bn is bounded, one deduces by density that

Y[p](τn ∗ ϕ) − τn ∗ Y[p]ϕ = Bnϕ (2.2)

for all n ∈ N and ϕ ∈ D(Y[p]).
Third, it follows from the definition of Bn that

‖Bnϕ‖p ≤

d∑
k=1

(
‖(∂kbk)ϕ‖p +

∫
dy|(∂kτn)(y)| ‖((I − Ly)bk)(Lyϕ)‖p

)
≤

d∑
k=1

‖bk‖W1,∞(Rd)‖ϕ‖p +

d∑
k=1

∫
dy|(∂kτn)(y)| ‖(I − Ly)bk‖∞‖ϕ‖p

for all n ∈ N and ϕ ∈ Lp(Rd). But

‖(I − Ly)bk‖∞ ≤ |y| ‖bk‖W1,∞(Rd)

and ∫
dy|(∂kτn)(y)| |y| =

∫
dy|(∂kτ)(y)| |y|.

Therefore ‖Bnϕ‖p ≤ M‖ϕ‖p uniformly for all n ∈ N and ϕ ∈ Lp(Rd), where

M =

d∑
k=1

(
1 +

∫
dy|(∂kτ)(y)| |y|

)
‖bk‖W1,∞(Rd).

The conclusion holds for all p ∈ [1,∞]. So B1, B2, . . . are equicontinuous.
Next, assume that p <∞. Then limn→∞ τn ∗ ϕ = ϕ in W1,p(Rd) for all ϕ ∈

W1,p(Rd). Consequently, limn→∞ Y[p](τn ∗ ϕ) = Y[p]ϕ strongly in Lp(Rd). Furthermore,
limn→∞ τn ∗ (Y[p]ϕ) = Y[p]ϕ strongly in Lp(Rd). Therefore it follows from (2.2) that
limn→∞ Bnϕ = 0 in Lp(Rd) for all ϕ ∈W1,p(Rd). Since W1,p(Rd) is strongly dense in
Lp(Rd) and B1, B2, . . . are equicontinuous it follows that limn→∞ Bnϕ = 0 in Lp(Rd)
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for all ϕ ∈ Lp(Rd). Finally, let ϕ ∈ D(Y[p]). Then one establishes from (2.2) that

lim
n→∞

Y[p](τn ∗ ϕ) = lim
n→∞

(τn ∗ Y[p]ϕ + Bnϕ) = Y[p]ϕ

in Lp(Rd).
The argument when p =∞ is very similar. If ϕ ∈W1,∞(Rd), then lim τn ∗ ϕ = ϕ and

lim ∂kτn ∗ ϕ = ∂kϕ weakly∗. Therefore lim Y[∞](τn ∗ ϕ) = Y[∞]ϕ weakly∗ on L∞(Rd).
Then since W1,∞(Rd) is weakly∗ dense in L∞(Rd) and B1, B2, . . . are equicontinuous,
the desired conclusion follows as before. �

Now we return to consideration of the vector fields Y1, . . . , Yd defined in Section 1
acting on L2(Rd).

C 2.2. Let τ and τn be as in Proposition 2.1. Then for all ϕ ∈
⋂d

k=1 D(Yk),
one has limn→∞ Yk(τn ∗ ϕ) = Ykϕ for all k ∈ {1, . . . , d}. Therefore W∞,2(Rd) is a
simultaneous core of the Y1, . . . , Yd.

The second statement of the corollary follows because convolution with τn maps
L2(Rd) into W∞,2(Rd).

Now we turn to the proof of Proposition 1.2. Note that if T is a flow with generator
Y then T -invariance of L2(Ω) is equivalent to the commutation of Y and the operator
of multiplication with 1Ω, that is, if ϕ ∈ D(Y) then 1Ωϕ ∈ D(Y) and Y(1Ωϕ) = 1ΩYϕ.

P  P 1.2. First we show that (I) implies (II). Let k ∈ {1, . . . , d} and
let U ⊂ Rd be a bounded open subset. There exist χ, ψ ∈C∞c (Rd) such that χ|U = 1

and ψ(x) = xk for all x ∈ supp χ. Then Yk( χϕ) = Yψ( χϕ) for all ϕ ∈C∞c (Rd). Since
ϕ 7→ χϕ is continuous on D(Yk) and on D(Yψ) with the graph norm, it follows from
Proposition 2.1 that χϕ ∈ D(Yk) for all ϕ ∈ D(Yψ). In particular, if ϕ ∈C∞c (Rd) with
supp ϕ ⊆ U, then 1Ωϕ ∈ D(Yψ), and therefore 1Ωϕ = χ1Ωϕ ∈ D(Yk). Moreover,

Yk(1Ωϕ) = Yψ( χ1Ωϕ) = 1ΩYψ( χϕ) = 1ΩYkϕ.

It follows by continuity that 1Ωϕ ∈ D(Yk) and Yk(1Ωϕ) = 1ΩYkϕ for all ϕ ∈ D(Yk).
Therefore condition (II) is valid.

Now we show that (II) implies (I). It follows from condition (II) that 1Ωϕ ∈ D(Yk)
and Yk(1Ωϕ) = 1ΩYkϕ for all ϕ ∈ D(Yk). Let ψ ∈C∞c (Rd). Then Yψϕ =

∑d
k=1(∂kψ)Ykϕ

for all ϕ ∈C∞c (Rd). Since the coefficients ckl are in W1,∞(Rd), it follows from
Corollary 2.2 that ϕ ∈ D(Yψ) and Yψϕ =

∑d
k=1(∂kψ)Ykϕ for all ϕ ∈

⋂d
k=1 D(Yk). Hence if

ϕ ∈C∞c (Rd), then 1Ωϕ ∈ D(Yψ) and Yψ(1Ωϕ) = 1ΩYψϕ. By density, the latter formula
extends to all ϕ ∈ D(Yψ), and therefore condition (I) is valid. �

Finally, we note that the flows Tψ can be defined for all ψ ∈W2,∞(Rd), and the
conditions of Proposition 1.2 are equivalent to invariance of L2(Ω) for all Tψ

t with
ψ ∈W2,∞(Rd) and t > 0. This follows from the arguments of the foregoing proof.
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3. Semigroup invariance

In this section, we prove Theorem 1.1. First, however, we observe that condition (II)
of the theorem, that is, the invariance of L2(Ω) under the flows T (k), is equivalent
to the Tψ-invariance of L2(Ω) for all ψ ∈C∞c (Rd). This is a direct consequence of
Proposition 1.2, which was established in the previous section. Therefore in the
subsequent discussion we will consider the Tψ-invariance condition.

P  T 1.1. By the foregoing observation, to show that (I) implies (II), it
suffices to prove the Tψ-invariance of L2(Ω) for all ψ ∈C∞c (Rd).

First, it follows from the density of C∞c (Rd) in D(h) that there exists a unique bilinear
map Γ : D(h) × D(h)→ L1(Rd), the carré du champ, such that

Γ(ψ, ϕ) =

d∑
k,l=1

ckl(∂kψ)(∂lϕ)

for all ψ, ϕ ∈W1,2(Rd). Then ‖Γ(ψ, ϕ)‖1 ≤ h(ψ)1/2h(ϕ)1/2 for all ψ, ϕ ∈ D(h) by the
Cauchy–Schwarz inequality. Moreover,∫

τΓ(ψ, ϕ) =
1
2

(h(τψ, ϕ) + h(ψ, τϕ) − h(τ, ψϕ)) (3.1)

for all τ, ψ, ϕ ∈C∞c (Rd). Then (3.1) extends to all τ, ψ, ϕ ∈ D(h) ∩ L∞(Rd) by density.
Second, the form h is local in the sense that h(ψ, ϕ) = 0 for all ψ, ϕ ∈ D(h) such that

ψϕ = 0 (see [28]). It follows from (3.1) that Γ is local in the same sense.
Third, since L2(Ω) is S -invariant, the operation of multiplication by 1Ω maps D(h)

into itself. Therefore, if ψ, ϕ, τ ∈ D(h) ∩ L∞(Rd), then 1Ωϕ, 1Ωτ ∈ D(h) ∩ L∞(Rd). By
locality of h, one deduces from (3.1) that∫

τΓ(ψ, 1Ωϕ) =
1
2

(h(τψ, 1Ωϕ) + h(ψ, τ1Ωϕ) − h(τ, ψ1Ωϕ))

=
1
2

(h(1Ωτψ, ϕ) + h(ψ, 1Ωτϕ) − h(1Ωτ, ψϕ))

=

∫
1ΩτΓ(ψ, ϕ).

Hence Γ(ψ, 1Ωϕ) = 1ΩΓ(ψ, ϕ). But D(h) ∩ L∞(Rd) is dense in D(h), and therefore
Γ(ψ, 1Ωϕ) = 1ΩΓ(ψ, ϕ) for all ψ, ϕ ∈ D(h).

Now fix ψ ∈C∞c (Rd), and let τ ∈C∞c (Rd). Then

((Yψ)∗τ, η) = (τ, Yψη) = (τ, Γ(ψ, η))

for all η ∈C∞c (Rd). One deduces that ((Yψ)∗τ, η) = (τ, Γ(ψ, η)) for all η ∈ D(h), since
C∞c (Rd) is dense in D(h). Choosing η = 1Ωϕ, it follows that

((Yψ)∗τ, 1Ωϕ) = (τ, Γ(ψ, 1Ωϕ)) = (1Ωτ, Γ(ψ, ϕ))

= (1Ωτ, Yψϕ) = (τ, 1ΩYψϕ).
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Since C∞c (Rd) is a core of (Yψ)∗, one deduces that 1Ωϕ ∈ D(Yψ) and Yψ(1Ωϕ) = 1ΩYψϕ.
This conclusion then extends to all ϕ ∈ D(Yψ) by density. Therefore L2(Ω) is invariant
under Tψ.

To show that (II) implies (I), we have to consider two special cases.

Case 1. Let p ∈ [1,∞] and suppose that C∞c (Rd) is a core of Hp.

Condition (II) is equivalent to the Tψ invariance of L2(Ω) for all ψ ∈C∞c (Rd) by
Proposition 1.2. Therefore we assume the latter condition.

Let ψ, τ ∈C∞c (Rd). Then

(Hψ, τϕ) = (τ, Yψϕ) + (ϕ, Yψτ)

for all ϕ ∈C∞c (Rd). Since C∞c (Rd) is dense in D(Yψ), one deduces that

(Hψ, τϕ) = (τ, Yψϕ) + (ϕ, Yψτ) (3.2)

for all ϕ ∈ D(Yψ).
Now let ψ, τ, ϕ ∈C∞c (Rd). Then by Tψ-invariance of L2(Ω) and (3.2), one deduces

that 1Ωϕ ∈ D(Yψ) and

(Hψ, τ1Ωϕ) = (τ, Yψ(1Ωϕ)) + (1Ωϕ, Yψτ)

= (1Ωτ, Yψϕ) + (1Ωϕ, Yψτ).

Similarly

(1Ωψ, H(τϕ)) = (1Ωψ, Y∗ϕτ) + (1Ωψ, Y∗τϕ)

= (Yϕ(1Ωψ), τ) + (Yτ(1Ωψ), ϕ)

= (Yϕψ, 1Ωτ) + (Yτψ, 1Ωϕ) = (1Ωτ, Yψϕ) + (1Ωϕ, Yψτ),

since Yϕψ = Yψϕ and Yτψ = Yψτ. Therefore

(Hψ, 1Ω(τϕ)) = (1Ωψ, H(τϕ))

for all ψ, τ, ϕ ∈C∞c (Rd). Then since C∞c (Rd) = span(C∞c (Rd) ·C∞c (Rd)), one has

(Hψ, 1Ωϕ) = (1Ωψ, Hϕ) (3.3)

for all ψ, ϕ ∈C∞c (Rd). At this point we use the core assumption.
It follows from (3.3) by continuity that

(Hψ, 1Ωϕ) = (1Ωψ, Hpϕ)

for all ψ ∈C∞c (Rd) and all ϕ ∈ D(Hp). But |(Hψ, 1Ωϕ)| ≤ ‖Hψ‖q‖ϕ‖p, where q is the
dual variable to p. Therefore 1Ωψ ∈ D(H∗p) = D(Hq) and

Hq(1Ωψ) = 1ΩHψ

for all ψ ∈C∞c (Rd). But 1Ωψ ∈ Lp(Rd) ∩ Lq(Rd), and furthermore 1Ωψ ∈ D(Hq) and
Hq(1Ωψ) = 1ΩHψ ∈ Lp(Rd). Hence it follows from the sub-Markovian property of the
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semigroup S that 1Ωψ ∈ D(Hp) and

Hp(1Ωψ) = 1ΩHψ

for all ψ ∈C∞c (Rd).
Finally, since C∞c (Rd) is a core of Hp it follows by continuity that 1Ωψ ∈ D(Hp) and

Hp(1Ωψ) = 1ΩHpψ

for all ψ ∈ D(Hp). One immediately deduces that S (p)
t (1Ωψ) = 1ΩS (p)

t ψ for all t > 0
and ψ ∈ Lp(Rd). Therefore Lp(Ω) is S (p)-invariant and L2(Ω) is S -invariant by the
discussion following Theorem 1.1.

Case 2. Ω is open and has a locally Lipschitz boundary.

Let PΩ be the orthogonal projection of L2(Rd) onto L2(Ω). By assumption, Tψ

leaves L2(Ω) invariant for all ψ ∈C∞c (Rd). Hence

Tψ
t PΩ = PΩTψ

t PΩ (3.4)

for all t ∈ R. Let B denote multiplication by the function
∑d

k,l=1(∂kψ)(∂lckl) and set
Mt = e−tB for all t ∈ R. Clearly each Mt leaves L2(Ω) invariant. Therefore L2(Ω) is
left invariant by (Tψ

−t/nM−t/n)n for all t ∈ R and n ∈ N. But (Yψ)∗ = −Yψ − B. Then the

Trotter product formula establishes that (Tψ
t )∗ is the strong limit of (Tψ

−t/nM−t/n)n as

n→∞. So (Tψ
t )∗ leaves L2(Ω) invariant. Hence (Tψ

t )∗PΩ = PΩ(Tψ
t )∗PΩ for all t ∈ R.

Therefore PΩTψ
t = PΩTψ

t PΩ, and by (3.4) it follows that Tψ
t PΩ = PΩTψ

t for all t ∈ R.
Then

1ΩTψ
t ϕ = PΩTψ

t ϕ = Tψ
t PΩϕ = Tψ

t (1Ωϕ) = (Tψ[∞]
t 1Ω)(Tψ

t ϕ)

for all ϕ ∈C∞c (Rd) and t ∈ R, where Tψ[∞] denotes the extension of the flow Tψ to
L∞(Rd) (see Section 2), and we have used (2.1). Since Tψ

t (C∞c (Rd)) is dense in L2(Rd),
one deduces that Tψ[∞]

t 1Ω = 1Ω for all t ∈ R.
Next let ϕ ∈C∞c (Rd). Then (Yψ)∗ϕ ∈ L1(Rd) ∩ L2(Rd), so (Y [∞]

ψ )∗ϕ = (Yψ)∗ϕ, where

Y [∞]
ψ is the generator of Tψ[∞]. Since

((Tψ[∞]
t )∗ϕ, 1Ω) = (ϕ, Tψ[∞]

t 1Ω) = (ϕ, 1Ω)

for all t ∈ R, it follows by differentiation that ((Yψ)∗ϕ, 1Ω) = 0. Therefore, setting
Φk =

∑d
l=1 ckl∂lψ for all k ∈ {1, . . . , d}, one has∫

Ω

div(ϕΦ) = ((Yψ)∗ϕ, 1Ω) = 0. (3.5)

At this point we use the Gauss–Green theorem, which is valid for open sets Ω with
locally Lipschitz boundary (see, for example, [12, p. 209]). It states that∫

Ω

div Ψ =

∫
∂Ω

dS 〈n, Ψ〉

for all Ψ ∈W1,∞(Rd) with compact support, where 〈· , · 〉 denotes the inner product
on Rd, dS is the Euclidean measure on ∂Ω and n is the unit outward normal to ∂Ω.

https://doi.org/10.1017/S1446788711001315 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788711001315


326 A. F. M. ter Elst et al. [10]

The normal is defined dS almost everywhere. Thus if one sets Ψ = ϕΦ with ϕ ∈
C∞c (Rd), one has ∫

Ω

div(ϕΦ) =

∫
∂Ω

dSϕ〈n, Φ〉 = 0,

where the last equality uses (3.5). Since this is valid for all ϕ ∈C∞c (Rd), it follows
that 〈n, Φ〉 = 0 almost everywhere on ∂Ω. So 〈(∇ψ)(x),C(x)nx〉 = 0 for almost every
x ∈ ∂Ω. But this is also valid for all ψ ∈C∞c (Rd). Hence one must have C(x)nx = 0
for almost every x ∈ ∂Ω. This corresponds to the condition of zero flux across
the boundary as defined in [25], and then the S -invariance of L2(Ω) follows from
Theorem 1.2 of this reference. �

The argument in [25] that zero flux implies invariance is somewhat indirect, as it
first proves that the capacity of ∂Ω with respect to h is zero and then uses this to deduce
the S -invariance of L2(Ω). Nevertheless, the same reasoning can be adapted to give
a direct proof of the invariance, since the proof can be reduced to a local estimate
as in [25]. The latter proof and this proof are an adaptation of the argument used to
prove [11, Proposition 6.5].

First, it suffices to prove that if ϕ ∈C∞c (Rd) then 1Ωϕ ∈ D(h). This is a consequence
of [8, Proposition 2.1] and locality of h. But this is obvious if the support of ϕ and
the boundary are disjoint. Therefore it suffices to consider ϕ with support close to the
boundary ∂Ω. Then, however, one can use a decomposition of the identity to reduce
to the case where supp ϕ ⊆ By(r) with y ∈ ∂Ω and r > 0 small.

Second, let τ, Ψ be as in (1.1). Without loss of generality we may assume that
Ψ(x) = x for all x ∈ Rd. For all n ∈ N define ψn : Rd → R by ψn(x) = χn(x1 − τ(x′)),
where x = (x1, x′) ∈ R × Rd−1 and χn : R→ R is defined by

χn(t) =


0 if t ≤ 1/n,

log(tn)/log n if 1/n < t < 1,

1 if t ≥ 1.

(3.6)

Then lim(ψnϕ) = 1Ωϕ in L2(Rd). Thus to establish that 1Ωϕ ∈ D(h), it suffices to prove
that {h(ψnϕ) : n ∈ N} is bounded. But

h(ψnϕ) ≤ 2h(ϕ) + 2
∫
|ϕ|2

d∑
k,l=1

ckl(∂kψn)(∂lψn)

≤ 2h(ϕ) + 2(log n)−2
∫
Rd−1

dx′
∫ τ(x′)+1

τ(x′)+1/n
dx1|ϕ(x)|2

〈νx,C(x)νx〉

(x1 − τ(x′))2

for all n ∈ N, where νx = (1, −(∇τ)(x′)). Since the coefficients ckl are in W1,∞(Rd),
there exists M > 0 such that

|〈ξ,C(x)ξ〉 − 〈ξ,C(z)ξ〉| ≤ M‖ξ‖2|x − z|
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for all x, z, ξ ∈ Rd. If x = (x1, x′) ∈ By(r), the function τ is differentiable at x′ and
x1 = τ(x′), then

〈νx,C(τ(x′), x′)νx〉 = (1 + |(∇τ)(x′)|2)〈nx,C(τ(x′), x′)nx〉 = 0

by the zero flux condition. It follows that 〈νx,C(x1, x′)νx〉 ≤ M1|x1 − τ(x′)| for all
x = (x1, x′) ∈ By(r) with τ differentiable at x′, where M1 = M(1 + ‖∇τ‖∞)2. Hence

(log n)−2
∫
Rd−1

dx′
∫ τ(x′)+1

τ(x′)+1/n
dx1|ϕ(x1, x′)|2

〈νx,C(x1, x′)νx〉

(x1 − τ(x′))2

≤ M1(log n)−2
∫
Rd−1

dx′
∫ τ(x′)+1

τ(x′)+1/n
dx1
|ϕ(x1, x′)|2

(x1 − τ(x′))

≤ M1(log n)−1‖ϕ‖2∞|K
′|

uniformly for all n ∈ N, where K′ ⊂ Rd−1 is a compact set such that supp ϕ ⊂ R × K′.
So {h(ψnϕ) : n ∈ N} is bounded, as required. In fact a slightly more detailed argument
establishes that limn→∞ h(ψnϕ − 1Ωϕ) = 0.

4. Core properties

In this section, we examine conditions that ensure that C∞c (Rd) is a core for the
degenerate elliptic operator H. Recall that H was defined in Section 1 as the Friedrichs
extension of H0 with domain D(H0) = C∞c (Rd). Therefore H generates a symmetric
sub-Markovian semigroup S . We discuss criteria for C∞c (Rd) to be a core of Hp,
the generator of the extension S (p) of S to Lp(Rd), in order to apply Theorem 1.1
to establish invariance properties.

First, we recall two known criteria for C∞c (Rd) to be a core of H(=H2).

P 4.1. If one of the following conditions is valid, then C∞c (Rd) is a core of H.

(I) The matrix (ckl(x)) is invertible for each x ∈ Rd.
(II) ckl ∈W2,∞(Rd) for all k, l ∈ {1, . . . , d}.

P. If condition (I) is valid, then C∞c (Rd) is a core, by the arguments in [5,
Theorem 3.1]. Davies requires that the coefficients are smooth, but if the coefficients
are bounded, then the smoothness condition can be relaxed to W1,∞(Rd). (See also the
proof of Theorem 4.8.)

If condition (II) is valid, then C∞c (Rd) is a core by [23, Section 6], or [9,
Proposition 2.3], or by an adaptation of the proof of Proposition 2.1 to second-order
operators. �

Note that condition (I) is equivalent to the requirement that µC(x) > 0 for each
x ∈ Rd, where µC(x) is the smallest eigenvalue of C(x) = (ckl(x)). This is a condition of
nondegeneracy that corresponds to strict ellipticity of H0. But condition (II) imposes
no such requirement. Indeed if the ckl ∈W2,∞(Rd), then one may even have µC(x) = 0
for all x ∈ Rd.
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E 4.2. If X1 = ∂1 and X2 = cos x1∂2 + sin x1∂3, then the coefficient matrix C(x)
of the operator H0 = −X2

1 − X2
2 on C∞c (R3) has eigenvalues (1, 1, 0) independent of x.

Therefore C(x) is not zero and not invertible for any x ∈ R3. Nevertheless the elliptic
operator H0 has C∞ coefficients, is hypoelliptic and is essentially self-adjoint. It is a
sub-Laplacian of the Euclidean motion group. See [6, Example II.5.1].

Our first aim is to establish a core result, Theorem 4.6, which involves a mixture
of the two conditions of Proposition 4.1. It establishes that the W2,∞ condition is only
necessary in the neighbourhood of the degeneracy set of the operator. Then we discuss
an alternative version with the differentiability condition replaced by a boundedness
property.

L 4.3. If χ ∈W2,∞(Rd) and ϕ ∈ D(H) then χϕ ∈ D(H).

P. Fix χ ∈W2,∞(Rd). Then it follows from [10, Lemma 3.4] that χϕ ∈ D(h) and

h( χϕ)1/2 ≤ ‖ χ‖∞h(ϕ)1/2 + ‖Γ( χ)‖1/2∞ ‖ϕ‖2

for all ϕ ∈ D(h), where for all τ ∈W1,∞(Rd) we define

Γ(τ) =

d∑
k,l=1

ckl(∂kτ)(∂lτ) ∈ L∞(Rd). (4.1)

If ϕ, ψ ∈C∞c (Rd), then

h(ψ, χϕ) = h( χψ, ϕ) −
d∑

k,l=1

∫
ψϕ(∂kckl∂lχ) − 2

d∑
k,l=1

∫
ckl(∂kϕ)(∂lχ)ψ.

So
|h(ψ, χϕ)| ≤ |h( χψ, ϕ)| + a‖ψ‖2‖ϕ‖2 + 2h(ϕ)1/2‖Γ( χ)‖1/2∞ ‖ψ‖2, (4.2)

where a = ‖
∑
∂kckl∂lχ‖∞. Then, by continuity, (4.2) is valid for all ψ, ϕ ∈ D(h). Finally,

if ϕ ∈ D(H), then

|h( χψ, ϕ)| = |( χψ, Hϕ)| ≤ ‖Hϕ‖2‖ χ‖∞‖ψ‖2

for all ψ ∈ D(h). Using (4.2), it follows that |h(ψ, χϕ)| ≤ c‖ψ‖2 for all ψ ∈ D(h) for
some c > 0. Therefore χϕ ∈ D(H). �

If ∅ , A ⊆ Rd and δ > 0, then define Aδ = {x ∈ Rd : dA(x) < δ}, where dA(x) denotes
the Euclidean distance from x to A. Then Aδ is an open subset of Rd.

L 4.4. Let H(1) and H(2) be degenerate elliptic operators with coefficients (c(1)
kl )

and (c(2)
kl ) in W1,∞(Rd), and let h(1) and h(2) be the corresponding quadratic forms.

Let U ⊆ Rd be an open set and suppose that c(1)
kl |U = c(2)

kl |U for all k, l ∈ {1, . . . , d}. Let
ϕ ∈ L2(Rd) \ {0} and δ > 0, and suppose that (supp ϕ)δ ⊆ U.

Then ϕ ∈ D(h(1)) if and only if ϕ ∈ D(h(2)). Moreover, if these conditions are
satisfied, then h(1)(ϕ) = h(2)(ϕ). Similarly, ϕ ∈ D(H(1)) if and only if ϕ ∈ D(H(2)) and
then H(1)ϕ = H(2)ϕ. Moreover, supp H(1)ϕ ⊆ supp ϕ.
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P. There exists χ ∈W2,∞(Rd) such that χ|supp ϕ = 1 and supp χ ⊆ U. Suppose that
ϕ ∈ D(h(1)). Then there exists a sequence ϕ1, ϕ2, . . . ∈W1,2(Rd) such that lim ϕn = ϕ in
D(h(1)). Then lim ϕn = ϕ in L2(Rd). But h(1)( χϕn) = h(2)( χϕn) and

h(1)( χϕn − χϕm) = h(2)( χϕn − χϕm)

for all n, m ∈ N. Therefore χϕ1, χϕ2, . . . is a Cauchy sequence in D(h(2)). Since
lim χϕn = ϕ in L2(Rd), one deduces that ϕ ∈ D(h(2)) and h(2)(ϕ) = h(1)(ϕ).

Finally, suppose that ϕ ∈ D(H(1)). If ψ ∈C∞c (Rd) and supp ψ ⊆ (supp ϕ)c, then

(H(1)ϕ, ψ) = h(1)(ϕ, ψ) = 0

by locality. Therefore supp H(1)ϕ ⊆ supp ϕ. Clearly ϕ ∈ D(h(1)) and, by the first part,
ϕ ∈ D(h(2)) too. Let ψ ∈ D(h(2)). Then χψ ∈ D(h(2)) and supp χψ ⊆ U. Therefore
χψ ∈ D(h(1)). Then by locality, one deduces that

h(2)(ϕ, ψ) = h(2)(ϕ, χψ) + h(2)(ϕ, (1 − χ)ψ) = h(2)(ϕ, χψ) = h(1)(ϕ, χψ).

So
|h(2)(ϕ, ψ)| = |h(1)(ϕ, χψ)| = |(H(1)ϕ, χψ)| ≤ ‖H(1)ϕ‖2‖ χ‖∞‖ψ‖2.

Therefore ϕ ∈ D(H(2)). If ψ ∈C∞c (U), then

(H(1)ϕ, ψ) = (ϕ, H(1)ψ) = (ϕ, H(2)ψ) = (H(2)ϕ, ψ).

Since supp H(1)ϕ ⊆ U and supp H(2)ϕ ⊆ U, it follows that H(1)ϕ = H(2)ϕ. �

P 4.5. Let A ⊆ Rd and δ > 0. Further, let H(1) and H(2) be degenerate
elliptic operators with W1,∞ coefficients (c(1)

kl ) and (c(2)
kl ). Suppose that ∅ , A , Rd,

c(1)
kl |Aδ = ckl|Aδ and c(2)

kl |(Ac)δ = ckl|(Ac)δ for all k, l ∈ {1, . . . , d}, and that C∞c (Rd) is a core
of both H(1) and H(2). Then C∞c (Rd) is a core of H.

P. Let τ ∈C∞c (Rd) be such that
∫
τ = 1 and τ(x) = 0 for all x ∈ Rd for which |x| >

δ/4. Let χ = τ ∗ 1Aδ/2 . Then χ ∈W2,∞(Rd), χ|Aδ/4 = 1 and supp χ ⊆ A3δ/4. Moreover,
supp(1 − χ) ⊆ (Aδ/4)c ⊆ Ac. There exist χ1, χ2 ∈W∞,∞(Rd) such that χ1|A3δ/4 = 1,
supp χ1 ⊆ Aδ, χ2|Ac = 1 and supp χ2 ⊆ (Ac)δ.

Let ϕ ∈ D(H). It follows from Lemma 4.3 that χϕ ∈ D(H), and consequently
(1 − χ)ϕ ∈ D(H). We shall show that we can approximate both elements by C∞c
functions. We may assume that χϕ , 0 , (1 − χ)ϕ. Since supp( χϕ) ⊆ A3δ/4, one
deduces from Lemma 4.4 that χϕ ∈ D(H(1)) and H(1)( χϕ) = H( χϕ). By assumption,
there exist ϕ1, ϕ2, . . . ∈C∞c (Rd) such that lim ϕn = χϕ in D(H(1)). Then lim χ1ϕn =

χ1χϕ = χϕ in D(H(1)) by Lemma 4.3. But χ1ϕn ∈C∞c (Rd) and supp χ1ϕn ⊆ Aδ for
all n ∈ N. Therefore χ1ϕn ∈ D(H) and H( χ1ϕn) = H(1)( χ1ϕn), again by Lemma 4.4.
So lim χ1ϕn = χϕ in D(H). Similarly, using H(2) and χ2, there exists a sequence
ψ1, ψ2, . . . ∈C∞c (Rd) such that lim χ2ψn = (1 − χ)ϕ in D(H). Then lim( χ1ϕn +

χ2ψn) = ϕ in D(H). Since χ1ϕn + χ2ψn ∈C∞c (Rd) the proposition follows. �
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T 4.6. Suppose that there exist a set A and δ > 0 such that ∅ , A , Rd, the
matrix (ckl(x)) is invertible for each x ∈ (Ac)δ and ckl|Aδ ∈W2;∞(Aδ). Then C∞c (Rd) is a
core of H.

P. There exists χ1 ∈W2,∞(Rd) such that χ1|Aδ/2 = 1 and supp χ1 ⊆ Aδ. Define
c(1)

kl = χ1ckl ∈W2,∞(Rd). Then c(1)
kl |Aδ/2 = ckl|Aδ/2 .

In addition there exists χ2 ∈W1,∞(Rd) such that χ2|(Ac)δ/2 = 1 and supp χ2 ⊆ (Ac)δ.
Define c(2)

kl = χ2ckl + (1 − χ2)δkl ∈W1,∞(Rd).
Let H(1) and H(2) be the degenerate elliptic operator with coefficients (c(1)

kl ) and (c(2)
kl ).

Then the statement of the theorem follows by applying Proposition 4.1(II) to H(1),
Proposition 4.1(I) to H(2) and using Proposition 4.5. �

The condition that C∞c (Rd) is a core of H does not follow in general from the
assumption that the coefficients are in W1,∞(Rd). The situation is clarified by the one-
dimensional example considered in [11, Section 5].

E 4.7. Let H0 = −dcd with D(H0)= C∞c (R) and with c(x) = (x2/(1 + x2))γ/2

where γ ≥ 1. Thus c ∈Wγ,∞(R). It follows by the arguments in [4, Proposition 3.5]
(see also [26, Theorem 1.1]) that C∞c (R) is a core of Hp if and only if γ ≥ 2 − 1/p. In
particular if γ = 1, which corresponds to the W1,∞ case, then C∞c (R) is a core of H1 but
is not a core of Hp for any p > 1. If, however, γ ≥ 2, the W2,∞ case, then C∞c (R) is a core
of Hp for all p ∈ [1,∞]. Finally, note that C∞c (R) is a core of H2 if and only if γ ≥ 3/2.

Theorem 4.6 establishes that double differentiability in a δ-neighbourhood of the
set of x ∈ Rd for which C(x) is not invertible suffices for C∞c (Rd) to be a core of H. In
one dimension this is precisely the set

Z = {x ∈ Rd : C(x) = 0} (4.3)

where C vanishes, and in higher dimensions it corresponds to the set of x for which
µC(x) = 0. The differentiability condition can, however, be weakened around the
boundary of Z. If there exists δ > 0 such that ckl ∈W2,∞(Zδ) for all k, l ∈ {1, . . . , d}
then there is a > 0 such that C(x) ≤ adZ(x)2I for all x ∈ Zδ/2. This follows since the
matrix C is positive semidefinite. In Corollary 4.12 we establish that the core property
follows with this weaker degeneracy condition replacing the W2,∞ condition under
the assumption that for every x ∈ Rd the matrix C(x) is either invertible or zero. The
corollary is a consequence of the subsequent analysis of core properties for p ∈ [1, 2].

Our analysis of core properties is based on an Lp extension of an argument used
to prove essential self-adjointness of Schrödinger operators and elliptic operators on
manifolds by various authors. A clear explanation of the L2 estimates is given in [5,
Section 3] together with references to earlier works. Moreover, [27, Proposition 6.1]
gives a straightforward Lp extension, valid for p ∈ [1, 2], of the principal L2 estimate
[5, Theorem 3.1]. (See also [29].) But for current applications a more sophisticated
localized extension is required.

Throughout the rest of this paper, we denote by Z the set (4.3) of all x ∈ Rd for
which C(x) = 0. Since the coefficients ckl are continuous, the set Z is closed and its
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complement Zc is open. Further, if p ∈ [1, 2], then we define r = p/(2 − p) ∈ [1,∞],
with the convention that r =∞ if p = 2.

T 4.8. Let p ∈ [1, 2]. Assume that |∂Z| = 0 and C(x) is invertible for each
x ∈ Zc. Further, assume that, for every bounded measurable set D ⊂ Rd, there exist
η1, η2, . . . ∈W1,∞(Rd) such that supp ηn ⊆Z

c and 0 ≤ ηn ≤ 1 for all n ∈ N,

lim
n→∞

∫
D
|ηnϕ|

2 =

∫
D
|1Zcϕ|2

for all ϕ ∈ L2(D) and
lim
n→∞
‖1DΓ(ηn)‖p/(2−p) = 0, (4.4)

where Γ is given by (4.1). Then C∞c (Rd) is a core of Hp.

P. It suffices to prove that (λI + Hp)C∞c (Rd) is dense in Lp(Rd) for a sufficiently
large λ > 0.

Fix τ ∈C∞c (Rd) such that 0 ≤ τ ≤ 1, supp τ ⊂ B2(0) and τ(x) = 1 for all x ∈ B1(0).
There exists λ0 > 0 such that |(∇τ)(x)| ≤ λ0 for all x ∈ Rd. Define λ = 4d+1λ0‖C‖∞,
where ‖C‖∞ = sup{‖C(x)‖ : x ∈ Rd}.

Suppose that ϕ ∈ Lq(Rd), where q is the dual exponent of p, and suppose also
that (ϕ, (λI + Hp)ψ) = 0 for all ψ ∈C∞c (Rd). Then (ϕ, ψ) = 0 for all ψ ∈C∞c (Z◦) and
ϕ|Z◦ = 0. Since |∂Z| = 0, one also has ϕ|∂Z = 0. So it remains to show that ϕ|Zc = 0.

Note that ϕ ∈ L2,loc(Rd), as q ≥ 2. Since (ϕ, (λI + H)ψ) = 0 for all ψ ∈C∞c (Zc), it
follows from local ellipticity that ϕ ∈W1,2

loc (Zc). Let ρ ∈C∞c (Rd) such that 0 ≤ ρ ≤ 1
and ρ , 0. Write D = supp ρ. By assumption, there exist η1, η2, . . . ∈W1,∞(Rd)
such that supp ηn ⊆Z

c and 0 ≤ ηn ≤ 1 for all n ∈ N, lim
∫

D
|ηnψ|

2 =
∫

D
|1Zcψ|2 for all

ψ ∈ L2(D), and lim ‖1DΓ(ηn)‖r = 0.
First, if τ1, τ2 ∈C∞c (Zc) with τ2|supp τ1 = 1, then

(τ2ϕ, (λI + H)(τ1ψ)) = (ϕ, (λI + H)(τ1ψ)) = 0

for all ψ ∈C∞c (Rd). Hence

λ(ϕ, τ1ψ) + h(τ2ϕ, τ1ψ) = 0

for all ψ ∈C∞c (Rd), and then by density for all ψ ∈W1,2(Rd). Second, for all n ∈ N, set
η̃n = ρηn. Then η̃n ∈W1,∞(Rd) with compact support in Zc. Now choose τ1 such that
τ1|supp η̃n = 1 and set ψ = η̃2

nϕ. It follows that ψ ∈W1,2(Rd) and τ1ψ = ψ. Therefore one
may estimate that

λ‖η̃nϕ‖
2
2 = −h(τ2ϕ, η̃

2
nϕ)

= −

d∑
k,l=1

∫
ckl(∂k(η̃nϕ))(∂l(η̃nϕ)) +

d∑
k,l=1

∫
cklϕ

2(∂kη̃n)(∂lη̃n)
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≤

∫
ϕ2Γ(ρηn)

≤ 2
∫

ϕ2ρ2Γ(ηn) + 2
∫

ϕ2Γ(ρ)η2
n

≤ 2‖ϕ‖2q‖ρ
2Γ(ηn)‖r + 2

∫
ϕ2Γ(ρ)η2

n,

where the last step uses the Hölder inequality. So the limit n→∞ gives

λ

∫
ρ2ϕ21Zc ≤ 2

∫
Γ(ρ)ϕ21Zc , (4.5)

and this is valid for all ρ ∈C∞c (Rd).
Next define τn ∈C∞c (Rd) by τn(x) = τ(2−nx) for each n ∈ N, and then define an =∫
τ2

nϕ
21Zc . Then, since r ≥ 1 and |B1(0)| ≥ 1, one has

an ≤ ‖ϕ‖
2
q‖τ

2
n‖r ≤ ‖ϕ‖

2
q|B2n+1 (0)|1/r ≤ ‖ϕ‖2q|B1(0)|2(n+1)d.

So the series
∑

4−ndan converges. But |∇τn| ≤ 2−nλ0τn+1 for all n ∈ N, by the definition
of λ0. Hence it follows from (4.5), with ρ replaced by τn, that

λ

∞∑
n=1

4−ndan ≤ 2
∞∑

n=1

4−nd
∫

ϕ21Zc‖C‖∞(2−nλ0τn+1)2

≤ λ2
0‖C‖∞

∞∑
n=1

4−ndan+1

≤ 4dλ2
0‖C‖∞

∞∑
n=1

4−ndan = 4−1λ

∞∑
n=1

4−ndan.

Therefore
∑∞

n=1 4−ndan = 0 and an = 0 for all n ∈ N. So ϕ1Zc∩B2n (0) = 0 for all n ∈ N
and ϕ1Zc = 0. Thus ϕ = 0. �

A similar result is valid for open sets Ω instead of Rd. This is particularly interesting
for applications toZc and connected components ofZc.

R 4.9. Suppose that p ∈ [1, 2] and that Ω ⊂ Rd is open. Assume that C(x)
is invertible for each x ∈Ω and that for every bounded measurable subset D of Ω

there exist η1, η2, . . . ∈W1,∞(Ω) such that supp ηn ⊆Ω and 0 ≤ ηn ≤ 1 for all n ∈ N,
lim

∫
D
|ηnϕ|

2 =
∫

D
|ϕ|2 for all ϕ ∈ L2(D) and

lim
n→∞
‖1DΓΩ(ηn)‖p/(2−p) = 0,

where ΓΩ(ρ) =
∑

ckl(∂kρ)(∂lρ) ∈ L∞(Ω). Define h0,Ω : C∞c (Ω)→ R by

h0,Ω(ϕ) =

d∑
k,l=1

∫
Ω

ckl(∂kϕ)(∂lϕ).
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The form h0,Ω is closable and its closure is a Dirichlet form in L2(Ω). Let HΩ,p be the
associated semigroup generator in Lp(Ω). Then C∞c (Ω) is a core of HΩ,p.

The conclusion follows by a modification of the proof of Theorem 4.8. Now
ϕ ∈ Lq(Ω) and one replaces Zc by Ω. One still chooses ρ ∈C∞c (Rd) but now
D = Ω ∩ supp ρ. Then η̃n = ρηn has compact support in Ω and one deduces as
before that

λ

∫
Ω

ρ2ϕ2 ≤ 2
∫

Ω

ϕ2Γ(ρ)

for all ρ ∈C∞c (Rd). This is a new version of (4.5). The subsequent argument is a
repetition of the proof of Theorem 4.8.

The next result is essentially a corollary of Theorem 4.8 combined with the capacity
estimates of [27, Proposition 4.3]. It exploits two distinct features of the degenerate
operator H0. The first feature is the order of degeneracy of the coefficients ckl near the
boundary ∂Z. The second is the effective dimension of this boundary. Recall that the
Minkowski dimension of a bounded nonempty subset A of Rd is defined by

dMin = d − lim
δ→0+

log |Aδ|

log δ

whenever the limit exists. The next theorem introduces local versions of the order
of degeneracy and the boundary dimension. By this we mean that the values of the
parameters γ and dm occurring in the following statement may depend on D.

T 4.10. Let p ∈ [1, 2]. Assume that Z , ∅, |∂Z| = 0 and C(x) is invertible for
each x ∈ Zc. Further, assume that for every nonempty bounded set D ⊂ Rd there are
a, b > 0, dm ∈ [0, d] and γ ∈ [1, 2] such that

(2 − γ)p ≤ (d − dm)(2 − p), (4.6)

C(x) ≤ adZ(x)γI and |(Z∩ D1)δ| ≤ bδd−dm

for all x ∈ D and δ ∈ (0, 1]. Then C∞c (Rd) is a core of Hp.

P. For all n ∈ N, set ηn = χn ◦ dZ, where χn is given by (3.6). Then ηn ∈W1,∞(Rd),
supp ηn ⊂Z

c and 0 ≤ ηn ≤ 1. Moreover, lim ηn = 1Zc pointwise.
Let D ⊂ Rd be bounded. We may assume that D , ∅. By assumption there exist

a, b > 0, dm ∈ [0, d] and γ ∈ [1, 2] such that (2 − γ)r ≤ (d − dm), C(x) ≤ adZ(x)γI for
all x ∈ D and |(Z∩ D1)δ| ≤ bδd−dm for all δ ∈ (0, 1]. Clearly lim

∫
D
|ηnϕ|

2 =
∫

D
|1Zcϕ|2

for all ϕ ∈ L2(D).
If p = 2, then r =∞ and γ = 2. But

‖1DΓ( χn ◦ dZ)‖∞ ≤ ‖C‖∞(log n)−2.
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Therefore (4.4) is valid. Alternatively, suppose that p < 2. Then r <∞ and

‖1DΓ( χn ◦ dZ)‖rr ≤ ar(log n)−2r
∫

[n−1≤dZ≤1]∩D
d−(2−γ)r
Z

= ar(log n)−2r
∫

[n−1≤dZ≤1]∩D
dx

(
1 + (2 − γ)r

∫ 1

dZ(x)
dδδ−1−(2−γ)r

)
= ar(log n)−2r

(
|D| + (2 − γ)r

∫ 1

1/n
dδδ−1−(2−γ)r |Zδ ∩ D|

)
.

But Zδ ∩ D ⊆ (Z∩ D1)δ for all δ ∈ (0, 1]. Hence |Zδ ∩ D| ≤ bδd−dm for all δ ∈ (0, 1].
Therefore ∫ 1

1/n
dδδ−1−(2−γ)r |Zδ ∩ D| ≤ b

∫ 1

1/n
dδδ−1−(2−γ)r+(d−dm)

≤ b
∫ 1

1/n
dδδ−1 = b log n,

(4.7)

since (d − dm) − (2 − γ)r ≥ 0. Therefore (4.4) is again valid and one can apply
Theorem 4.8 to deduce the desired result. �

R 4.11. If one applies Theorem 4.10 to the operator considered in Example 4.7,
then d = 1,Z = {0} and dm = 0. Therefore one concludes that C∞c (R) is a core of Hp if
(2 − γ)p ≤ (2 − p) or, equivalently, if γ ≥ 3 − 2/p. But the exact result is γ ≥ 2 − 1/p.
One concludes that the estimation method used to establish the theorem is not optimal
unless p = 1.

Theorem 4.10 has two straightforward corollaries.

C 4.12. Assume that Z , ∅, |∂Z| = 0 and C(x) is invertible for all x ∈ Zc.
Further, assume that for every bounded subset D ⊂ Rd there exists a > 0 such that

C(x) ≤ adZ(x)2I

for all x ∈ D. Then C∞c (Rd) is a core for H(= H2).

P. Apply Theorem 4.10 with p = 2, γ = 2 and dm = d. �

C 4.13. Assume that Z , ∅, |∂Z| = 0 and C(x) is invertible for all x ∈ Zc.
Further, assume that Zc has a locally Lipschitz boundary. Then C∞c (Rd) is a core
for H1.

P. Apply Theorem 4.10 with p = 1, γ = 1 and dm = d − 1. (The necessary bounds
C(x) ≤ adZ(x)I follow because ckl ∈W1,∞(Rd).) �

Finally, we consider the situation for which the Minkowski dimension of the
boundary exists. Note that even if the Minkowski dimension of the bounded nonempty
set A exists, this does not imply that there exists b > 0 such that

|Aδ| ≤ bδd−dMin (4.8)
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for all δ ∈ (0, 1]. Therefore the degeneracy criterion (4.6) is in general only valid
if dm > dMin. Nevertheless there are some interesting fractal cases for which the
conclusions of Theorem 4.10 persist with dm = dMin.

The Minkowski dimension always exists for self-similar fractals and is equal to
the Hausdorff dimension. But the bound (4.8) does not necessarily exist uniformly
for all δ ∈ (0, 1]. If, however, the contractions defining the fractal satisfy the open
set condition (see [17, Definition 5.2(1)]) then the Minkowski dimension can be used
in (4.6).

T 4.14. Let p ∈ [1, 2]. Further, let Ω be a bounded open set whose boundary
A = ∂Ω is a self-similar fractal for which the defining contractions satisfy the open set
condition. Let dMin denote the Minkowski dimension of A.

Assume that |A| = 0 and C(x) is invertible for each x ∈ Ac. Further, assume that
there exist γ ∈ [1, 2] and a > 0 such that

(2 − γ)p ≤ (d − dMin)(2 − p)

and C(x) ≤ adA(x)γI for all x ∈ Rd. Then C∞c (Rd) is a core of Hp.

P. The proof is a variation of the proof of Theorem 4.10, and we adopt the same
notation. If p = 2 then γ = 2, and one can argue as before.

Suppose that p , 2. It follows from [15, Theorem 2.3(ii)] that the mean

L = lim
T→∞

T−1
∫ T

0
dt
|Ae−t |

e−t(d−dMin)

exists. Then for all large n ∈ N one estimates∫ 1

1/n
dδδ−1−(2−γ)r |Aδ| ≤

∫ 1

1/n
dδδ−1−(d−dMin)|Aδ|

=

∫ log n

0
dt
|Ae−t |

e−t(d−dMin)
≤ (L + 1) log n.

This is the new version of (4.7). The remainder of the proof is evident. �

5. Illustrative examples

Theorem 1.1 provides a practical criterion for invariance of a subspace L2(Ω) under
the diffusion semigroup S ; it suffices to prove invariance under the flows T (1), . . . , T (d).
The latter property is, however, simpler to establish since the action of the T (k) is
straightforward. We illustrate this with four examples.

E 5.1 (One dimension). If d = 1, then the elliptic operator H is given by
one nonnegative coefficient c ∈W1,∞(R) and H0ϕ = −(cϕ′)′ for all ϕ ∈C∞c (R). Now
Z = {x ∈ R : c(x) = 0} is the zero set of the coefficient c. Let a ∈ Z. We argue that
L2(a,∞) is invariant under S .

Since c ∈W1,∞(R), the zero at the point a must be of order at least one. In particular,
c−1 is not integrable at a. Now (Ttϕ)(x) = ϕ(ωt(x)), where t 7→ ωt(x) is the unique
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solution of the differential equation (d/dt)ωt(x) = c(ωt(x)) with initial value ω0(x) = x.
Therefore it follows from the standard theory of differential equations that L2(a,∞) is
T -invariant. But (a,∞) has a Lipschitz boundary. Then by Theorem 1.1 the subspace
L2(a,∞) is S -invariant. Hence L2(−∞, a) is also S -invariant.

In addition, if a, b ∈ Z with a < b, then

L2(a, b) = L2(−∞, b) ∩ L2(a,∞)

is S -invariant. One concludes that if {Iα : α ∈ A} are the connected components of Zc

with Iα , Iβ if α , β, then S t =
⊕

α S (α)
t for all t > 0, where S (α) is the restriction of

S to L2(Iα). Let α ∈ A. Then it follows from Remark 4.9 that C∞c (Iα) is a core for the
operator HIα,1, where we use the notation of the remark. But the generator of S (α)(1)

(on L1(Iα)) is an extension of the operator HIα,1|C∞c (Iα). Hence HIα,1 is the generator of
the semigroup S (α)(1). Then HIα is the generator of S (α).

Note that since c > 0 on each of the connected components Iα of Zc it follows that
each S (α) is irreducible by [27, Proposition 6.10]. (Here we use the terminology of [21,
Definition 2.8].) In particular, the S (α) are ergodic, that is, there are no nontrivial closed
S (α)-invariant subspaces of L2(Iα) (see [21, Theorem 2.9]).

Theorem 1.1 also allows one to establish invariance properties for the semigroup
associated with an elliptic operator with bounded measurable coefficients. These
operators are introduced by a variation of the definitions of Section 1.

First, if C = (ckl) is a positive semidefinite matrix over Rd with real coefficients ckl =

clk ∈ L∞(Rd), then ϕ 7→
∑d

k,l=1(∂kϕ, ckl∂lϕ) with domain C∞c (Rd) is a positive, densely
defined, quadratic form on L2(Rd). But it is not necessarily closable. Nevertheless one
can define its relaxation, or viscosity closure, h (see, for example, [11] and references
therein). Then h is a Dirichlet form and the corresponding self-adjoint operator H
generates a sub-Markovian semigroup S . If the coefficients (ckl) are Lipschitz then
this definition, which we now adopt, coincides with the definition of Section 1. (For a
direct definition of the operator H see [2, Theorem 1.1].)

Invariance for operators with measurable coefficients can be deduced from
invariance for operators with Lipschitz coefficients by the following comparison result.

L 5.2. Let H(1) and H(2) be two degenerate elliptic operators with bounded
real symmetric measurable coefficients C(1) and C(2), and S (1) and S (2) be the
corresponding semigroups. Further, let Ω be a measurable subset of Rd.

If C(2) ≤C(1) and L2(Ω) is S (1)-invariant, then L2(Ω) is also S (2)-invariant.

P. This follows from [8, Corollary 2.11]. �

E 5.3 (Lipschitz domain). Let H be the elliptic operator on L2(Rd) with
bounded real symmetric measurable coefficients C = (ckl). Let Ω ⊆ Rd be open
with locally Lipschitz boundary. Assume that A = ∂Ω , ∅ and there is a > 0 such
that C ≤ adAI. Then L2(Ω) is invariant under the semigroup S generated by H. This is
established as follows.
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Since the coefficients are bounded, there exists M > 0 such that C ≤ MI. Set
c = adA ∧ M. Then c ∈W1,∞(Rd) and C ≤ cI. Let HA denote the elliptic operator with
coefficient matrix cI. Since c ∈W1,∞(Rd), it follows from Theorem 1.1, Proposition 1.2
and Lemma 5.2 that it suffices to prove that L2(Ω) is invariant under the flows Tψ with
coefficients yψ,k = c(∂kψ) for all ψ ∈C∞c (Rd).

Because dA(x) = 0 for all x ∈ A, it follows that c(x) = 0 and yψ,k(x) = 0 for all x ∈ A
and k ∈ {1, . . . , d}. Therefore etYψ x = x for all x ∈ A and t ∈ R. Let y ∈Ω. Suppose
that there exists t ∈ R such that etYψy <Ω. We may assume that t > 0. Since the
orbit s 7→ esYψy is continuous, there must be an intermediate value u ∈ (0, t] for which
euYψy ∈ A. But then

etYψy = e(t−u)Yψ(euYψy) = euYψy ∈ A,

which is a contradiction. Therefore etYψΩ ⊆Ω and Tψ
t L2(Ω) ⊆ L2(Ω) for all t ∈ R.

It is possible to characterize the generator of the restriction of S to L2(Ω). If χn is
as in (3.6) and ηn = ( χn ◦ dA)|Ω, then

lim
n→∞

∥∥∥∥∥1D

d∑
k=1

c|∂kηn|
2
∥∥∥∥∥

L1(Ω)
= 0

for every bounded measurable set D ⊂ Rd, by the arguments to prove Corollary 4.13.
Then, by the domination assumption, one also has

lim
n→∞

∥∥∥∥∥1D

d∑
k,l=1

ckl(∂kηn)(∂lηn)
∥∥∥∥∥

L1(Ω)
= 0.

It follows by Remark 4.9 that C∞c (Rd) is a core for the operator HΩ,1, where we use the
notation of the remark. Then it follows, as in Example 5.1, that HΩ is the generator of
the restriction of S to L2(Ω).

Example 5.3 is based on the second invariance criterion of Theorem 1.1, the
Lipschitz property of the open set. But one can also derive an analogous statement
from the first criterion of the theorem, the core property of C∞c (Rd). In particular,
Theorem 4.10 establishes this latter property from a second-order degeneracy on the
boundary.

E 5.4 (General domain). Let H be the degenerate elliptic operator with
bounded real symmetric measurable coefficients C = (ckl). Let Ω ⊆ Rd be open with
boundary A = ∂Ω. Assume that A , ∅ and |A| = 0. Further, assume that there is a > 0
such that C ≤ a(dA)2I. We again argue that the subspace L2(Ω) is invariant under the
semigroup S generated by H.

Let M > 0 be such that C ≤ MI. Set c = a(dA)2 ∧ M. Let HA denote the elliptic
operator with coefficient matrix cI. Then c ∈W1,∞(Rd), C ≤ cI ≤ a(dA)2I and c(x)I is
invertible for each x ∈ Ac. But now it follows from Corollary 4.12 that C∞c (Rd) is a core
of HA. Hence, by Theorem 1.1, Proposition 1.2 and Lemma 5.2, it suffices to prove
that the subspace L2(Ω) is invariant under the flows Tψ with coefficients yψ,k = c(∂kψ)
for all ψ ∈C∞c (Rd). But this follows by repetition of the argument in Example 5.3.
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As before, the operator HΩ is the generator of the restriction of S to L2(Ω). This
follows as in Example 5.3, but this time one has to apply Remark 4.9 with p = 2.

E 5.5 (The von Koch snowflake). The snowflake is a self-similar fractal in
R2 with Minkowski dimension dMin = log 4/log 3. Let Ω be the bounded subset of R2

which is bounded by the snowflake. Let H be the degenerate elliptic operator on L2(Rd)
with bounded real symmetric measurable coefficients C = (ckl) ≥ 0 and assume that
there is a > 0 such that C ≤ a(d∂Ω)dMin I. Then L2(Ω) is invariant under the semigroup
S generated by H.

This follows from Theorem 4.14 since the defining contractions for the snowflake
satisfy the open set condition. One then argues as in Example 5.3.

Further illustrations of invariances and decompositions are given by tilings. For
example, assume that one has a tiling of the plane by tiles whose boundaries are self-
similar fractals of the type covered by Theorem 4.14. (This can be achieved with two
sizes of von Koch snowflake in area ratio 1:3.) Then assume that the coefficient matrix
C has a degeneracy on the boundary of order greater than or equal to the Minkowski
dimension. It follows that the corresponding sub-Markovian semigroup S leaves
each component Iα of the tiling invariant and one has a corresponding decomposition
S =

⊕
S (α) of S into irreducible components.
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