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ON SPREADS IN PG(3,2°) THAT ADMIT
PROJECTIVE GROUPS OF ORDER 2¢

by V. JHA and N. L. JOHNSON*

{Received 23rd May 1984)

Let T be a spread in 2=PG(3,q); thus I consists of a set of g>+1 mutually skew
lines that partition the points of #. Also let A be the group of projectivities of # that
leave I' invariant: so A is the “linear translation complement” of I', modulo the kern
homologies. Recently, inspired by a theorem of Bartalone [1], a number of results have
been obtained, in an attempt to describe (I, A) when ¢* divides |A| A good example of
such a result is the following theorem of Biliotti and Menichetti [3], which ultimately
depends on Ganley’s characterization of likeable functions of even characteristic [5].

Theorem A (Biliotti, Menichetti, Ganley [3,5]. Suppose q is even and A contains a
2-group G such that

(i) G fixes one component of T and acts regularly (and transitively) on the other gq°
components; and
(ii) the elations in G form a subgroup of order q.

Then I is a spread of a semifield plane, a Liineburg plane [11], a Betten plane [2], or the
Biliotti-Menichetti “elusive” plane of order 8% in this case |A|=8* [3, Theorems 3.1 and
3.2].

The object of this note is to derive the following consequence of Theorem A.

Theorem B. Let I' be a spread in PG(3,q) with q even and let A be the group of
projectivities leaving T invariant. Assume u is a 2-primitive divisor of q— 1. Then ug> IAI
only if I is a semifield spread, a Betten spread or a Liineburg spread.

Some background

To prove Theorem B we shall require in addition to Theorem A, the following recent
results.

Result 1 (Jha, Johnson and Wilkie [8, Theorem 1.1])). A spread of even order n
admitting a shears group of order n/2 is a semifield spread.

Result 2 (Dempwolff [4], Johnson and Wilkie [10]). Let II' be an affine translation
plane of even order q*>. Suppose AutTl' contains a group B of order q such that B fixes

*This work was done when the first author was visiting the University of lowa during 1983-84.
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elementwise a Baer subplane 1, of order q and assume B centralizes a group of kern
homologies of order q—1. Then B cannot normalize an elation group of order q unless
qg=2.

Proof. Let y be the axis of an affine elation group E, of order g, that is normalized
by B. Thus y is in IIl; and by Dempwolff [4,2.7] E centralizes B. Now apply Johnson
and Wilkie [10, Lemma 2.7].

Result 3 (Jha, Johnson and Wilkie {8, Theorem 1.2]). Let G be in the linear
translation complement of an affine translation plane TI' of even order q?, with F, in its
kern. Suppose G is nonsolvable and contains no elations. Then if G is reducible

(i) every involution in G fixes A, a derivable slope set; and
(ii) every affine elation with axis through A leaves A invariant.

Proof of Theorem B

We begin by restating the hypothesis of Theorem B in the following convenient form.

Hypothesis (H). II' is an affine translation plane of even order ¢? with F, in its kern
and A denotes the linear translation complement of IT' based at an affine point 0. A
satisfies both the following conditions.

(@) ¢?||A; and
(ii) 30e A such that (9|l #identity and ¢ is a u-element, where u is a 2-primitive
(="“primitive” from now on) divisor of g—1.

A Baer subplane of TT cannot be centralized by a group of order g So hypothesis
(H) implies that every Sylow 2-subgroup of A fixes exactly one line of IT'. Hence the
following conventions are justified.

Notation (N). G is a Sylow 2-subgroup of A and y is the unique component of the
spread associated with TT' that is invariant under G. Let E denote the group of elations
in G with axis y and let yg=Fix(G)y.

Now hypothesis (H)(i) immediately implies the following.

Lemma 1. If TI' is not a semifield plane then yg is a one-dimension [, subspace of x
and |E|2(|G|/9)zq.

Lemma 2. y is left invariant by a u-element ¢ € A such that ¢|l #identity.

Proof. Let p be the set of lines through O that are fixed by at least one Sylow 2-
subgroup of A. Also let X be the group generated by all the shears in A. If |,u|=1 we are
done (hypothesis (H)(ii)), so assume I u|> 1. Now the Hering—Ostrom theorem [11,
Theorem 35.10] and Lemma 1 show that for some h=0 we have either

(i) TxSZ(2"q) and |u|=(2"9)>*+1, or
(i) T=SL(2,2"q) and |u|=2"q+1.
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As TI has order g2 case (i) only occurs when |u| =¢*+1, £=5Z(qg) and so by Liebler
[11, Theorem 31.1], IT is a Liineburg plane and the lemma holds. It remains to consider
the case T=~SL(2,2"q). Now Z=~S8I(2,q) or SL(2,4%), e.g, use the fact that log,2"q
divides log, g? (Johnson and Ostrom [9, Theorem 2.12]). Hence by Schaeffer’s theorem
(see [11, Theorem 49.6]), IT is Desarguesian. Hence the lemma is valid.

We now require some information about the action of GIL(2,q) on its standard
module y.

Lemma 3. Let V be a 2-dimensional vector space over F, and let T =GL(V,F).
Suppose G, and G, are 2-groups in I" such that Fix(G,)#Fix(G,) but G,=G} for a u-
element veI'. Assume IGII>2. Then H, the full group of unimodular elements in {G,v), is
isomorphic to SL(2,q%) for a =% or 1. Moreover, the Sylow 2-subgroup of {(G,,v) are in H.

Proof. As q is even, ' =2@® C, where X=S8L(2,q) and C is the scalar group in I'.
Thus v=v, ®y where v;eX is a v-clement and yeC); also v;#1 because otherwise
G,=G|=G,. Now H={G,,G,,v,> and H is unimodular. Hence by Dickson’s list of
subgroups of PSL(2,q) [7, Hauptsatz 8.27], we must have H=SL(2,2% for some s
dividing r=log, g. Since u|2?*—1 and u is a primitive divisor of 2"—1, we now have
r|2s. The lemma follows.

Lemma 4. Suppose Il is not a semifield plane. Then there is a u-element ve A such
that

(1) v leaves y invariant;

(i) v|l#identity; and

(1)) v(xg)=xe-

Proof. Let U be a maximal u-group in A that leaves y invariant. By Lemma 2,
Ull #identity. So it is sufficient to verify that y; is invariant under U. Assume this is
false. Now there is a v in U such that Fix(G*)nx # xs- Next consider T=<v,G) and let

T=T|y. Observe that 4“7"[ because otherwise by Result 1, IT is a semifield plane. So
Lemma 3 applies to T and hence H, its unimodular subgroup, satisfies

H=SL(2,q") for a=iorl.

Now let H be the preimage of the restriction map T—T|y. We now proceed in a series
of steps.

Step A. |E|2q*~* and Q, the set of nontrivial E-orbits on I, has cardinality <q°.
Proof. By Lemma 3, H>G and so H>G. Thus G= G|y has order precisely ¢*. Since
E is the kernel of the restriction map G—G|y we now have |E|24¢%/¢* and the step

follows.

Step B. H fixes some member of Q.
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Proof. Suppose first that a nontrivial homology in H has y as its axis. Now by
Andre’s theorem [6, Theorem 4.25] the set € of centres of all the nontrivial homologies
in H with axis y form an E-orbit that is clearly H invariant. So we may assume H
contains no homologies with axis y. Now H=H/E is a permutation group of Q. But
|Q| <q* (Step A) and H=SI(2,q%) and so by Galois [7, Satz 8.28], H acts trivially on Q.
Hence Step B is valid.

Step C. H=EH, where t is a point of |—(InY).

Proof. By Step B we may choose ¢ to be in an E-orbit that is H invariant. Now
|H|=|E||H,|=H=EH,.

Step D. H, fixes elementwise q+1 distinct slopes and H contains no homologies with
affine axis.

Proof. By Step C, H,~ H/E is certainly nonsolvable and contains no elations. So by
Result 3, H, fixes elementwise g+ 1 slopes. Thus H, contains no homologies. Hence H
does not contain any homology because any prime order homology in H would fix
some slope in the E-orbit of t. This could imply that H, contains a homology. Hence the
step is valid.

Since H contains no homologies the restriction map H—H | x has kernel E and now
H,2H/Ex~H=~SIL(2,q? for a=% or 1. Now by Schiffer’s theorem (see [11, Theorem
49.6]), IT is a Hall plane or a Desarguesian plane. Only the latter plane is consistent
with our hypothesis and so the lemma is proved.

Lemma 5. If I is not a semifield plane then A contains a subgroup H such that

@) HoG;
(i) |H|=u|G| for some a=1; and
(i) H | X = identity.

Proof. Choose v to satisfy conditions (i)}(ii1) of Lemma 4 and let U be the Sylow u-
subgroup of the kern homologies in A; thus U is the biggest subgroup of A fixing /
elementwise. Now if uf =|U| then w’||g—1 (or I is Desarguesian and the lemma holds).
Now v¢ U and so the u-group U,={v,U) leaves y; invariant and clearly cannot be
faithful on it. So we may choose v, #1 in the kern of U1—>U1|XG and let L=<{v,,G).
Since L fixes x; and y it is readily seen to be solvable. Thus a Hall {u,2} subgroup of L
can be written as H.

We now use the following lemma on vector spaces to study the action of H on the
elation group E.

Lemma 6. Let V be a vector space of order n=2°<q*. Suppose O is a u-element in
GL(V, +). Then either Fix(0)+0 or |V|=q.

Proof. Suppose W is an irreducible (@) submodule of V and that @lW%identity.

Hence O is clearly semiregular on the nonzero points of W and so u divides |W|— 1. But
now as u is a primitive divisor of g—1 we get |W|=q”' for some integer m=1. But
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|V|<g* and so every irreducible module W, not in Fix(0), has order g. However, by
Maschke’s theorem, V is a direct sum of irreducible (@)-module and so either V=W or
Fix(0)#0. The lemma follows.

From now on H will always be as in Lemma 5, and we shall tacitly assume that II is
not a semifield.

Lemma 7. H has no homologies with axis j.

Proof. If false then by Andre’s theorem (cf. Step B of Lemma 4) we have
H=H_E

for some homology centre xel—(I N a).

Now if he H, is a nontrivial homology then h normalizes E but cannot centralize any
element of E—{1}. But we also have |E|<q? since IT is not a semifield plane. Hence
Lemma 6 implies that |E|=gq and now q“Hxl, contrary to Result 2.

Lemma 8. G<aH.

Proof. We must verify that H is 2-closed. So let g, and o, be distinct 2-elements in
H. Since Fix(H)=y4, 0, [ ¥c and 02| ¥ are both involutions fixing y,; elementwise and so
0,0, is also an involution. Thus (¢,0,)* is a central collineation with axis y. Now by
Lemma 7, (6,0,)* is at most an elation and so (¢,06,)*=1. Hence H is 2-closed and the
lemma is proved.

Lemma 9. Suppose O+ 1 is a u-element in H and let ge G—E. Then Og +#g0.

Proof. Assume false and let .# be the set of all Maschke complements of y; in y,
relative to (9!)(. Now g leaves ./ globally invariant and yet cannot fix any M € .# since
then g would become an elation: recall g already fixes y; elementwise. Thus IJI |22 and
so (9| y is a scalar map. But since (9[ xe=1, @ must now be a homology, contrary to
Lemma 7.

Lemma 10. |G,|=1 for some xel—(lny).

(N.B. This lemma fails in some semifield planes.)

Proof. Let U be a Sylow u-subgroup of H. So U fixes some xel—(Iny). Suppose if
possible that G,# 1. Now by Lemma 8, H, and therefore H,, are 2-closed. Thus G, is
normalized by U as U< H,. Now by Lemma 9, U is semiregular on G, and so ”“le -1
Hence the primitivity of u implies that |G,|§q; now Lemma 1 contradicts Result 2.
Hence the lemma is valid.

We can now verify the conditions (i) and (ii) of Biliotti and Menichetti (Theorem A).
Proposition 11. Assume T1' is a translation plane satisfying hypothesis (H) but that TI*

is not a semifield plane. Let G be a Sylow 2-sub-group of A, the linear translation
complement of T1, and E the elation subgroup of G. Then
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(i) |E|=g; and
(i) G fixes exactly one point x€l and is regular on |—{x}; in particular |G| =q2

Proof. Part (i) is Lemma 10. If part (i) fails then by Lemma 1, |E|=2‘*q for some
e=1. Now Lemmas 8 and 9 imply that u||G|—-|E| and so

4_,

uze

Hence we contradict the primitivity of u if |E| #q. Hence the proposition is valid.
Now Theorem B immediately follows from Proposition 11 and Theorem A.
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