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Abstract. We prove that exponentially harmonic morphisms are precisely the
Riemannian submersions with minimal ®bres.
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1. Introduction. Let �M; g� and �N; h� be two Riemannian manifolds, and
� : M! N a smooth map. For any compact domain 
 �M de®ne the exponential-
energy of � (cf. [3]) by

E��� �
Z




exp�e���� vg ;

where e��� � 1
2 kd�k2 is the energy density of � and vg the Riemannian volume ele-

ment. A smooth map � : �M; g� ! �N; h� is an exponentially harmonic map if it is an
extremal of the exponential-energy E for any compact domain 
 �M.

The Euler-Lagrange equation of this problem can be written (cf. [3]) as

t��� � div�exp e��� d�� � exp e�������� � d� grad e���� � 0;

where � is the usual tension ®eld given by ���� � div�d��. We recall for further use
that a map satisfying ���� � 0 is a harmonic map; i.e. a critical point of the energy
E��� � RM e��� vg (cf. [4]).

An exponentially harmonic morphism is a smooth map � : �M; g� ! �N; h� which
pulls back local exponentially harmonic functions to exponentially harmonic func-
tions.

The aim of this note is to prove the following result.

Theorem 1.1. A smooth map � : �M; g� ! �N; h� is an exponentially harmonic
morphism if and only if it is a Riemannian submersion with minimal ®bres.

2. Preliminaries.

2.1 Horizontal weak conformality. Let � : �M; g� ! �N; h� be a smooth map
between two Riemannian manifolds. The tangent space at a point x 2M can be
decomposed as TxM � Hx � Vx ; where Vx � ker�d�x� andHx � Vx

?. The spaces Vx

andHx are called the vertical and horizontal spaces at the point x 2M respectively.
Let C� � x 2M j rank�d�x� is not maximal

� 	
be the set of critical points of d�.
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Definition 2.1. A map � : �M; g� ! �N; h� is called horizontally weakly con-
formal if, for every x 2M n C�, d�xjHx

is conformal and surjective.

If � : �M; g� ! �N; h� is horizontally weakly conformal, then there exists a
function � : M n C�ÿ!R� such that �2gx�X;Y� � h��x��d�x�X�; d�x�Y�� ; for all
X;Y 2 Hx, and x 2M n C�. The function � can be extended continuously to the whole
ofM by setting �jC� � 0. The extended function is called the dilation function of �.

Note that �2 is smooth.

Remark 2.2. If d� �grad e���� � 0, then � is exponentially harmonic if and only
if it is harmonic. If � is horizontally weakly conformal, then e � n

2 �
2, and the con-

dition d� �grad e���� � n
2 d� �grad �2� � 0 means that � is horizontally homothetic;

i.e. grad(�2) is vertical.

A Riemannian submersion is a horizontally weakly conformal map with �2 � 1.
Riemannian submersions are harmonic maps if and only if the ®bres are minimal
submanifolds (cf. [4]), and from Remark 2.2, they are exponentially harmonic if and
only if the ®bres are minimal submanifolds.

2.2 Existence of exponentially harmonic functions. Throughout the rest of this
article, we assume the Einstein convention on the summation of repeated indices.

Proposition 2.3. Let �Nn; h� be a Riemannian manifold. Then, for any point
q 2 N and any set of constants C��

� 	 �C�� � C���; C�f g where �; � 2 1; . . . ; nf g,
satisfying X

�

C�� �
X
�;�

C�C�C�� � 0; �2:1�

there exists an exponentially harmonic function f de®ned on a neighbourhood U � N of
q such that in a system of normal local coordinates �y�� centred on q we have

@2f

@y�@y�
�q� � C��;

@f

@y�
�q� � C�:

Proof. The exponential tension ®eld t is an elliptic operator, though not uni-
formly (cf. [3]). Moreover t is quasi-linear (as de®ned in [5]) since for a map � from a
manifold �M; g� equipped with a system of coordinates �xi�i�1;...;dimM to a manifold
�N; h� equipped with �y����1;...;dimN, the terms of highest order, i.e. of order two, of
t��� are

exp e��� gij
@2��

@xi@xj
� gijh�
g

kl @�
�

@xi
@�


@xl
@2��

@xk@xj

� �
;

which are linear in the second derivatives of the map �.
Proposition 2.3 is then an application of [1, Theorem 2.4], which basically states

that, for quasi-linear elliptic operators, in®nitesimal solvability, i.e. Condition (2.1),
implies local solvability. &
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3. Characterisation.

Proposition 3.1. (Composition Law). Let � : �M; g� ! �N; h� and
 : �N; h� ! �P; k� be two maps between Riemannian manifolds. Then the exponential
tension ®eld of the composition  � � has the form

t� � �� � exp e� � ��
�
d ������ � trace �rd � d�; d�� �

� 1

2
�2d� � �� grad kd�k2 � 1

2
kd�k2d� � �� grad �2

�
;

where � � jd� ���jjd�j .

Proof. This follows from the equations

gradkd� � ��k2 � grad
kd� � ��k2
kd�k2 kd�k2

� �
� kd�k2 grad �2 � �2 grad kd�k2

and the usual composition law of the tension ®eld:

�� � �� � d ������ � trace �rd � d�; d�� �: &

Proposition 3.2. Let � : �M; g� ! �N; h� be a Riemannian submersion. Then � is
an exponentially harmonic morphism if and only if � is harmonic.

Proof. Let f : �N; h� ! R be a function. From the composition law we have

t�f � �� � exp e�f � ��
�
df������ � trace �rdf� d�; d�� �

� 1

2
�2d�f � �� grad kd�k2 � 1

2
kd�k2d�f � �� grad �2

�
;

where � � jd�f���jjd�j .

Using the fact that � : M! Nn is a Riemannian submersion we obtain

gradkd�k2 � 0; �2 � kdfk
2

n
;

kd�k2
n
� 1; trace �rdf� d�; d�� � � ��f� � �:

From these equalities the composition law becomes

t�f � �� � exp e�f� df������ � t�f� � �:

If � is harmonic we have

t�f � �� � t�f� � �;
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which implies that � is an exponentially harmonic morphism. Conversely, if � is an
exponentially harmonic morphism, then for any exponentially harmonic function f
we have

df������ � 0

which implies that ���� � 0. &

Proposition 3.3. Let � : �M; g� ! �N; h� be a non-constant exponentially
harmonic morphism. Then � is a Riemannian submersion.

Proof. For a given point x 2Mm, we equip �Mm; g� with a system of normal
coordinates �xi�i�1;...;m around x and �Nn; h� with normal coordinates �y����1;...;n
centred on ��x�. In the sequel we write f� for @f

@y� and ��i for @��

@xi . In normal coordi-
nates the exponential harmonic tension ®eld is

t���� � ��ii �
X
�

��i �
�
j �

�
ij:

Let f : N! R be an exponentially harmonic function in a neighbourhood of ��x�.
Since � is an exponentially harmonic morphism we have

t�f � �� � f�� �
�
i �

�
i � f� f� f
� �

�
i �

�
j �



i �

�
j � f� �

�
ii � f� f� f
 �

�
i �

�
j �



ij � 0: �3:1�

Proposition 2.3 implies, for each 
 2 �1; . . . ; n� the existence of an exponentially

harmonic function f such that at ��x�, @2f
@y�@y� � 0 and @f

@y� � ��
 . At x, (3.1) implies that

�
ii � �
i �
j �
ij � 0 : �3:2�

We apply Proposition 2.3 again, this time with C� � 0 and any C�� � C�� such thatP
C�� � 0, and we deduce from (3.1) that

C�� �
�
i �

�
i � 0:

This condition implies in a standard way (cf. [2, p. 42]) that � is horizontally weakly
conformal; i.e. ��i �

�
i � �2 ���. Using the horizontal conformality, (3.1) becomes

�2 f�� � �4 f� f� f�� � f� �
�
ii ��f� f� f
 ��i ��j �
ij � 0:

Using Proposition 2.3 again, with C� � 0; � 6� �0;C�0 � 1 and any C�� � C�� such
that

P
C�� � C�0�0 � 0, we obtain

�2 f���1ÿ �2� � ��0ii � ��0i ��0j ��0ij � 0:

Also, using (3.2), we ®nally have
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�2 f���1ÿ �2� � 0;

which implies �2 � 1 and thus � is a Riemannian submersion. &

Combining Proposition 3.2 and Proposition 3.3 yields Theorem 1.1.
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