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In this paper solutions of the generalized metaharmonic equation in several
independent variables
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where 4 > 0 are uniquely decomposed into the sum of a solution regular in the
entire space and one satisfying a generalized Sommerfeld radiation condition. Due
to the singular nature of the partial differential equation under investigation it is
shown that the radiation condition in general must hold uniformly in a domain
lying in the space of several complex variables. This result indicates that function
theoretic methods are not only the correct and natural avenue of approach in the
study of singular ordinary differential equations, but are basic in the investigation
of singular partial differential equations as well.

The techniques employed in the analytic theory of partial differential equations
inn > 2 variables are in general quite different than in the case of two independent
variables since one now needs to study analytic functions of several complex
variables instead of a single complex variable (c.f. [9]). This point is aptly illustrat-
ed in the present work since although for n = 1 the above mentioned decomposition
theorem has been previously obtained in {2] ,the methods used there do not
immediately generalize to the several variable case considered here. This is due to
the fact that in [2] rather explicit evaluations of certain contour integrals over the
Riemann surface of multivalued analytic functions were required, and for functions
of several complex variables this becomes prohibitively difficult. Hence an entirely
different approach is employed ,namely the use of differential recursion relations
similar to those first used in [3] and [4] to investigate the analytic theory and uni-
queness problems for a class of singular equations closely related to 1). Although
the use of contour integration is avoided the approach remains function theoretic
in nature,
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For the special case n = 2, s = 0, (i.e. the nonsingular case) a particularly
good discussion of the decomposition problem under consideration (including its
application to scattering theory) can be found in [7] pp. 312-320. The results
presented in [7] were first obtained by John in [13].

1. Appell series and generalized metaharmonic functions in several variables

An Appell series (c.f. [10]) is a series of the form

@ Yauid@) =Y ¥ an¥i)
u=0 [Mi=p
where the polynomials

©) Vid(€) = Vag (€15 80); M =(my,--+,m,)
are uniquely defined by the generating function

) (=20 O+l )™+ 702 = F aMVP(0).
Here

(68 = L outi llalll? = (o @) 2 = oo,

M| = m+m,+--++m,, and the summation in equations (2), (4), and in what
follows is meant to be an n-fold sum over all indices from zero to infinity. A related
set of polynomials

(5) U%?(é) = U(A;)(gl > 1T fu)
is defined by the generating function
©) {[@@ &) =117 +lladP(A =17}~ = X o« UR(E).

For s > —1, s # 0, these polynomials satisfy the biorthogonality relation

Lw. (=lIEIP)e™2VPE) e e

@) . 20" (5/2+ 1)(s)jaay
@IM|+n+s—1)I" (f +2— 1)M!
2 2 2
where Sppr = Oy, * " Oppm, M = my! -+ m,! and S(0;1) is the real solid »

dimensional ball {¢||}¢]| < 1}. A basic result concerning Appell series is the follow-
ing theorem obtained by the author and R. P. Gilbert in [5] and [6]:

THEOREM 1.1. Let f(&) be an analytic function of n complex variables in some
neighbourhood 7 of the unit ball S(0; 1). Then f(&) con be expanded in an Appell
series
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®) fEO=YaQvPE);s> —1,s#0

which converges uniformly for &en {[S(0; 1)} n n*{S(0; 1)} with S(0;1) <
n{S©0; 1)} = 7, n* = {{|é*en} (* denotes complex conjugation), and where
the coefficients are given by the formula

a§) = hfswf (1= lIRC D2 (Q)USAE) de
S(0;1)

) with
QIM|+n+s—1) (f +3- 1) M!
22 2
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There exists a neighbourhood n of the unit ball S(0; 1) such that the series (8)
converges uniformly to a holomorphic function for & € n if and only if the function

(10) F(E) = 3 it

can be continued to a holomorphic function on

n

FCHESUIN S

Theorem 1.1 leads to an expansion theorem for solutions to equation (1)
which are analytic functions of (x,p) = (x;,- -, x,,p). This can be seen as
follows. The plane p = 0 is a singular surface of the regular type with indices 0
and 1 —s ([11]). Hence there always exist solutions of equation 1) which are analytic
on some portion of the plane p = 0, and if s # 0, —2, —4, - - - such solutions can
be continued across this plane as even functions of p. Each such regular solution
is analytic in a domain D that is symmetric with respect to the plane p = 0 and
can therefore be expressed as u(x, p) = i(r, £) where r, & = (&, -+, &,) are the
hyper-zonal coordinates defined as

x; =1,

X, = ré;
(11) :

Xy = 1&,

b
il

n
r(l—.;é?)*
r=x}+ - +x2+p%

In these coordinates the differential equation (1) becomes ([9], p. 229)
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Z(L(n) [~]) — —nT];:E i (r"+s ) +4 r2ﬁ+n(s—1)ﬁ
(12) et o
LY il ol
— ]z — —1i); =
S {ag, 3 (ze G )u);

From the above discussion and theorem 1.1 it is seen that for each r (where the
sphere of radius r is contained in D) it is possible to expand di(r, £) in an Appell
series

(13) i(r, &) = ¥ ad (Vg (©)

and then use equations (9), (12) and the differential equation satisfied by the
U(€) ([10] p. 278) to conclude that

m(") = pHten 1)[C(S)J|M|+(n+s—1)/2()»7‘)

+d$PH( |M|+(u+s 12(4r)]

(14)

where J, is a Bessel function of order u, H, ,}1) is a Hankel function of the first kind
of order u, and %, d are constants. Hence we have the following theorem

([51- t61):

THEOREM 1.2. Let ii(r, &) be a regular solution of LY, [ii] = 0 in the exterior
of a bounded domain D let ands > —1,s # 0. Then for r = a (where a is such that
r = a contains D) ii(r, &) can be expanded as

(19) i(r, §) = L a()Vi(©)

where the coefficients as(r) are given by equation (14). For each fixed r the series
(15) converges uniformly for & contained in some complex neighbourhood of S(0; 1).

The following theorem can be proved directly from the differential equation
(12) satisfied by #(r, ¢). The reader is referred to [3] for details in the case of two
independent variables.

TuEOREM 1.3. Let ii(r, &) be a regular solution of L{[ii] = O in a domain D.
Then for 1 < i < n,

o i 2a(r, &)
Q) = a¢;

is a regular solution of LD, ,[i#] = 0 in D.
By using the relationships ([10], p. 176, 275)

(16) d%,,@ 2C(x), mzl

m ntrs— b my m, s
(17)  |[bljmCEre=D l:(ubﬁ)} ) Z+ b b V) L (E, e E)

https://doi.org/10.1017/51446788700010582 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700010582

[5] The generalized metaharmonic equation 39

where C,,(x) denotes Gegenbauer’s polynomial of index v, one can verify that for
m=1,i <1< n,
GIAY

(183) *?""’"(51 s &) = (s=VE e G ).

Equation (18) shows that for s # 0, —1, —2, - - - there exist no nontrivial
representations of zero of the form

(19) Y a@vide) =0

with the series 19) converging uniformly in a complex neighbourhood of S(0; 1).
This follows by observing that if such a representation existed the series could be
differentiated termwise with respect ot &;, 1 £ i < n, as often as desired, resulting
in a series of the form (19) with s > 0. Use of the biorthogonality property shows
that all the coefficients of this latter series are zero and hence the original series (19)
consists of only a finite number of terms. Since forv # 0, —1, —2, - - - the Appell
polynomials are of degree exactly m, (c.f.[10], p. 274) each of the coefficients in
this finite series must be identically zero, i.e. a’Y = 0 for every M.

Theorem 1.3 now enables us to extend the result of theorem 1.2 to include the
cases s < —1,58 # —2, —3,---.

THEOREM 1.4. If ii(r, £) is a regular solution of L[] = O in the exterior of a
bounded domain D and s # 0, —1, —2, - - - then for r sufficiently large ii(r, &) can
be expanded as

(20) i(r, &) = Zai(r) ViP(©)

where the coefficients al)(r) are given by equation (14). For each fixed r the series

converges uniformly for & contained in some complex neighbourhood of S(0; 1).

Proor. For s > —1 this result is given in theorem 1.2. Let —2 < s < - 1.
Then by theorem 1.3 r~! grad, ii(r, £) is a vector whose components i (r, &) are

regular solutions of L{",, ,[#] = 0 in the exterior of D. Hence by theorem 1.2
(21) 17,-(7‘, é) = Ziaﬁn)(r) V]&H‘z)(é)

where the subscript i denotes the dependence of the coefficient on @;(r, £), We
furthermore have
(22) Ouj _ Oui

o8 o¢;
Since the series (21) converges uniformly for ¢ contained in a complex neighbour-
hood of S(0; 1) it is possible to differentiate (21) termwise. Doing this and using
equations (18), (22) and the observation following equation (18) we have for
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(23) jaf'f:'Z) mn(r) = a(s+2) i-:,"'mn(r)'
For (M| =1 let
(24) ai)(r) = ai), .. (r) = (n+s=1)7'r @l 2 (1)

where m; is a non zero index. By equation (23) the a$(r) are well defined. Now
let @*(r, 5) be defined by the formal series

@3) FeO=% 3 Ve,

Since each #,(r, £), 1 £ i < n, is regular for r > a (where the sphere r = a con-
tains D) the results of {5] and [6] show that the associated functions Fy(¢) = Fy(r, &)
defined in theorem 1.1 are analytic for r > a, £ € A(0; 1). Equations (21) and (24)
now show that

(26) F(©) =§1 T R

defines a holomorphic function of r, £ for r > a, £ € 4(0; 1). Hence from Cauchy's
theorem for several complex variables (c.f. [9], p. 5) there exists a vector f =
(Bys -+, B,) where B, > Ofor 1 £ i < nand|[|p]| < 1 such that for r on compact
subsets of (a, o)

(27) laf?(r)| = Cp™

where C, B;, 1 < i < n are positive constants which depend on the size of the
compact subset of (a, ). By considering the generating function (4) as a power
series in oy, - * -, o, it is seen that for fixed y < 1 the series in equation (4) con-
verges absolutely and uniformly for a € 4(0,y) and ¢ lying in some complex
neighbourhood of S(0; 1) whose size depends on y. From the several variable
analogue of the Weierstrass comparison theorem and equation (4) it is now
possible to conclude that the series (25) converges uniformly for r on compact
subsets of (a, ) and ¢ contained in some complex neighbourhood of S(0; 1)
provided 7y is chosen close enough to one, i.e. y and hence the size of the complex
neighbourhood of S(0; 1) will depend on the particular compact subset of (a, ©)
that is chosen. A similar analysis shows that termwise differentiation with respect
tor, &, -, &, is permissible for £ € §(0; 1) and r on compact subsets of (a, )
with the resulting series being uniformly convergent. Hence @7 (7, &) defines a
regular solution of L{%[#]=0 for r > a, ¢€S(0;1). Termwise differentiation
now gives

(28) gradé[a(ra ﬁ)—ﬁ*(r, é)] =0.

Hence #(r, £) —ii*(r, &) is a solution of equation 12) which depends only on r
which implies that
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(29) i(r, &)—a*(r, &) = a$(r)
with a§(r ) being of the form defined in equation (14). Hence for —2 < s < —1
(30) i(r, &) = 3. ai) (VP (-

This proves the theorem for —2 < s < —1 and the complete theorem follows by
induction on s.

2, Decomposition theorems

We now proceed to derive decomposition theorems for generalized metahar-
monic functions in several independent variables which are analogous to those
obtained in [2] for two independent variables. We begin with the case when
s> ~—1,5s#0.

THEOREM 2.1. Assume s > —1, s # 0. Let 1i(r, &) be a regular solution of
equation (12) in the exterior of a bounded domain D. Then ii(r, &) can be uniquely
decomposed as

(31) u(r, &) = U(r, O)+V(r, &)

where U(r, &) is a regular solution of equation (12) in the entire n+1 dimensional
Euclidean space R**' and V (r, £) is a regular solution of equation 12) in the exterior
of D which satisfies the radiation condition

(32) lim pA0*9 (‘31 —il V) =0

r— o or

uniformly for &£ e S(0; 1).

PROOF. Let 0 < @ < r and consider the function Q(g, {; r, £) defined by the
formal series

Qa, {51, &) = (ar) 37D B (B3) 7 a4 o s 1y72(40)-
“H{M 1+ 45— 12U Vi (©)-

By using theorem 1.1 and the asymptotic formulae ([10]. p. 4,8)

(33)

(34) () (%“)_”J”(xa) —14o(l); po oo
(35) _r {5_) I&P0r) = 1+0(1); p- o
i I'(w

(which hold uniformly for a, r on compact subsets of the positive real axis) it is
seen from the several variable analogue of the Weierstrass comparison theorem
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and Hartog’s theorem that for 0 < a < r the series (33) converges uniformly to
a holomorphic function of the 2n variables {, & for ({, &) contained in some complex
neighbourhood of S(0;1)xS(0;1). (Cauchy’s formula for several complex
variables is applied to equation 6) in order to obtain bounds for UP({).) A similar
analysis shows that for g, r, {, & as indicated above, termwise differentiation is
permissible and Q(a, ; r, £) converges uniformly to a solution of equation 12)
both as a function of (a, {) and of (r, £). Now let a be chosen such that D is
contained in the sphere of radius @ and consider the solution to equation 12)
defined for r > a by

n+s

_ a n n+sq _ 2\(s—1)2 OQ((J C,r, f)
V(r, 5) 2i fS(O;l) ’ (1 et ) [ ( O

—0(a, {; 7, &) 1O C)J ac,

(36)

Using the relation ([10], p. 80)

(37) 2 = J (4a) dH‘(‘l)(;m) H(l)( ) (la)
na da

equations (7), (15), (33), and the uniform convergence of the series under consider-
ation, we have

(38) V(", 5) = pT¥otsmD Z dJ(t;)Hfllvf)[+(n+s—l)/2 (}tr)Vﬁ)(f)

where the series (38) is uniformly convergent for each fixed r > a, £ contained in
some complex neighbourhood of S(0; 1). (Details of this last calculation for the
case n = 1 are provided in [2]). By using the Lommel polynomials to express
H{32 4 es—1y2(Ar) in terms of HQ),_y,(r) and H{'),3,,2(Ar), substituting this
relationship into the series (38), and then rearranging terms, it can be seen that
the solution ¥V (r, £) satisfies the radiation condition (32) uniformly for ¢ contained
in some complex neighbourhood of S(0; 1). The details of this last operation are
identical to the case when n = 1 and the reader is referred to [1] and [14] for
more information. From equation (15) we therefore can write

(39) 4(r,&) = U(r, &)+ V(r,&);r > a
where
(40) U(r, &) = r 305D e 1+ nrs— 15 2(A) V()

is uniformly convergent for each fixed r > g, ¢ contained in some complex
neighbourhood of S(0; 1). From the results of [8] and [9] it is seen that U(r, &)
can be continued analytically into all of R***, and this fact along with equation (39)
shows that U(r, &) is an everywhere regular solution of equation 12). (It is now
clear that V(r, &) is regular in the exterior of D and not: only for r > a.) The
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decomposition (31) is unique since if U(r, £) is a generalized metaharmonic func-
tion which is regular in the entire plane and also satisfies the radiation condition
(32), then the biorthogonality property (7) and the series representation (15)
shows that U(r, &) must be identically zero.

THEOREM 2.2. Assume s < —1, s # ~2, =3, —4,---. Let i(r,&) be a
regular solution of equation (12) in the exterior of a bounded domain D. Then
i(r, &) can be uniquely decomposed as

(41) i(r, &) = U(r, )+ V(r, &)

where U(r, &) is a regular solution of equation (12) in the entire n+1 dimensional
Euclidean space R**' and V(r, &) is a regular solution of equation (12) in the
exterior of D which satisfies the radiation condition

(42) lim 77+ (‘;—V

reo r

~ i/lV) -
uniformly for & contained in some complex domain inclosing S(0; 1) in its interior.

ProOF. First let —2 < s < —1. Let the sphere of radius a contain D in its
interior. Using theorem 1.4 ii(r, £) can be expressed as

(43) i(r, &) = X al2( Vi(E); r > a

where the coefficients are given by equation (14) and for each fixed r > a the series
(43) can be differentiated with respect to £;, 1 < i < n. Using this fact, theorem
1.3, and equation 18) we have that r ~* grad,di(r, £) is a vector whose components
fi(r, £) are regular solutions of LY, , ,[#] = O for r > a and have the expansion

(44) dir, &) = Y a2 VETD(E); r > a
where
(45) asy 2 = (’+2) 1) =1 (n+s-1); a e g, mak T

By theorem 2.1 it is possible to conclude that for each i, 1 £ i £ n, the series

(46) r AT B AT P H G s 12(A0) Vg TP(E)
where
(47) AP = dSED = (nts=1dS e

is uniformly convergent for each fixed r > @ and & contained in some complex
neighbourhood of S(0;1). By using this fact and arguments similar to those
used in theorem 1.4 it can be concluded that

(48) V(r, &) = ) dﬁ)H&)lHnﬁ—n/z(h) VIS)@)
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converges to a solution of LY [#] = 0 for r > a and ¢ contained in some complex
neighbourhood of S(0; 1). By arguements analogous to those used in theorem 2.1
it is seen that if U(r, &) is defined by

(49) Ur, &) = pmits=1) Z ch{)J|M|+(n+s—1)/2()‘r) VS)(?:)

then ¥ (r, £) and U(r, £) have the properties ascribed to them in the theorem. We
now come to the question of the uniqueness of the decomposition, and this is
where it is necessary to require that the radiation condition (42) be valid in a com-
plex domain instead of simply for the closed unit ball $(0; 1). For suppose the
decomposition (41) is not unique. Then there exists a nontrivial solution U(r, &)
of LY [i] = 0 which is regular in R"*! and also satisfies the complex radiation
condition (42). From Vitali’s theorem for several complex variables ([12]), and
the radiation condition (42), we have thatfor 1 < i < n

2
(50) lim p¥r+s*2) (_1_ v ;A ’2_({) =0
r 0rdé; r o0&

reo

uniformly for £ contained in some complex domain inclosing S(0; 1) in its interior.
But

(1)

or
@ () -
reo or r 05, r r afl r 6

uniformly for £ contained in the above mentioned complex domain. By theorem
1.3 we have that U; = 1/r U/6¢; is a regular solution of L{®,,,[@#] = 0 in R***.
Hence U(r, &) can be represented as ([8])

6(_1_6_(]) 1 62U_i6U
or\r 0

(53) Ui("’ C) = p st 2 01(\;+2)J1Ml+(n+s+1)/2(/1") V;ls”)(f)-

By using the biorthogonality property 7) and equation (52)it s seen that ,c§" 2 = 0
for all M and hence U(r, &) is identically zero for each 7,1 £ i £ n. Heunce
U(r, &) is a function of r alone i.e.

(54) U(r, &) = const. r ¥**s7UF L 1(A0).

The radiation condition (42) and the asymptotic expansion (which can be differen-
tiated with respect to r)

2 urn i 1
55 Jir=V~cos(/1r————f—)+0(——); F - 00
(59) u( ) TAr 2 4 3

r

now shows that U(r, £) must be identically zero, which is the desired contradiction.
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Fors < —2,5 # —3, —4, - - - the decomposition follows by induction on s.
The uniqueness of the decomposition follows by repeated application of theorem
1.3 in the manner just completed and by observing that if a finite series of the form

(56) PO R Y i+ mrs—12(A0) VaP(€)

B=0 |M|=pn
satisfies the radiation condition (42) and s # 0, —1, —2,- - - then &9 = 0 for
each M. This can be seen from the asymptotic expression (55) and the discussion
following equation (18).

ExAMPLE 2.1. For s < —1 the radiation condition (42) must hold for ¢ lying
in a complex domain containing S(0; 1) in its interior and cannot be weakened
to hold only for £ € S(0; 1). For in this latter case

(57) U(r, &) = R 737, 0(4r)

where R = r(&+- - -+¢&2)t is a solution of L{[i#] = 0 which is regular in the
entire plane. But equation (55) shows that U(r, &) also satisfies the radiation con-
dition if s < —1, i.e. the decomposition is no longer unique.

If V(r, &) is a solution of equation 12) for s < —1, s # —2, -3, —4---
and satisfies the complex radiation condition (42), then by theorem 2.2 V(r, &)
has the representation

(58) V(r, 5) =y 30tsTD Z dgus)HWH(nn—n/z(M) VI&S)(C)-

By using the Lommel polynomials to express Hp|+m+s—1)2(Ar) in terms of
H o 1)2(0r) and H{).,_3),(Ar), substituting this relationship into the series
(58), and then rearranging terms (c.f. [1], [14]) it is seen that V(r, &) can be
represented asymptotically as

1

f(é) iir .
(59) V(r, &) = ot &40 ;m ; r— o0

where V(r, &) is uniquely determined by its ‘scattering amplitude’ f(¢). Example
2.1. shows that if a complex radiation condition is not insisted upon, then f(&)
no longer uniquely determines V (r, &), i.e. the inverse scattering problem (c.f. [8],
[9]) is improperly posed.
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