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Abstract
We prove that a homomorphism between free groups of finite rank equipped with the bi-invariant word metrics
associated with finite generating sets is a quasi-isometry if and only if it is an isomorphism.

1. Introduction

Let Fm and Fn be free groups of rank m and n, respectively, equipped with the bi-invariant word metrics
associated with finite generating sets (see Section 2 for definitions).

Theorem 1.1. Let n ≥ 2. A homomorphism ϕ : Fm → Fn is a quasi-isometry if and only if it is an
isomorphism.

It is well known that if both Fm and Fn are equipped with the standard left-invariant word metrics
associated with finite generating sets (such metrics are not bi-invariant) then the inclusion of a finite
index subgroup is a quasi-isometry [5, Corollary 5.31]. Thus, the above theorem is in contrast with the
classical geometric group theory. It can be considered as a form of rigidity where being a homomorphism
and a quasi-isometry implies being an isomorphism. It is interesting to what extent this rigidity can be
generalised. For example, we do not know whether a general map, not necessarily a homomorphism,
between free groups of different ranks can be a quasi-isometry. In particular, the question in the title
remains open (see also [7, Question 10.2.4] for a related question). On the other hand, we know that it
does not hold for other groups. For example, the abelianisation homomorphism N → Zn, from a torsion-
free nilpotent group is a quasi-isometry [1, Theorem 5.8]. Bi-invariant word metrics and their general
properties, particularly in connection to free groups, are discussed in [1,4,6].

The proof of Theorem 1.1 splits into three cases:

(a) If ϕ is an isomorphism then it is a quasi-isometry.
(b) The image of ϕ is a proper subgroup of finite index in Fm, in which case we prove that

ϕ is distorted by showing that it carries an unbounded set in Fm to a bounded set in Fn

(Proposition 3.4).
(c) The image of ϕ has infinite index in Fm, in which case we show that ϕ is not quasi-surjective

(Proposition 3.6).
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2 Jarek Kędra and Assaf Libman

2. Preliminaries

The material presented in this section is well known and can be found, for example, in Bridson-Haefliger
[2] or Calegari [3].

2.1. Word metrics

Let G be a group generated by a set S ⊆ G. The corresponding word norm is defined by

|g|S = min
{
n ∈ N | g = s1 . . . sn, si ∈ S±1

}
and the associated metric by dS(g, h) = |g−1h|S. This metric is left-invariant.

The closure of S ⊆ G to inverses and conjugation is the set

S = {gsg−1:s±1 ∈ S, g ∈ G}. (2.1)

We say that S normally generates G if S generates G. In this case, the word norm |g|S on G is invariant
with respect to conjugation, we denote it by

‖g‖S

and call it the conjugation-invariant word norm on G associated with S. The metric dS(x, y) =
‖x−1y‖S = ‖xy−1‖S on G is bi-invariant. We abusively denote it by dS (since we are only interested in
bi-invariant metrics). If S is finite then the Lipschitz class of dS is maximal in the sense that for any
bi-invariant metric d on G, the identity map id : (G, dS) → (G, d) is Lipschitz.

Lemma 2.1. Let S ⊆ G be a finite set normally generating G. Let d be any bi-invariant metric on G.
Then the identity Id : (G, dS) → (G, d) is Lipschitz. In particular, bi-invariant word metrics associated
with finite normally generating sets are bi-Lipschitz equivalent.

Proof. Let C = max{d(s, 1) | s ∈ S} = max{d(s, 1) | s ∈ S}, where the second equality follows from
the bi-invariance of d. Let g, h ∈ G and let n = dS(g, h) = ‖g−1h‖S. This means that g−1h = s1 . . . sn for
some si ∈ S. We have the following estimate, which shows that the identity is Lipschitz.

d(g, h) = d(1, g−1h)

= d(1, s1 . . . sn)

≤ d(1, s1) + d(s1, s1 . . . sn) ( by triangle inequality)
= d(1, s1) + d(1, s2 . . . sn) (by left-invariance)

≤
n∑

i=1

d(si, 1) ≤ C n = C dS(g, h).

Let Fn = 〈s1, . . . , sn〉 be the free group of rank n. We call the set {s1, . . . , sn} the standard generating
set. In this paper, we are concerned with the bi-invariant word metrics on free groups of finite rank
associated with their standard generating sets.

2.2. Quasi-isometries

A map ϕ : (X1, d1) → (X2, d2) between metric spaces is called a quasi-isometry if

1. There exist C> 0 and D ≥ 0 such that for every x, y ∈ X,
1

C
d1(x, y) − D ≤ d2(ϕ(x), ϕ(y)) ≤ Cd1(x, y) + D (2.2)

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089524000429
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.60, on 19 Jul 2025 at 13:16:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089524000429
https://www.cambridge.org/core


Glasgow Mathematical Journal 3

2. There exists B ≥ 0 such that for every y ∈ X2 there exists x ∈ X1 such that

d2(ϕ(x), y) ≤ B. (2.3)

If ϕ satisfies (2.2) then it is called a quasi-isometric embedding; if it satisfies the second inequality
of (2.2) then it is called large-scale Lipschitz. If ϕ satisfies (2.3) then it is called quasi-surjective. If ϕ
is not a quasi-isometric embedding then it is called distorted.

2.3. Quasi-morphisms

A function ψ : G → R is called a quasi-morphism if there exists D ≥ 0 such that

|ψ(g) −ψ(gh) +ψ(h)| ≤ D (2.4)

for all g, h ∈ G. The smallest of such D is called the defect of ψ and denoted by Dψ .
A quasi-morphism is homogeneous ifψ(gn) = nψ(g) for all g ∈ G and n ∈ Z. Every quasi-morphism

ψ has an associated homogeneous quasi-morphism defined by

ψ(g) = lim
n→∞

ψ(gn)

n
.

It is called the homogenisation of ψ , see [3, Lemma 2.21]. It is straightforward to check that if ψ is
homogeneous then ψ =ψ . From this, it is easy to deduce that any homogeneous quasi-morphism is a
class function, i.e., it is constant on conjugacy classes in G, see [3, Subsection 2.2.3].

Lemma 2.2. Let G be equipped with the bi-invariant word metric associated with a normally generating
subset S ⊆ G. If ψ : G → R is a homogeneous quasi-morphism bounded on S then it is a Lipschitz
function.

Proof. Suppose that |ψ(s)| ≤ B for some B ≥ 0 and all s ∈ S. Consider some g ∈ G and set ‖g‖S = n.
By definition of the bi-invariant word metric, g = s1 . . . sn for some si ∈ S. Let D ≥ 0 be the defect of ψ .
Since ψ is a class function |ψ(s)| ≤ B for all s ∈ S̄ (see (2.1)). Then

|ψ(g)| = |ψ(s1 . . . sn)|

≤
n∑

i=1

|ψ(si)| + (n − 1)D (see [3, Lemma 2.17])

≤ (B + D)n

= (B + D)‖g‖.

Let g �= h ∈ G. Since ψ is homogeneous and since ‖gh−1‖ is a positive integer

|ψ(g) −ψ(h)| = |ψ(g) −ψ(gh−1) +ψ(h−1) +ψ(gh−1)|
≤ D + |ψ(gh−1)|
≤ D + (B + D) · ‖gh−1‖ (by the calculation above)
≤ (B + 2D) · ‖gh−1‖ (since ‖gh−1‖ is a positive integer)
= (B + 2D) · d(g, h).

2.4. The little counting quasi-morphism

Consider the free group Fn with its standard set of generators S = {s1, . . . , sn}. In what follows the
standard word norm |g|S will be denoted by �(g) to make various formulas easier to read.
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Definition 2.3. Let 1 �= w ∈ Fn be presented as a reduced word. The little counting function cw : Fn → N
is defined by

cw(g) = max{k:the reduced form of g contains k disjoint copies of w}
The little counting quasi-morphism ψw : Fn → Z is the function

ψw(g) = cw(g) − cw−1 (g).

It is shown in [3, Section 2.3.2] that ψw is indeed a quasi-morphism with defect at most 2.
Let g ∈ Fn. If w �= 1, it is clear that cw±1 (g) ≤ 
�(g)/�(w)� and therefore

|ψw(g)| ≤ 
�(g)/�(w)�.

Moreover, �(gk) ≤ k · �(g) and therefore |ψw(gk)| ≤
⌊

k·�(g)
�(w)

⌋
. Since 1

k
·
⌊

k·�(g)
�(w)

⌋
k→∞−−→ �(g)

�(w)
, the homogenisa-

tion of ψw satisfies

|ψw(g)| ≤ �(g)

�(w)
. (2.5)

By [3, Lemma 2.27] copies of w in g are disjoint from those of w−1. Assume that 1 �= w ∈ Fn is
cyclically reduced. Then for any k> 0, the word representing wk is the concatenation of k copies of
w which contains k disjoint copies of w leaving no room for copies of w−1. It follows that ψk(wk) =
cw(wk) − cw−1 (wk) = k. We deduce that if w is cyclically reduced then

ψw(w) = 1. (2.6)

3. Proof of the main result

Throughout, free groups are equipped with the conjugation-invariant word norm associated with their
standard generating sets. All groups are assumed to be equipped with conjugation-invariant norms.

The next two lemmas are the core of the proof of Theorem 1.1. Given a homomorphism i : Fm → Fn,
if its image is a proper subgroup of finite index we will prove the existence of a quasi-morphisms which
satisfies the conditions of the first lemma, and if the index is infinite we will prove the existence of a
quasi-morphism satisfying the conditions of the second lemma.

A function f : G → R is called homogeneous if f (gn) = n · f (g) for all n> 0.

Lemma 3.1. Let ρ : H → G be a homomorphism. Suppose that there exists a Lipschitz homogeneous
function φ : H → R and elements h1, h2 ∈ H such that

(i) φ(h1) �= φ(h2).
(ii) ρ(h1), ρ(h2) are conjugate in G.

Then ρ is not a quasi-isometric embedding.

Proof. We construct an unbounded Y ⊆ H such that ρ(H) is bounded in G. Set

Y = {hk
1h−k

2 :k> 0}.
Denote g1 = ρ(h1) and g2 = ρ(h2). By assumption, there exists g ∈ G such that g2 = gg1g−1. Then ρ(Y)
is bounded in G since for any k> 0

‖ρ(hk
1h−k

2 )‖G = ‖g1
k · g2

−k‖G = ‖g1
kgg1

−kg−1‖G ≤ ‖g1
kgg1

−k‖G + ‖g−1‖G ≤ 2‖g‖.

Next, let C> 0 be the Lipschitz constant of φ. Then for any k> 0

C · ‖hk
1h−k

2 ‖H = C · dH(hk
1, hk

2) ≥ |φ(hk
1) − φ(hk

2)| = k · |φ(h1) − φ(h2)|.
Since φ(h1) �= φ(h2) it follows that ‖hk

1h−k
2 ‖H

k→∞−−→ ∞, hence Y is unbounded.
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Lemma 3.2. Let ρ : H → G be a homomorphism. Assume that there exists a Lipschitz homogeneous
function φ : G → R such that

(i) φ �= 0.
(ii) φ ◦ ρ = 0.

Then ρ is not quasi-surjective.

Proof. By assumption, there exists g ∈ G \ ρ(H) such that φ(g) �= 0. Let C> 0 be the Lipschitz
constant of φ. For any h ∈ H and any n> 0

C · dG(gn, ρ(h)) ≥ |φ(gn) − φ(ρ(h))| = |φ(gn)| = n · |φ(g)|.
It follows that d(gn, ρ(H)) ≥ C−1|φ(g)| · n

n→∞−−→ ∞. This completes the proof.

We now specialise to the case when H = Fm and G = Fn and prove Theorem 1.1. The maps φ in
Lemmas 3.1 and 3.2 will be obtained as homogeneous quasi-morphisms. The Lipschitz condition in
these Lemmas is a consequence of Lemma 2.2. To achieve condition (i) in Lemma 3.1, we need the next
lemma.

Lemma 3.3 (Separation Lemma). Let g, h ∈ Fn be such that the subgroups 〈g〉 and 〈h〉 are not conjugate.
Then there exists a homogeneous quasi-morphism ψ : Fn → R such that ψ(g) �=ψ(h).

Proof. Since homogeneous quasi-morphisms are class functions, we can assume without losing
generality that g and h are cyclically reduced and that �(h) ≤ �(g). Then g �= 1 since otherwise also
h = 1 which contradicts the hypothesis.

Let ψg : Fn → Z be the little counting quasi-morphism, see Definition 2.3, and let ψg denote its
homogenisation. Since g is cyclically reduced, it follows from (2.6) that

ψ g(g) = 1. (3.1)

We complete the proof by showing that |ψg(h)|< 1. If �(h)< �(g) then by (2.5)∣∣ψ g(h)
∣∣ ≤ �(h)/�(g)< 1

and we are done. If �(h) = �(g) we claim that ψg(hk) = 0 for all k ≥ 0. Otherwise, if ψg(hk) �= 0 for some
k then either g or g−1 must be a subword of the cyclically reduced word hk. Since �(h) = �(g) this implies
that the reduced word representing g±1 is a cyclic permutation of h, i.e., h is conjugate to g±1. In particular
〈g〉 is conjugate to 〈h〉 which contradicts the hypothesis. It follows that ψg(h) = 0 and this completes the
proof.

We recall that centralisers in the free group are cyclic, generated by elements which are not
proper powers. Also, no element of the free group other than the identity is conjugate to its inverse
[8, Proposition 2.19].

Proposition 3.4. Let n ≥ 2. Any homomorphism ρ : Fm → Fn whose image is a proper subgroup of finite
index in Fn is not a quasi-isometric embedding.

Proof. Set H = Fm and G = Fn. We prove the existence of φ and h1, h2 in Lemma 3.1.
Since [G:ρ(H)]<∞, there exists N ≤ ρ(H) such that N is normal and of finite index in G

[10, Corollary 4.16]. Let x, y be distinct generators of Fn. Since G/N is finite, there exist k, � > 0 such
that xk, y� ∈ N. Set g1 = xky�. Since g1 is not a proper power in Fn, the centraliser CFn (g1) of g1 in Fn is
the cyclic subgroup generated by g1:

CFn (g1) = 〈g1〉 ≤ N ≤ ρ(H).

https://www.cambridge.org/core/terms. https://doi.org/10.1017/S0017089524000429
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.60, on 19 Jul 2025 at 13:16:49, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/S0017089524000429
https://www.cambridge.org/core


6 Jarek Kędra and Assaf Libman

Choose some u ∈ G \ ρ(H) and set g2 = ug1u−1. By construction, g1 and g2 are conjugate in G and g2 ∈ N
since N is normal. We claim that the subgroups 〈g1〉 and 〈g2〉 are not conjugate in ρ(H). If they are then
there exists v ∈ ρ(H) such that

〈g2〉 = 〈vg1v−1〉.
Since 〈g1〉 and 〈g2〉 are infinite cyclic, either g2 = vg1v−1 or g2 = vg−1

1 v−1. If g2 = vg1v−1 then
vg1v−1 = ug1u−1 which implies that v−1u ∈ CFn (g1) ≤ ρ(H), so u ∈ v · ρ(H) = ρ(H), contradicting the
choice of u. If g2 = vg−1

1 v−1 then vg−1
1 v−1 = ug1u−1 which implies that g−1

1 is conjugate in Fn to g1, which
is again a contradiction since g1 �= 1. It follows that 〈g1〉 and 〈g2〉 are not conjugate in ρ(H) as claimed.

Let h1, h2 ∈ H be in the preimages of g1, g2, respectively. Then 〈h1〉 and 〈h2〉 cannot be conjugate
in H. By the Separation Lemma 3.3 there exists a homogeneous quasi-morphism ψ : H → R such that
ψ(h1) �=ψ(h2). By Lemma 2.2ψ is Lipschitz. Then ρ is not a quasi-isometric embedding by Lemma 3.1

We now turn to deal with homomorphisms Fm → Fn whose images have infinite index. We need a
machinery to construct maps φ as in Lemma 3.2.

A killer word for a subgroup G ≤ Fn is a reduced word w ∈ Fn which is not a subword in any g ∈ G.
The reason for this terminology is that the little counting quasi-morphism ψw vanishes on G. In fact,
ψu|G = 0 for any reduced word u which contains w.

Lemma 3.5. Let n ≥ 2. Any G ≤ Fn of infinite index and finite rank admits a killer word.

Proof. A direct consequence of [9, Lemmas 4.1 and 4.6].

Pagliantini and Rolli’s argument in [9] is indirect. In the Appendix, we give a constructive proof of
Lemma 3.5 which gives an effective way to generate killer words.

Proposition 3.6. Let n ≥ 2. Any homomorphism ρ : Fm → Fn with image of infinite index is not quasi-
surjective.

Proof. Set H = Fm and G = Fn. By Lemma 3.5 there exists a reduced word w′ ∈ Fn which is not a
subword in any u ∈ ρ(H). Since n ≥ 2, we may multiply w′ on the left or on the right by an appropriate
generator of Fn to obtain a cyclically reduced w which is not a subword in any u ∈ ρ(H). Clearly, the
same is then true for w−1. As a result, the little counting quasi-morphism ψw : G → R vanishes on ρ(H).
Consequently, the same holds for its homogenisation ψw, which is non-trivial by (3.1). By Lemma 2.2
ψw is Lipschitz and by construction ψw ◦ ρ = 0. The result follows from Lemma 3.2.

Remark 3.7. Consider F2 = Z ∗ Z with the canonical set S = {a, b} of free generators. Let π : Z ∗ Z →
Z2 ∗ Z2 be the canonical quotient and T = {ā, b̄} the image of S. Let G be the kernel of π . Then
G is a free group, since it is a subgroup of a free group, of infinite rank. One easily checks that
diam(Z2 ∗ Z2, ‖ ‖T) = 2 and that any x ∈ Z2 ∗ Z2 lifts to x̃ ∈ F2 such that ‖x‖T = ‖x̃‖S. From this it follows
that d(y, G) ≤ 2 for any y ∈ F2, in particular the inclusion i : G → F2 is quasi-surjective. This shows that
the assumption in Proposition 3.6 that the groups are of finite ranks is essential.

On the other hand, G � F2 and the elements a2b2 and ab2a = a−1a2b2a are conjugate in F2 but not
in G. They are also not proper powers. By Lemmas 3.3, 2.2 and 3.1 the inclusion i : G → F2 is not a
quasi-isometric embedding where G is equipped with the conjugation-invariant word norm with respect
to some (infinite) generating set. ♦

We remark that any 1 �= N � Fn must be unbounded. Indeed, N must contain a cyclically reduced
w �= 1, then by (2.6) ψw(wk) = k, and since ψw is Lipschitz by Lemma 2.2, ‖wk‖ k→∞−−→ ∞.
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Proof of Theorem 1.1. Let ϕ : Fm → Fn be a homomorphism. If it is an isomorphism then ϕ is a
quasi-isometry since it is (quasi) surjective and since both ϕ and ϕ−1 are Lipschitz by Lemma 2.1

Suppose that ϕ is not an isomorphism. If ϕ is not injective then ker ϕ is an unbounded subset whose
image is bounded, so ϕ is not a quasi-isometric embedding. If ϕ is not surjective then it cannot be a
quasi-isometry by Propositions 3.4 and 3.6.
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Appendix A. Killer words

The valence of a vertex v in a graph � is k if a neighbourhood of v is homeomorphic to a point with k
whiskers. The initial and terminal vertices of a simplicial path γ in� are denoted ini(γ ) and term(γ ). A
simplicial path in � is called reduced if it has no backtracks. A subpath γ ′ ⊆ γ is called a prefix of γ if
γ = ε1 . . . εn is the concatenation of simplicial edges and γ ′ = ε1 . . . εk for some 0 ≤ k ≤ n. A simplicial
path γ is called self-intersecting if the sequence of vertices v0, v1, . . . , vn it visits contains repetitions.
In particular, length(γ ) ≥ 1.

Lemma A.1. Let � be a connected graph with finitely many vertices, possibly with multiple edges and
loops. Suppose that the valence of every v ∈ V(�) is at least 2. Let γ be a reduced simplicial path in �.
Then every vertex of � is the terminus of some reduced simplicial path γ̃ with prefix γ .

Proof. Let u be the terminus of γ . Let� be the set of all simplicial paths π in � starting at u such
that γπ has no backtracks, thus, γπ is reduced with prefix γ . Set

T = {term(π ) : π ∈�}.
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Since term(γπ ) = term(π ), we will complete the proof by proving that T = V(�).
Since the valence of every v ∈ V(�) is at least 2, it follows that� contains arbitrarily long paths. Since

V(�) is finite, � must contain self-intersecting paths and we choose such a path π of minimum length.
Say π is the concatenation of simplicial edges ε1 . . . εn visiting the vertices v0, . . . , vn. The minimality
of length(π ) implies that vn = vk for some 0 ≤ k< n (otherwise we can discard the last edge εn in π ).
We now continue the path π by backtracking along π from vk down to v0 = u and obtain in this way a
loop λ= πεk . . . ε1 from u to u. The minimality of length(π ) implies that λ has no backtracks because
a backtrack in λ, if it exists, can only occur at the juncture of π with εk which implies that k ≥ 1 and
that vn−1 = vk−1 which contradicts the minimality of length(π ). Thus, λ ∈�, and length(λ) ≥ 1 (since it
contains the self-intersecting π as a prefix). We are now ready to prove that T = V(�).

First, T �= ∅ since� contains the trivial path from u to u. Assume that T � V(�). Choose v ∈ V(�) \ T
at distance 1 from some v′ ∈ T . Let ε be a simplicial edge from v′ to v. Since v′ ∈ T , there exists π ∈�
such that v′ = term(π ). If v′ = u we choose π to be the loop λ we constructed above. In either case,
whether v′ = u or not, length(π ) ≥ 1. Clearly, πε has no backtracks because π has this property and
all the vertices of π belong to T while term(ε) /∈ T . Since length(π ) ≥ 1 it is clear that γπε is reduced
because γπ is. We deduce that πε ∈�. But then v = term(πε) ∈ T which is a contradiction.

Recall that a killer word for G ≤ Fn is a reduced word which is not a subword in any g ∈ G.

Theorem A.2. Let G ≤ Fn be a finitely generated subgroup of infinite index. Then G admits a killer word
w ∈ Fn.

Proof. Let S = {s1, . . . , sn} be the standard generating set of Fn. Let X = ∨
S1 be a graph with

one vertex x ∈ X and n edges, all of which are loops, so that π1(X, x) ∼= Fn. The graph X is directed
and each edge is labelled by a generator s ∈ S. Moreover, the valence of the vertex x is equal to 2n. Let
p : (X̃, x̃) → (X, x) be a covering projection corresponding to the subgroup G ≤ π1(X, x). We equip X̃
with the directed labelled graph structure such that the projection p is a morphism of directed labelled
graphs.

Since G is finitely generated X̃ contains a finite connected subgraph � which contains x̃, has no
vertices of valence 1 and is a deformation retract of X̃. This is the core graph in the terminology of
Stallings [11]. The restriction p : �→ X of the covering map is not a covering any more, since otherwise
G would be of finite index. It implies that some vertices of � have valence smaller than 2n. We call them
bad.

Recall that the edges of the graph X̃ are oriented and labelled by the letters of the alphabet S. Hence,
the labels of the edges in a simplicial path π in X̃ determine a word w in the alphabet S±1 which is
reduced if and only if the path π is reduced. Conversely, any vertex v ∈ V(X̃) and any word w in the
alphabet S±1 determine a unique simplicial path in X̃ which we denote by path(v, w). To see how this
path is constructed, observe that X̃ is a covering of X so for any v ∈ V(X̃) and any s ∈ S there is a unique
directed edge es ∈ � with label s emanating from v and a unique directed edge es−1 ∈ � with label s
terminating at v. In the first case we obtain the simplicial edge εs = es, and in the second the simplicial
edge εs−1 = es−1 , both have initial vertex v. If w = w1 . . .wn is a word in the alphabet S±1, then path(v, w)
is the concatenation of the simplicial edges εw1 , . . . , εwn described above, where εw1 starts at v and for
every 2 ≤ i ≤ n the simplicial edge εwi starts at term(εwi−1 ).

We are now ready to construct a killer word for G. Before we start, recall that by construction every
g ∈ G is represented by a reduced simplicial loop in � based at x̃.

Let v1, . . . , vm be an enumeration of the vertices of �. We construct by induction reduced words
w0, . . . , wm, such that each is a prefix of its successor, with the property that for any 0 ≤ k ≤ m,

1 ≤ i ≤ k ⇒ path(vi, wk) � �.

To start the induction, set w0 to be the empty word. The condition holds vacuously. Assume that wk−1 has
been constructed for some 1 ≤ k ≤ m. Consider π = path(vk, wk−1). It is reduced since wk−1 is. If π � �
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then set wk = wk−1. Then path(vk, wk) � � by assumption and path(vi, wk) � � for all 1 ≤ i ≤ k − 1 by
construction of wk−1. If π ⊆ �, use Lemma A.1 to continue it to a reduced path π ′ ⊆ � whose terminus
is a bad vertex u′. Continue π ′ along a simplicial edge ε in X̃ not in �. Then π ′ε is a reduced path
and let wk be the word associated with it. Now, wk−1 is a prefix of wk since π is a prefix of π ′. Therefore
path(vi, wk) � � for all 1 ≤ i ≤ k − 1 by construction of wk−1, and path(vk, wk) = π ′ε � � by construction.
This completes the induction step of the construction. Set w = wm. By construction, path(v, w) � �, for
any v ∈ V(�). We will finish the proof by showing that w is a killer word for G. Consider an arbitrary
g ∈ G presented as a reduced word in Fn. We claim that w cannot be a subword of g. Let γ ⊆ � be
a reduced simplicial loop based at x̃ which represents g. Let u be the word in the alphabet S±1 that
γ determines. Then γ = path(̃x, u) and since Fn is free, g = u as reduced words. Suppose that w is a
subword of g. Then u = u′wu′ ′ for some subwords u′, u′ ′ of u. Let v′ be the terminus of path(̃x, u′) and v′ ′

the terminus of path(v′, w). Then v′ ∈ V(�) since path(̃x, u′) ⊆ γ ⊆ �, and

γ = path(̃x, u) = path(̃x, u′) · path(v′, w) · path(v′ ′, u′ ′).

In particular, path(v′, w) ⊆ � which is a contradiction, since v′ ∈ V(�).

The proof of Theorem A.2 gives an algorithm to find killer words which we demonstrate in the next
example.

Example A.3. Let G ≤ F2 = 〈a, b〉 be generated by aba−1b−1, b4 and a3. The corresponding graph � is
pictured below. All vertices except v0 are bad and are marked red.

v0 v2

v3v4v5

v1

v6

b a

b

a

bb

b

a a

The path from v0 to v1 defines an element a−1. Augmenting it with b yields an element a−1b that cannot
be obtained as a path starting at v0. The path v1v2v3 defines an element a−1b and augmenting it with a
yields a word a−1ba that cannot be obtained as a path from either v0 or v1. It can, however, be obtained
as a path v2v0v4v3, so the new word is a−1ba2. It cannot be obtained from a path starting at v3, v4, v5 or
v6. So a−1ba is a killer word for G.

This word is not cyclically reduced, but multiplying it on the right by the generator b gives a cyclically
reduced killer word a−1ba2b. ♦
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