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Abstract

There are many fluid flow problems involving geometries for which a nonorthogonal
curvilinear coordinate system may be the most suitable. To the authors’ knowledge, the
Navier–Stokes equations for an incompressible fluid formulated in terms of an arbitrary
nonorthogonal curvilinear coordinate system have not been given explicitly in the
literature in the simplified form obtained herein. The specific novelty in the equations
derived here is the use of the general Laplacian in arbitrary nonorthogonal curvilinear
coordinates and the simplification arising from a Ricci identity for Christoffel symbols
of the second kind for flat space. Evidently, however, the derived equations must be
consistent with the various general forms given previously by others. The general
equations derived here admit the well-known formulae for cylindrical and spherical
polars, and for the purposes of illustration, the procedure is presented for spherical polar
coordinates. Further, the procedure is illustrated for a nonorthogonal helical coordinate
system. For a slow flow for which the inertial terms may be neglected, we give the
harmonic equation for the pressure function, and the corresponding equation if the
inertial effects are included. We also note the general stress boundary conditions for
a free surface with surface tension. For completeness, the equations for a compressible
flow are derived in an appendix.

2010 Mathematics subject classification: 35Q30.

Keywords and phrases: general nonorthogonal coordinates, Navier–Stokes equations,
fluid dynamics.

1. Introduction

There are many fluid flows involving curved geometries which are motivated by flows
in rivers and pipes, and for which a natural coordinate description might involve the
use of nonorthogonal curvilinear coordinates. In the analysis of helical pipe flow,
researchers either devise special orthogonal coordinate systems from which to analyse
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the fluid flow [5, 7, 14, 16] or devise approximations for which the first-order estimate
(zero torsion limit) is obtained using an orthogonal coordinate system [10] (see also
the discussion in [14, 15]). Aris [1] provided all the essential tensorial development
to present the general Navier–Stokes equations, and yet did not provide the final
simplified form. Wang [15] came very close to the final equations, giving all the terms,
but did not make two essential final simplifications. To the authors’ knowledge, the full
Navier–Stokes equations for an incompressible fluid expressed in terms of arbitrary
nonorthogonal coordinates seem not to be available in the literature in their simplest
form, and our purpose here is to present a concise derivation of these equations. These
constitute an advance on those given previously in the sense that they include the
Laplacian operator in general curvilinear coordinates, and they are based upon the
condition (A.6) for Christoffel symbols, which has not been exploited in all other
representations.

In Section 2 we outline the standard formulation for arbitrary nonorthogonal
curvilinear coordinates (x1, x2, x3). In Section 3 we define the rate-of-strain tensor
and its relation to the Cauchy stress tensor, the condition for incompressibility and
the standard momentum equations. In Section 4 we state the general Navier–Stokes
equations for an incompressible fluid, and briefly comment on the harmonic equation
for the pressure function for slow viscous flow and the corresponding equation when
inertial effects are not neglected. Further, the general stress boundary conditions for a
free surface with surface tension are briefly noted.

A brief derivation of the key result needed for the general Navier–Stokes equations
is presented in Appendix A. The final equations agree with the standard expressions
that are known for cylindrical and spherical polars, and some of the details for
spherical polar coordinates are briefly included in Section 5 of the paper for the sake
of completeness. Section 6 gives the Navier–Stokes and incompressible continuity
equations in nonorthogonal helical coordinates, obtained using the general formulation
presented herein. These equations agree with the simplified helically symmetric forms
used for modelling of flow in helically wound channels [2, 8]. In Appendix B, we
derive, for low Reynolds number flow, the harmonic equation for the pressure function
and the corresponding equation when the inertial terms are included. Appendix C
summarizes the key equations for compressible Navier–Stokes fluids.

2. Mathematical preliminaries

Since the general equations necessarily involve tensors, and since in the literature
different velocity components are used (contravariant, covariant and physical), in order
to avoid confusion, we first spell out carefully the conventions employed here. Let
xi (i = 1, 2, 3) denote any nonorthogonal curvilinear coordinate system, with metric
tensor gi j, conjugate metric tensor gi j and Christoffel symbols of the second kind Γi

jk.
If (x, y, z) denote the usual rectangular Cartesian coordinates, with position vector r
given by

r = xı̂ + y̂ + zk̂,
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[3] Navier–Stokes equations with nonorthogonal coordinates 337

where (ı̂, ̂, k̂) denote the usual unit vectors, then for the general nonorthogonal
coordinates (x1, x2, x3), the base vectors are defined by (see, for example, [4, pp. 430–
434])

ei =
∂r
∂xi (i = 1, 2, 3). (2.1)

As usual, we have for the line element

(ds)2 = dr · dr =
∂r
∂xi ·

∂r
∂x j dxi dx j = ei · e j dxi dx j,

and therefore gi j = ei · e j, where here and throughout we use the Einstein summation
convention for a repeated index unless stated otherwise.

To make precise our ideas relating to nonphysical and physical components of
velocity and acceleration, we observe that the actual velocity vector u is given by

u =
dr
dt

=
dx
dt

ı̂ +
dy
dt
̂ +

dz
dt

k̂ = uiei,

where the last equality, in which ui = dxi/dt, is readily obtained from the chain rule
and (2.1), while the actual acceleration vector a is defined by

a =
du
dt

=
dui

dt
ei + ui ∂ei

∂x j

dx j

dt
=

(duk

dt
+ Γk

i ju
iu j
)

ek,

where we have used the standard formula (see, for example, [4, p. 439])

∂ei

∂x j = Γk
i jek. (2.2)

In order to make comparisons of the equations derived here with existing formulae, it is
important to note that generally the base vectors ei are not unit vectors and, therefore,
(for example) the physical components of velocity which are generally employed in
the literature are deduced from the equation

u =
√

giiui ei
√

gii
,

since |ei|
2 = ei · ei = gii (no summation), and therefore, ei/

√
gii (no summation) are

the appropriate unit vectors, while
√

giiui (again no summation) denotes the physical
components of the velocity (v1, v2, v3), that is,

v1 =
√

g11 u1, v2 =
√

g22 u2, v3 =
√

g33 u3. (2.3)

3. Rate-of-strain and Cauchy stress tensors

The rate-of-strain tensor di j is defined by

di j = 1
2 (giku j

;k + g jkui
;k), (3.1)

where the semicolon throughout denotes partial covariant differentiation, in this case
with respect to xk. For a general curvilinear coordinate system (x1, x2, x3) the partial

https://doi.org/10.1017/S144618111700058X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111700058X


338 J. M. Hill and Y. M. Stokes [4]

covariant derivative takes proper account of the coordinate dependence of the base
vectors through the Christoffel symbols and equation (2.2) so that the partial covariant
derivatives in (3.1) are given explicitly by

ui
;k =

∂ui

∂xk + Γi
jku j.

As described in Appendix A, for an incompressible fluid, the trace of di
j = g jkdik

vanishes, giving the incompressibility condition

di
i =

∂ui

∂xi + Γi
i ju

j = 0, (3.2)

which on using the standard formula of tensor calculus (see, for example, [4, p. 441]
or [12, p. 28]),

Γi
i j =

1
2g

∂g
∂x j ,

simplifies to become
∂

∂xi (
√

g ui) = 0,

where g = |gi j| denotes the determinant of the metric tensor. The latter equation means
that the velocity vector is divergence-free.

The stress–rate-of-strain relations for a Newtonian fluid are given by

ti j = −pgi j + 2µdi j,

where ti j denotes the Cauchy stress tensor, gi j is the conjugate metric tensor, p is the
arbitrary hydrostatic pressure and µ is the viscosity, assumed constant. Conservation
of momentum gives

ρa j = ρ
(du j

dt
+ Γ

j
ikuiuk

)
= ti j

;i + ρ f j,

where ρ denotes the constant density, f iei denotes an external body force per unit mass,
and the partial covariant differentiation denoted by the semicolon may be written as

ti j
;k =

∂ti j

∂xk + Γi
k`t

` j + Γ
j
k`t

i`.

From the stress–rate-of-strain relations and the conservation of momentum, we have

ρ
(du j

dt
+ Γ

j
ikuiuk

)
= −

∂p
∂xi gi j + 2µ di j

;i + ρ f j. (3.3)

A detailed expression for di j
;i is derived in Appendix A.

https://doi.org/10.1017/S144618111700058X Published online by Cambridge University Press

https://doi.org/10.1017/S144618111700058X


[5] Navier–Stokes equations with nonorthogonal coordinates 339

4. General incompressible Navier–Stokes equations

From equation (3.3) and the expressions (A.7) for di j
;i the general Navier–Stokes

equations for an incompressible fluid in an arbitrary nonorthogonal curvilinear
coordinate system are

ρ
(du j

dt
+ Γ

j
ikuiuk

)
=−

∂p
∂xi gi j + µ

{
∇2u j + 2gikΓ

j
i`
∂u`

∂xk + gik ∂Γ
j
ik

∂x`
u`
}

+ ρ f j, (4.1)

where ∇2 denotes the usual Laplacian operator, which in general curvilinear
coordinates is [12, p. 32]

∇2 = gi j
(

∂2

∂xi∂x j − Γk
i j
∂

∂xk

)
, (4.2)

noting that for any scalar φ, ∇2φ arises from the partial covariant derivatives(
gi j ∂φ

∂x j

)
;i

= (gi jφ; j);i = gi jφ;i; j,

since the partial covariant derivative of the metric tensor vanishes. The new element
of these equations in general curvilinear coordinates comprises both the explicit
introduction of the general Laplacian above and the consequent simplification of
the general equations making use of the identity given in Appendix A (A.6) for the
Christoffel symbols. However, of course the same equations must clearly be implicit
in all other general descriptions, such as those given by Aris [1] or Wang [15]. For
example, for the term in curly brackets in (4.1), Wang [15] gave the expression

giku j
;ik = gik

{
∂2u j

∂xi∂xk + Γ
j
im
∂um

∂xk + Γ
j
km
∂um

∂xi − Γm
ik
∂u j

∂xm

+

(∂Γ
j
im

∂xk + Γ
j
nkΓ

n
im − Γn

ikΓ
j
mn

)
um
}
,

which is entirely in accordance with (A.3) of Appendix A, noting that two terms of
(A.3) cancel. Aris [1, p. 182] identified the left-hand side of this equation as the
critical contribution in the Navier–Stokes equations, but did not provide the general
expression in terms of Christoffel symbols. Our claim is that the novel elements stated
above appear here for the first time. As far as the authors are aware, the explicit use
of the general Laplacian and the identity (A.6) for the Christoffel symbols leading
to the general Navier–Stokes equations in the form given above have not been given
previously in the literature. We further comment that the terms in the curly brackets of
(4.1) give rise to the known expressions for the Navier–Stokes equations in cylindrical
and spherical polar coordinates and that the time derivative on the left-hand side is the
usual material time derivative

du j

dt
=
∂u j

∂t
+ ui ∂u j

∂xi ,
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where the partial time derivative denotes differentiation with respect to time at a point
fixed in space.

From a practical perspective, for a given nonorthogonal coordinate system, it is
simpler to obtain (4.1) in terms of nonphysical components of velocity u j ( j = 1, 2, 3),
then make the transformations (2.3), namely

u1 =
v1

√
g11

, u2 =
v2

√
g22

, u3 =
v3

√
g33

,

to deduce the Navier–Stokes equations in terms of physical velocity components
v j ( j = 1, 2, 3).

In Appendix B, we note that for low Reynolds number flow for which we may
neglect the inertia, the pressure function satisfies the harmonic equation

∇2 p = 0, (4.3)

with the Laplacian operator defined by (4.2). If the inertial effects are included, then
the equation corresponding to (4.3) becomes

((pgi j + ρuiu j);i); j = 0, (4.4)

which cannot be written concisely in terms of the Laplacian, but nevertheless applies
for all time-dependent incompressible viscous flows in the absence of body forces.

Finally in this section, we note the general boundary conditions on a free surface
with surface tension. We suppose that S (x1, x2, x3) = 0 represents a free surface with
outward drawn unit normal n based upon the gradient

∇S = gi j ∂S
∂xi e j,

so that n = ∇S/|∇S |. On the free surface of the fluid the stress vector is given by

t = tiei = ti jn jei,

and the standard boundary condition that the stress vector be aligned along the normal
vector, giving zero tangential components of the stress vector and the normal stress
vector component balanced by surface tension γ, namely t = −γκn, becomes

(ti j + γκgi j)
∂S
∂x j = 0,

where κ denotes the mean curvature (see, for example, [12, pp. 76–77]).

5. Spherical polar coordinates (r, θ, φ) as an example

We may readily confirm that (4.1) gives rise to standard formulae for the case of
cylindrical and spherical polar coordinates. By way of a brief illustration, for standard
spherical polar coordinates (r, θ, φ), the nonzero components of the metric tensors and
the Christoffel symbols are

g11 = 1, g22 = r2, g33 = r2 sin2 θ,
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g11 = 1, g22 =
1
r2 , g33 =

1
r2 sin2 θ

,

Γ1
22 = −r, Γ1

33 = −r sin2 θ, Γ2
33 = − sin θ cos θ,

Γ2
12 = Γ2

21 =
1
r
, Γ3

23 = Γ3
32 = cot θ, Γ3

13 = Γ3
31 =

1
r
,

while the Laplacian ∇2 becomes

∇2 =
∂2

∂r2 +
2
r
∂

∂r
+

cot θ
r2

∂

∂θ
+

1
r2

∂2

∂θ2 +
1

r2 sin2 θ

∂2

∂φ2 .

On making the transformations to physical velocity components

v1 = u1, v2 = ru2, v3 = r sin θ u3,

the critical new terms of (4.1) which appear in the curly brackets can be shown to
become, for j = 1, 2 and 3, respectively,

∇2u1 + 2g22Γ1
22
∂u2

∂x2 + 2g33Γ1
33
∂u3

∂x3 + g22 ∂Γ1
22

∂x1 u1 + g33 ∂Γ1
33

∂x1 u1 + g33 ∂Γ1
33

∂x2 u2

= ∇2v1 −
2
r2

∂v2

∂θ
−

2
r2 sin θ

∂v3

∂φ
−

2
r2 v1 −

2 cot θ
r2 v2,

∇2u2 + 2g33Γ2
33
∂u3

∂x3 + 2g11Γ2
12
∂u2

∂x1 + 2g22Γ2
21
∂u1

∂x2 + g33 ∂Γ2
33

∂x2 u2

=
1
r

[
∇2v2 +

2
r2

∂v1

∂θ
−

2 cos θ
r2 sin2 θ

∂v3

∂φ
−

1
r2 sin2 θ

v2
]
,

∇2u3 + 2g22Γ3
23
∂u3

∂x2 + 2g33Γ3
32
∂u2

∂x3 + 2g11Γ3
13
∂u3

∂x1 + 2g33Γ3
31
∂u1

∂x3

=
1

r sin θ

[
∇2v3 +

2
r2 sin θ

∂v1

∂φ
+

2 cos θ
r2 sin2 θ

∂v2

∂φ
−

1
r2 sin2 θ

v3
]
,

while, for j = 1, 2 and 3, the terms in brackets on the left-hand side of (4.1) lead to

∂u1

∂t
+ u1 ∂u1

∂x1 + u2 ∂u1

∂x2 + u3 ∂u1

∂x3 + Γ1
22u2u2 + Γ1

33u3u3

=
∂v1

∂t
+ v1 ∂v1

∂r
+

v2

r
∂v1

∂θ
+

v3

r sin θ
∂v1

∂φ
−

v2v2

r
−

v3v3

r
,

∂u2

∂t
+ u1 ∂u2

∂x1 + u2 ∂u2

∂x2 + u3 ∂u2

∂x3 + 2Γ2
12u1u2 + Γ2

33u3u3

=
1
r

(
∂v2

∂t
+ v1 ∂v2

∂r
+

v2

r
∂v2

∂θ
+

v3

r sin θ
∂v2

∂φ
+

v1v2

r
−

cot θ v3v3

r

)
,

∂u3

∂t
+ u1 ∂u3

∂x1 + u2 ∂u3

∂x2 + u3 ∂u3

∂x3 + 2Γ3
13u1u3 + 2Γ3

23u2u3,

=
1

r sin θ

(
∂v3

∂t
+ v1 ∂v3

∂r
+

v2

r
∂v3

∂θ
+

v3

r sin θ
∂v3

∂φ
+

v1v3

r
+

cot θ v2v3

r

)
.
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It is now straightforward to obtain the standard formulae given, for example, by
Goldstein [6, pp. 103–105], Ramsey [11, pp. 371–374] and Batchelor [3, pp. 600–
603]. For example, for j = 2, we have

ρ
(
∂v2

∂t
+ v1 ∂v2

∂r
+

v2

r
∂v2

∂θ
+

v3

r sin θ
∂v2

∂φ
+

v1v2

r
−

cot θ v3v3

r

)
= −

1
r
∂p
∂θ

+ µ
[
∇2v2 +

2
r2

∂v1

∂θ
−

2 cos θ
r2 sin2 θ

∂v3

∂φ
−

v2

r2 sin2 θ

]
+ ρr f 2.

6. Nonorthogonal helical coordinates

To model inviscid flow in the coiled cochlea, Manoussaki and Chadwick [9] employ
the nonorthogonal helical coordinate system (β, r, z) defined by

r(β, r, z) = r cos β ı̂ + r sin β ̂ + (Pβ + z) k̂,

where P is a constant. The same coordinate system is used to model helically
symmetric viscous flow in a helically wound channel [2, 8], and the derivation of
the helically symmetric Navier–Stokes equations is given in an appendix by Lee et al.
[8]. As an illustrative example of (4.1) for a nonorthogonal coordinate system, here
we write the full Navier–Stokes equations in this helical coordinate system, which, to
the authors’ knowledge, have not previously been written down.

Let (β, r, z) ≡ (x1, x2, x3). Defining, for convenience, Λ(r) = P/r and Υ(r) = 1 +

P2/r2 = 1 + Λ2, the nonzero components of the metric tensors and the Christoffel
symbols are

g11 = r2Υ, g22 = 1, g33 = 1, g13 = g31 = rΛ,

g11 =
1
r2 , g22 = 1, g33 = Υ, g13 = g31 = −

Λ

r
,

Γ2
11 =−r, Γ1

12 = Γ1
21 =

1
r
, Γ3

12 = Γ3
21 = −Λ,

while the physical velocity components are given by

v1 = (r
√

Υ)u1, v2 = u2, v3 = u3.

Then the Laplacian is

∇2 =
1
r2

∂2

∂β2 +
∂2

∂r2 +
1
r
∂

∂r
+ Υ

∂2

∂z2 −
2Λ

r
∂2

∂β∂z
,
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and the Navier–Stokes equations are

ρ
(
∂u1

∂t
+ u1 ∂u1

∂β
+ u2 ∂u1

∂r
+ u3 ∂u1

∂z
+

2u1u2

r

)
= −

1
r2

∂p
∂β

+
Λ

r
∂p
∂z

+ µ
{
∇2u1 +

2
r

(
∂u1

∂r
+

1
r2

∂u2

∂β
−

Λ

r
∂u2

∂z

)}
+ ρ f 1, (6.1a)

ρ
(
∂u2

∂t
+ u1 ∂u2

∂β
+ u2 ∂u2

∂r
+ u3 ∂u2

∂z
− ru1u1

)
= −

∂p
∂r

+ µ
{
∇2u2 −

2
r
∂u1

∂β
+ 2Λ

∂u1

∂z
−

u2

r2

}
+ ρ f 2, (6.1b)

ρ
(
∂u3

∂t
+ u1 ∂u3

∂β
+ u2 ∂u3

∂r
+ u3 ∂u3

∂z
− 2Λu1u2

)
= −Υ

∂p
∂z

+
Λ

r
∂p
∂β

+ µ
{
∇2u3 −

2Λ

r2

∂u2

∂β
+

2Λ2

r
∂u2

∂z
− 2Λ

∂u1

∂r

}
+ ρ f 3. (6.1c)

In terms of the physical velocity components, these equations become

ρ
{
∂v1

∂t
+

v1

r
√

Υ

∂v1

∂β
+ v2 ∂v1

∂r
+ v3 ∂v1

∂z
+

(Υ2 + Λ2)v1v2

rΥ2

}
= −

√
Υ

r
∂p
∂β

+ Λ
√

Υ
∂p
∂z

+ µ
{
∇2v1 +

2Λ2

rΥ

∂v1

∂r
−

(Υ + 3Λ2)v1

r2Υ2

+
2
√

Υ

r2

∂v2

∂β
−

2Λ
√

Υ

r
∂v2

∂z

}
+ ρr

√
Υ f 1, (6.2a)

ρ
(
∂v2

∂t
+

v1

r
√

Υ

∂v2

∂β
+ v2 ∂v2

∂r
+ v3 ∂v2

∂z
−

v1v1

rΥ

)
= −

∂p
∂r

+ µ
{
∇2v2 −

2

r2
√

Υ

∂v1

∂β
+

2Λ

r
√

Υ

∂v1

∂z
−

v2

r2

}
+ ρ f 2, (6.2b)

ρ
(
∂v3

∂t
+

v1

r
√

Υ

∂v3

∂β
+ v2 ∂v3

∂r
+ v3 ∂v3

∂z
−

2Λv1v2

r
√

Υ

)
= −Υ

∂p
∂z

+
Λ

r
∂p
∂β

+ µ
{
∇2v3 −

2Λ

r2

∂v2

∂β
+

2Λ2

r
∂v2

∂z
−

2Λ

r
√

Υ

∂v1

∂r
+

2Λv1

r2Υ3/2

}
+ ρ f 3. (6.2c)

For completeness we give the incompressible continuity equation (3.2) as

∂u1

∂β
+
∂u2

∂r
+
∂u3

∂z
+

u2

r
= 0, (6.3)

leading to
1

r
√

Υ

∂v1

∂β
+

1
r
∂

∂r
(rv2) +

∂v3

∂z
= 0. (6.4)
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Equations (6.1) and (6.3), or alternatively (6.2) and (6.4), together with suitable
initial and boundary conditions, may be used to model unsteady viscous flow in
helically wound channels and ducts. On assuming the flow to be independent of both
time t and angular position β, we obtain the steady helically symmetric fluid flow
equations which form the basis of the thin-film models of flow in helically wound
channels derived and analysed in [2]. The helically symmetric Cauchy momentum
equations derived by Lee et al. [8], on assuming a constant viscosity µ, also agree
with the Navier–Stokes equations derived here, and we note that the derivation of
the general fluid-flow equations presented in this paper is readily extended for fluid
properties that depend on both time and spatial position.

7. Conclusions

We have derived the general incompressible Navier–Stokes equations (4.1) in terms
of an arbitrary nonorthogonal coordinate system. We believe that the final form of
(4.1), involving the generalized Laplacian and the use of identity (A.6) in Appendix A,
represents an important simplification of the existing forms of the Navier–Stokes
equations. If the inertial terms are neglected then the pressure function satisfies ∇2 p =

0, while (4.4) gives the appropriate generalization if the inertial terms are included.
Equation (4.4) is deduced by contracted partial covariant differentiation of the general
Navier–Stokes equations (4.1), and is interesting because it applies for every time-
dependent viscous flow, assuming only incompressibility and the absence of external
body forces. The derivations of (4.1) and (4.4) hinge on correctly commuting partial
covariant derivatives and exploiting the incompressibility constraint (3.2) in the form
ui

;i = 0, where the semicolon denotes the partial covariant derivative, in this case with
respect to xi. Interested readers are referred to Appendix C for the compressible
Navier–Stokes equations.

Appendix A. Evaluation of di j
;i

Here we provide a derivation of the given expression for di j
;i . The rate-of-strain

tensor di j is defined by
di j = 1

2 (giku j
;k + g jkui

;k),

where the semicolon denotes partial covariant differentiation with respect to xk. We
need the partial covariant derivative of di j with respect to xm, and then subsequently
make the contraction m→ i. Since the partial covariant derivatives of the metric tensor
and its conjugate are zero, we have

di j
;m = 1

2 (gik(u j
;k);m + g jk(ui

;k);m), (A.1)

and since in flat Euclidean space we may commute partial covariant differentiation, we
see that the second term involves

(ui
;k);m = (ui

;m);k =

(
∂ui

∂xm + Γi
m`u

`
)

;k
,
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and on contraction this expression vanishes for an incompressible fluid on using
equation (3.2). Thus from (A.1),

di j
;i = 1

2 gik(u j
;k);i, (A.2)

where (u j
;k);i becomes(

∂u j

∂xk + Γ
j
k`u

`
)

;i
=

∂2u j

∂xi∂xk + Γ
j
i`
∂u`

∂xk − Γm
ki
∂u j

∂xm + Γ
j
k`

(
∂u`

∂xi + Γ`imum
)

+

(∂Γ
j
k`

∂xi + Γ
j
imΓm

k` − Γn
ikΓ

j
n` − Γn

`iΓ
j
kn

)
u`, (A.3)

and the final two terms in each of the two brackets cancel. From (A.2) we obtain

di j
;i =

1
2

{
∇2u j + 2gikΓ

j
i`
∂u`

∂xk + gik
(∂Γ

j
k`

∂xi + Γ
j
imΓm

k` − Γn
ikΓ

j
n`

)
u`
}
, (A.4)

where, as usual, the generalized ∇2 is defined by

∇2 = gik
(

∂2

∂xi∂xk − Γm
ik
∂

∂xm

)
. (A.5)

But for flat Euclidean space, a standard result from tensor analysis (see, for example,
[12, pp. 49–56] or [13, pp. 88–107]) gives

∂Γ
j
k`

∂xi −
∂Γ

j
ki

∂x`
+ Γ

j
imΓm

k` − Γn
ikΓ

j
n` = 0, (A.6)

and therefore equation (A.4) becomes

di j
;i =

1
2

{
∇2u j + 2gikΓ

j
i`
∂u`

∂xk + gik ∂Γ
j
ki

∂x`
u`
}
, (A.7)

which gives the expression used in (4.1). We observe that (A.2) and (A.3) are entirely
consistent with expressions given by Wang [15], who did not subsequently simplify
the expressions using (A.5) and (A.6).

Appendix B. Harmonic equation for low Reynolds number and its
generalization to include inertial effects

Here we first show that when the inertia terms are negligible, we may deduce the
harmonic equation (4.3) for the case of no external body forces. From (3.3) and (A.2),

gi j ∂p
∂xi = µgik(u j

;k);i,

so that on taking the partial covariant derivative with respect to x j, interchanging orders
of differentiation, and using the incompressibility condition (3.2) in the form u j

; j = 0,
we may deduce

gi j
(
∂2 p
∂xi∂x j − Γm

i j
∂p
∂xm

)
= 0, (B.1)
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namely (4.3). If the inertial terms are included in the above calculation then, on
applying the partial covariant derivative with respect to x j to the term

ρ
(du j

dt
+ Γ

j
ikuiuk

)
= ρ
(
∂u j

∂t
+ ui ∂u j

∂xi + Γ
j
ikuiuk

)
= ρ
(
∂u j

∂t
+ uiu j

;i

)
,

and using the incompressibility condition, again in the form u j
; j = 0, we may deduce

that the equation corresponding to (B.1) that includes inertial effects is

((pgi j + ρuiu j);i); j = 0,

where the density ρ is constant.

Appendix C. Extension of results to compressible fluids

Here we briefly note the major equations applying for compressible fluids. The
rate-of-strain tensor defined by (3.1), on contraction yields

Θ = di
i = ui

;i, (C.1)

and conservation of mass gives

dρ
dt

+ ρui
;i =

∂ρ

∂t
+ uiρ;i + ρui

;i =
∂ρ

∂t
+ (ρui);i = 0, (C.2)

where Θ is sometimes referred to as the dilatation and ρ is the nonconstant density.
The stress–rate-of-strain relations for a compressible fluid become

ti j = (−p + λΘ)gi j + 2µdi j,

and conservation of momentum yields

ρ
(
∂u j

∂t
+ uiu j

;i

)
= −

∂

∂xi (p − λΘ)gi j + 2µdi j
;i + ρ f j. (C.3)

For a compressible fluid, in place of (A.7) we have

di j
;i = 1

2 (gik(u j
;k);i + gi jΘ;i), (C.4)

which becomes

di j
;i =

1
2

(
∇2u j + 2gikΓ

j
i`
∂u`

∂xk + gik ∂Γ
j
ki

∂x`
u` + gi jΘ;i

)
,

and from (C.3) the Navier–Stokes equations for a compressible fluid become

ρ
(
∂u j

∂t
+ uiu j

;i

)
=−

∂

∂xi (p − (λ + µ)Θ)gi j

+ µ
(
∇2u j + 2gikΓ

j
i`
∂u`

∂xk + gik ∂Γ
j
ki

∂x`
u`
)

+ ρ f j.
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In order to deduce the equation corresponding to (4.4), we need to add u j times
(C.2) to the left-hand side of (C.3), so that the acceleration term becomes

a j =
∂

∂t
(ρu j) + (ρuiu j);i,

and then by partial covariant differentiation of (C.3) with respect to x j, and with di j
;i

given by (C.4), we may obtain

∂

∂t
(ρu j); j + ((ρuiu j);i); j = −gi j((p − (λ + µ)Θ);i); j + µgik((u j

; j);i);k

assuming no body forces. On using (C.1) and (C.2), this equation simplifies to

∂2ρ

∂t2 = (((p − (λ + 2µ)Θ)gi j + ρuiu j);i); j

as the appropriate generalization of (4.4) for a compressible fluid. This equation can
alternatively be written as

∂2ρ

∂t2 = ∇2(p − (λ + 2µ)Θ) + ((ρuiu j);i); j

where, as usual, the Laplacian is defined by (4.2).
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