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2Departamento de Ciencias Básicas, Universidad Nacional de Moquegua, Calle Ancash

S/N, 18001, Moquegua, Perú
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Abstract Given the full shift over a countable state space on a countable amenable group, we develop
its thermodynamic formalism. First, we introduce the concept of pressure and, using tiling techniques,
prove its existence and further properties, such as an infimum rule. Next, we extend the definitions of
different notions of Gibbs measures and prove their existence and equivalence, given some regularity
and normalization criteria on the potential. Finally, we provide a family of potentials that nontrivially
satisfy the conditions for having this equivalence and a nonempty range of inverse temperatures where
uniqueness holds.
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1. Introduction

There are two general ways to describe a system composed of many particles: micro-

scopically and macroscopically. The first one makes use of the exact positions of the
particles, as well as their local interactions. The second one, in turn, is usually outlined

by thermodynamic quantities, such as energy and entropy. One could say that statistical

mechanics — originated from the works of Boltzmann [10] and Gibbs [32] — is the bridge
between the microscopic and the macroscopic descriptions of these kinds of systems.

In this connection, Gibbs measures are a central object. It is fair to say that Gibbs

measures are at the core of the ‘conceptual basis of equilibrium statistical mechanics’ [52].

Relevant examples are the Ising model, which tries to capture the magnetic properties of
certain materials; the hard-core model, that describes the distribution of gas particles in

a given environment; among many others [29, 30, 31]. In these cases, it is customary to

consider that the many particles interacting are infinite, take a value from a state space
A (also called alphabet when A is countable), and they are disposed in a crystalline

structure. This structure and its symmetries are usually represented by a countable

group G, possibly with some Cayley graph associated with it. A particular case is the
hypercubic d-dimensional lattice, which can be understood as the Cayley graph of the

finitely generated Abelian group G = Zd according to its canonical generators. Then,

it is natural to represent an arrangement of particles as an element of the space of

configurations X = AG, the G-full shift. Considering this, one is interested in certain
measures μ in the space M(X) of Borel probability measures supported on X. More
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specifically, the measures of interest are the ones that describe these kinds of systems
when they are in thermal equilibrium, where the energy of configurations is given by

some potential φ :X → R. However, there are many mathematically consistent ways to

represent that situation by choosing an appropriate measure μ ∈M(X). As the theory
evolved, it drew the attention from different areas of expertise, such as probability [27,

51] and ergodic theory [14, 56]. Consequently, the very concept of Gibbs measure started

to develop in more abstract and not always equivalent directions.

We focus mainly on four conceptualizations of the idea of thermal equilibrium, namely,
Dobrushin-Lanford-Ruelle (DLR), conformal, Bowen-Gibbs, and equilibrium measures.

We now proceed to briefly describe each of them.

Dating back to the 1960s, Dobrushin [22, 23] and, independently, Lanford and
Ruelle [41] proposed a concept of Gibbs measure that extended the usual Boltzmann-

Gibbs formalism to the infinite particles setting. Roughly, the idea involved looking

for probability distributions compatible with a family of maps — sometimes called
specification — that prescribe conditional distributions inside finite subsets of G given

some fixed configuration outside. More specifically, given a collection γ = (γK)K∈F(G) of

probability kernels γK : B×X → [0,1], with F(G) the set of finite subsets of G and B the

Borel σ-algebra, one is interested in finding measures μ ∈M(X), such that μγK = μ for
every K ∈ F(G), where μγK is a new measure (a priori, different from μ) obtained from

μ via γK . Those distributions are called DLR measures after the above cited authors,

and they have received considerable attention from both mathematical physicists and
probabilists (see, for example [30, 31, 38, 52]).

Another rather classical way to define a Gibbs measure, which does not involve

conditional distributions, was introduced by Capocaccia in [17]. Given a class E of local
homeomorphisms τ :X →X and a potential φ :X → R, one is interested in measures μ,

such that d(μ◦τ−1)
dμ = exp(φτ

∗) for every τ ∈ E , where φτ
∗ :X →R is a function representing

the energy difference between a configuration x and τ(x) (e.g. see [38, Definition 5.2.1]).

This kind of measures fits in the more general context of (Ψ,R)-conformal measures
explored in [1], where R is a Borel equivalence relation and Ψ: R→ R+ is a measurable

function. Then, Capocaccia’s measures, that we simply call conformal measures, can be

recovered by taking a function Ψ related to the given potential and R the tail relation

in the space of configurations. By considering other particular Borel relations R and
measurable functions Ψ, one can recover other relevant notions of conformal measures,

such as the ones presented in [20, 49, 53], that are mainly adapted to the one-dimensional

setting, that is, when G= Z or, considering also semigroups, when G= N.
A third possibility, introduced by Rufus Bowen in a one-dimensional and ergodic

theoretical context [14], is to define Gibbs measures by specifying bounds for the

probability of cylindrical events. More concretely, one is interested in the measures
μ ∈M(X) for which there exists constants C > 0 and p ∈ R, such that

C−1 ≤ μ([a0a1 · · ·an−1])

exp(
∑n−1

i=0 φ(T ix)−pn)
≤ C for x ∈X.

As in [7], we call those measures Bowen-Gibbs measures to avoid confusion. This definition

has been considered in the literature [18, 36, 38, 52] and also relaxed versions of it, such as
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the so-called weak Gibbs measures [58, 60], where the constant C is replaced by a function

that grows sublinearly in n. This and further relaxations have also played a relevant role

in the multidimensional case, this is to say, when G= Zd and d > 1, for finite state spaces
(e.g. see [38, Theorem 5.2.4]).

The last important definition considered in this work is the one of equilibrium measure.

When X is a finite configuration space, equilibrium measures are simply probability
vectors that maximize the sum (or difference) of an entropy- and an energy-like quantity,

that is, a quantity like

H(p)+p · (φ(x1), . . . ,φ(xk)) =−
k∑

i=1

pi logpi+
k∑

i=1

piφ(xi),

where k = |X|, xi ∈ X, φ : X → R is a potential, p = (p1, . . . ,pk) is a probability vector

with pi the probability associated with xi, and H(p) is the Shannon entropy of p. These

measures were considered, for example, in [31, 38, 52]. On the other hand, when X is
an infinite configuration space and there is a robust notion of specific entropy, let’s say

h(μ), we are interested in studying measures μ ∈ M(X) that maximize the quantity

h(μ) +
∫
φdμ for a continuous potential φ : X → R. This notion tries to capture the

macroscopic behaviour of the system without making any assumption of the microscopic

structure.

The problem of proving equivalences among these and other related notions has already
been studied in different settings. We mention some relevant results that can be found in

the literature.

In the one-dimensional case, for finite state spaces, Meyerovitch [44] proved the

equivalence between conformal measures and DLR measures for some families of proper
subshifts. Also, Sarig [54, Theorem 3.6] proved that any DLR measure on a mixing

subshift of finite type is a conformal measure, for a different but related notion of

conformal, restricted to the one-dimensional setting. In the same work, for one-sided
and countably infinite state spaces, Sarig [54, Proposition 2.2] proved that conformal

measures — according to his definition — are DLR measures for topological Markov

shifts. In this same setting, Mauldin and Urbański [43] proved the existence of equilibrium
measures and that any equilibrium measure satisfies a Bowen-Gibbs equation. Moreover,

if the topological Markov shift satisfies the big images and preimages (BIP) property

and the potential has summable variation, Beltrán et al. [6] proved that DLR measures

and conformal measures — in the same sense as Sarig — are equivalent. Finally, for
potentials with summable variation on sofic subshifts, Borsato and MacDonald [12] proved

the equivalence between DLR and equilibrium measures. There are also other classes of

measures in the one-dimensional case which we do not treat here, such as g-measures
[37, 59] and eigenmeasures associated with the Ruelle operator [14, 52]. When the state

space is finite, it is known that the set of DLR measures and g-measures do not contain

each other [9, 28], but there is a characterization for when a g-measure is a DLR measure
[7]. In addition, eigenmeasures coincide with DLR measures for continuous potentials

in the one-sided setting, as proven by Cioletti et al. in [19]. Pioneering works in the

one-dimensional countably infinite state space setting can be found in [33, 34]. In the

multidimensional case, some results regarding the equivalences among the four notions
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of Gibbs measures have been proved for finite state spaces. A first important reference is
Keller [38, Theorems 5.2.4 and 5.3.1], where it is proven that when φ :X → R is regular

(which includes the case of local and Hölder potentials, and well-behaved interactions),

then the four definitions are equivalent. Here, by regular, we mean that

∞∑
n=1

nd−1δn(φ)<∞,

where δn(φ) is the oscillation of φ when considering configurations that coincide in a

specific finite box, namely, [−n,n]d∩Zd. Other classical references in this setting are due

to Dobrushin [21] and Lanford and Ruelle [41], which, combined, establish the equivalence
between DLR measures and equilibrium measures for a general class of subshifts of finite

type. Kimura [40] generalized the equivalence between DLR and conformal measures

for subshifts of finite type, and some of the implications are true for more general
proper subshifts. In the countably infinite state space setting, Muir [45, 46] obtained

all equivalences for the G-full shift when G = Zd. In order to do this, it was required

that the potential φ : X → R is regular and satisfies a normalization criterion, namely,
exp-summability :

∑
a∈N

exp(supφ([a]))<∞.

This last condition is automatically satisfied when A is finite.

Results proving equivalences between different kinds of Gibbs measures go beyond the

amenable [2, 5, 15, 55] and even the symbolic setting to general topological dynamical
systems [3, 36].

One of our main contributions is to exhibit conditions to guarantee that the four notions

of Gibbs measures presented above are equivalent, when considering the state space A=N

and an arbitrary countable amenable group G, thus extending Muir’s methods to the more

general amenable case. Countable amenable groups play a fundamental role in ergodic

theory [48] and include many relevant classes of groups, such as Abelian (so, in particular,
G = Zd), nilpotent, and solvable groups and are closed under many natural operations,

namely, products, extensions, etc. (e.g. see [42]). In the more general group and finite

state space setting, the equivalence between DLR and conformal measures was extended

to general subshifts over a countable discrete group G with a special growth property by
Borsato-MacDonald [13, Theorems 5 and 6]. Recently, a different proof for the equivalence

between DLR and conformal measures for any proper subshift was given by Pfister in

[50]. Also, in [4], a Dobrushin-Lanford-Ruelle type theorem is proven in the case that
the group is amenable and a topological Markov property holds, which is satisfied, in

particular, by subshifts of finite type. Here, as Muir, we focus on the G-full shift case.

We consider the configuration space X = NG, for G an arbitrary countable amenable
group, and an exp-summable potential φ :X →R with summable variation (according to

some exhausting sequence). The concept of summable variation extends the one of regular

potential presented before. More precisely, a potential φ has summable variation if
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∞∑
m=1

∣∣E−1
m+1 \E−1

m

∣∣δEm
(φ)<∞,

where {Em}m is an exhausting sequence for G and δEm
(φ) is a standard generalization

of δm(φ).

The paper is organized as follows. First, in Section 2, we present some preliminary
notions about amenable groups G, the corresponding symbolic space NG, and potentials.

Later, in Section 3, we introduce the concept of pressure in our framework, and we prove

its existence. Also, we prove that it satisfies an infimum rule and that it can be obtained
as the supremum of the pressures associated with finite alphabet subsystems. In order

to achieve this, we use relatively new techniques for tilings of amenable groups [26] and,

inspired by ideas for entropy from [25], we develop a generalization of Shearer’s inequality
for pressure. In Section 4, we introduce spaces of permutations and Gibbsian specifications

in order to pave the way for the definitions of conformal and DLR measures, respectively.

Next, in Section 5, we prove the equivalence between the four notions of Gibbs measures

mentioned above given some conditions on the potential, such as exp-summability and
summable variation. We also prove related results involving equilibrium measures. In

order to prove the equivalence between DLR and conformal measures, we rely on the

strategies presented in [45] for the G= Zd case, which already considers an infinite state
space. Moreover, using Prokhorov’s theorem and relying on the existence of conformal

measures in the compact setting [20], we prove the existence of a conformal (and DLR)

measure in our context. We also prove that DLR measures are Bowen-Gibbs. If it is also
the case that the measure is invariant under shift actions of the group, we prove that any

Bowen-Gibbs measure is an equilibrium measure and that any equilibrium measure is a

DLR measure. At last, in Section 6, we show how to recover previous results from ours

and, inspired by the Potts model and considering a version of it with countably many
states, we exhibit a family of examples for which all our results apply nontrivially and,

in addition, a version of Dobrushin’s uniqueness theorem adapted to our setting holds,

thus providing a regime where the uniqueness of a Gibbs measure is satisfied.

2. Preliminaries

2.1. Amenable groups and the space NG

Let G be a countable discrete group with identity element 1G and N be the set of

nonnegative integers. Consider the G-full shift over N, that is, the set NG = {x :G→N}
of N-colourings of G, endowed with the product topology. We abbreviate the set NG

simply by X. Given a set A, denote by F(A) the set of nonempty finite subsets of A.

Consider a sequence {Em}m of finite sets of G, such that E0 = ∅, 1G ∈E1, Em ⊆Em+1

for all m ∈ N, and
⋃

m∈N
Em =G. We will call such a sequence an exhaustion of G or

an exhausting sequence for G. Throughout this paper, we will consider a particular

type of exhausting sequences: we will assume further that E1 = {1G} and {Em}m strictly
increasing.

Given a fixed exhaustion {Em}m, the topology of X is metrizable by the metric d : X×
X → R given by d(x,y) = 2− inf{m∈N :xEm �=yEm}, where xF denotes the restriction of a
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configuration x to a set F ⊆ G. Denote by XF = {xF : x ∈X} the set of restrictions of

x∈X to F. The sets of the form [w] = {x∈X : xF =w}, for w ∈XF , F ∈F(G), are called

cylinder sets. The family of such sets is the standard basis for the product topology
of NG.

Let B be the σ-algebra generated by the cylinder sets, and let M(X) be the space of

probability measures on X. Consider also MG(X) the subspace of G-invariant probability
on X.

The group G acts by translations on X as follows: for every x ∈X and every g,h ∈G,

(g ·x)(h) = x(hg).

This action is also referred, in the literature, as the shift action. Moreover, it can be

verified that g · [xF ] = [(g ·x)Fg−1 ], for every x ∈X, g ∈G, and F ⊆G.
Given K,F ∈ F(G) and δ > 0, we say that F is (K,δ)-invariant if |KFΔF | < δ|F |,

where KF = {kf : k ∈K,f ∈ F}. A group G is called amenable if for every K ∈ F(G)

and δ > 0, there exists a (K,δ)-invariant set F.

For K,F ∈ F(G), define:

i) the K -interior of F as IntK(F ) = {g ∈G : Kg ⊆ F},
ii) the K -exterior of F as ExtK(F ) = {g ∈G : Kg ⊆G\F}, and
iii) the K -boundary of F as ∂K(F ) = {g ∈G : Kg∩F 	= ∅,Kg∩F c 	= ∅}.

2.2. Potentials and variations

A function φ : X → R is called a potential. Given E ⊆ G, the variation of φ on E is

given by

δE(φ) := sup{|φ(x)−φ(y)| : xE = yE}.

Notice that if E ⊆ E′, then δE′(φ) ≤ δE(φ). If E = {1G}, we denote δE(φ) simply by
δ(φ). We say that φ has finite oscillation if δ(φ)<∞.

Let {Em}m be an exhausting sequence for G. Given a potential φ : X → R, it is not

difficult to see that φ is uniformly continuous if, and only if, limm→∞ δEm
(φ) = 0. In

this context, given F ∈ F(G), we define the F -sum of variations of φ (according to
{Em}m) as

VF (φ) :=
∑
m≥1

∣∣E−1
m+1F \E−1

m F
∣∣ · δEm

(φ).

If F = {1G}, we denote VF (φ) simply by V (φ). We say that φ : X → R has summable

variation (according to {Em}m) if V (φ)<∞.

Remark 2.1. For any exhausting sequence {Em}m and any F ∈ F(G), the sequence

{E−1
m+1F \E−1

m F}m is a partition of G. Moreover, E−1
m+1F \E−1

m F ⊆ (E−1
m+1 \E−1

m )F , so∣∣E−1
m+1F \E−1

m F
∣∣≤ ∣∣E−1

m+1 \E−1
m

∣∣ |F |,

and VF (φ) ≤ V (φ)|F |. In particular, if φ has summable variation, VF (φ) < ∞ for all

F ∈ F(G).
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Proposition 2.2. Let φ : X → R be a potential such that the F-sum of variation of φ is
finite for some F ∈ F(G). Then φ is a uniformly continuous potential.

Proof. Let {Em}m be an exhausting sequence for G. Since, in particular, Em ⊆ Em+1

for every m ≥ 1, we have that 0 ≤ δEm+1
(φ) ≤ δEm

(φ) for every m ≥ 1. Then, for every

M ≥ 1,

VF (φ)≥
M∑

m=1

|E−1
m+1F \E−1

m F | · δEm
(φ)

≥ δEM
(φ) ·

M∑
m=1

|E−1
m+1F \E−1

m F |

= δEM
(φ)|E−1

M+1F \E−1
1 F |,

where the last line follows from Remark 2.1. Therefore,

0≤ lim
M→∞

δEM
(φ)≤ lim

M→∞

VF (φ)

|E−1
M+1F \E−1

1 F |
= 0,

and the result follows.

Definition 2.1. Let ϕ : F(G) → R be a function. Given L ∈ R, we say that ϕ(F )

converges to L as F becomes more and more invariant if for every ε > 0, there exist

K ∈ F(G) and δ > 0, such that |ϕ(F )−L| < ε for every (K,δ)-invariant set F ∈ F(G).
We will abbreviate such a fact as lim

F→G
ϕ(F ) = L.

A sequence {Fn}n in F(G) is (left) Følner for G if

lim
n→∞

|gFn \Fn|
|Fn|

= 0, for any g ∈G.

For example, if G= Zd and Fn = [−n,n]d∩Zd, then {Fn}n is a Følner sequence for Zd.

It is not difficult to see that if limF→Gϕ(F ) =L, then limn→∞ϕ(Fn) =L for every Følner
sequence {Fn}n. In particular, when G= Zd, convergence as F becomes more and more

invariant implies convergence along d -dimensional boxes, which is a common condition

in the multidimensional framework. It is not difficult to see that a group is amenable if,
and only if, it has Følner sequence. Moreover, for every amenable group G, there exists

a Følner sequence that is also an exhaustion.

Proposition 2.3. Let φ : X →R be a potential with summable variation according to an

exhausting sequence {Em}m. Then,

lim
F→G

VF (φ)

|F | = 0.

https://doi.org/10.1017/S1474748024000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000112


Thermodynamic formalism for amenable groups and countable state spaces 2655

Proof. Let ε > 0. Since φ : X → R has summable variation, there exists m0 ≥ 1, such
that ∑

m>m0

|E−1
m+1 \E−1

m | · δEm
(φ)< ε.

Then, for every F ∈ F(G),

VF (φ)≤
m0∑
m=1

|E−1
m+1F \E−1

m F | · δEm
(φ)+

∑
m>m0

|E−1
m+1 \E−1

m ||F | · δEm
(φ)

≤
m0∑
m=1

|E−1
m+1F \E−1

m F | · δEm
(φ)+ |F | · ε.

Due to the amenability of G, for any given m0 ≥ 1, we have that, for all m≤m0,

|F | ≤ |E−1
m+1F | ≤ |E−1

m0+1F | ≤ (1+ ε)|F |

for every (Em0+1,ε)-invariant set F. Therefore, for every ε > 0, there exists m0 ≥ 1 and

K ∈ F(G), such that for every (K,ε)-invariant set F,

VF (φ)≤
m0∑
m=1

((1+ ε)|F |− |F |) · δEm
(φ)+ ε · |F |= ε · |F |

m0∑
m=1

δEm
(φ)+ ε · |F |,

so

VF (φ)

|F | ≤ ε ·C,

where C = 1+V (φ). Since ε was arbitrary, we conclude.

Given a potential φ : X → R, for each F ∈ F(G), define φF : X → R as φF (x) =∑
g∈F φ(g ·x) and ΔF (φ) = δF (φF ). Notice that ΔFg(φ) = ΔF (φ) for every g ∈G.

Lemma 2.4. Let {Em}m be an exhausting sequence for G, φ : X →R be a potential that

has finite oscillation and such that liminfm→∞ δEm
(φ) = 0. Then,

lim
F→G

ΔF (φ)

|F | = 0. (2.1)

In particular, if φ has summable variation according to an exhausting sequence {Em}m,
then equation (2.1) holds.

Proof. Let ε> 0. Since liminfm→∞ δEm
(φ)= 0, there existsm0 ≥ 1, such that δEm0

(φ)≤ ε.

Denote Em0
by K. Due to amenability, we can find K ′ ⊇K and 0< ε′ ≤ ε, such that if F

is (K ′,ε′)-invariant, we have that

|IntK(F )�F |< ε · |F |.
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Considering this, if x,y ∈X are such that xF = yF , we have that

|φF (x)−φF (y)| ≤
∑
g∈F

|φ(g ·x)−φ(g ·y)|

=
∑

g∈IntK(F )∩F

|φ(g ·x)−φ(g ·y)|+
∑

g∈F\IntK(F )

|φ(g ·x)−φ(g ·y)|

≤
∑

g∈IntK(F )∩F

δK(φ)+
∑

g∈F\IntK(F )

δ(φ)

≤ |IntK(F )| · ε+ |F \ IntK(F )| · δ(φ)
≤ |F | · (1+ ε) · ε+ |F | · ε · δ(φ)
= |F | · ε · (1+ ε+ δ(φ)),

and the result follows.

3. Pressure

We dedicate this section to introduce the pressure of a potential. We define and work
on the setting of exp-summable potentials with summable variation on a countable

alphabet. The pressure — basically equivalent to the specific Gibbs free energy — is a very

relevant thermodynamic quantity that helps to capture the concept of Gibbs measure in
a quantitative way.

First, we prove that the pressure, which we define through a limit over sets that are

becoming more and more invariant, exists in the finite alphabet case. The definition of

the pressure is often done in terms of a particular Følner sequence, which is a, a priori,
less robust and less overarching approach. Existence of the limit for a particular Følner

sequence {Fn}n and the fact that it is independent on the choice of such sequence is well-

known (see, for example [16, 35, 57], in the context of absolutely summable interactions).
Here, we prove something stronger: that our definition of pressure obeys the infimum

rule — which is a refinement of the Ornstein-Weiss lemma (see, for example [39, Section

4.5]) — this is to say, it can be expressed as an infimum over all finite sets of G. In order
to conclude this, we extend the results about Shearer’s inequality in [25] for topological

entropy to pressure.

Now, in the countable alphabet context, we take a similar approach. First, we consider

again a definition of pressure in terms of sets that are becoming more and more invariant.
Next, we prove that the infimum rule still holds, and, finally, we prove that the pressure

can be obtained as the supremum of the pressures associated with finite alphabet

subsystems. A related result was obtained by Muir in [45] for the Zd group case, where
the pressure was defined as a limit over a particular type of Følner sequence, namely, open

boxes centred at the origin of radius n. The existence of this limit was proven through

a subadditivity argument that exploits the property that large boxes can be partitioned
into many equally sized ones, which might not be valid in more general groups. In order

to generalize this idea of partitioning sets, we make use of tiling techniques introduced

in [26], which, together to what is done in the finite alphabet case, allow us to prove the
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infimum rule for infinite alphabets over a countable amenable group. This type of result
was not considered in [45].

We begin by introducing some definitions. Given a potential φ : X →R and F ∈ F(G),

define the partition function for φ on F as

ZF (φ) :=
∑

w∈XF

exp(supφF ([w])),

where supφF ([w]) = sup{φF (x) : x∈ [w]}. We define the pressure of φ, which we denote
by p(φ), as

p(φ) := lim
F→G

1

|F | logZF (φ),

whenever such limit as F becomes more and more invariant exists. In addition, given a
finite subset A ∈ F(N), we define ZF (A,φ) as the partition function associated with the

restriction of φ to AG. More precisely,

ZF (A,φ) :=
∑

w∈XF∩AF

expsup
(
φF

(
[w]∩AG

))
.

Similarly, we define p(A,φ) as

p(A,φ) := lim
F→G

1

|F | logZF (A,φ),

whenever such limit exists.

3.1. Infimum rule for finite alphabet pressure

The main goal of this subsection is to prove the following theorem.

Theorem 3.1. Let φ : X → R be a continuous potential. Then, for any finite alphabet
A⊆ N, p(A,φ) exists and

p(A,φ) = inf
E∈F(G)

1

|E| logZE(A,φ).

In order to prove this result, we require some definitions. A function ϕ : F(G)→R is

• G-invariant if ϕ(Fg) = ϕ(F ) for every F ∈ F(G) and g ∈G;
• monotone if ϕ(E)≤ ϕ(F ) for every E,F ∈ F(G), such that E ⊆ F ; and
• subadditive if ϕ(E∪F )≤ ϕ(E)+ϕ(F ) for any E,F ∈ F(G).

A k-cover K of a set F ∈ F(G) is a family {K1,K2, . . . ,Kr} ⊆ F(G) (with possible

repetitions), such that each element of F belongs to Ki for at least k indices i∈ {1, . . . ,r}.
We say that ϕ satisfies Shearer’s inequality if for any F ∈ F(G) and any k -cover K of

F , it holds that

ϕ(F )≤ 1

k

∑
K∈K

ϕ(K).

Notice that Shearer’s inequality implies subadditivity. Considering this, we have the

following key lemma.
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Lemma 3.2 [39, Section 4]. Let ϕ : F(G)→ R be a nonnegative monotone G-invariant

subadditive function. Then there exists α ∈ [0,∞), such that

lim
F→G

ϕ(F )

|F | = α.

Moreover, if ϕ satisfies Shearer’s inequality, then

α= inf
E∈F(G)

ϕ(E)

|E| .

In this last case, we say that ϕ satisfies the infimum rule.

Now, fix a finite alphabet A ∈ F(N). For a continuous potential φ : X → R, we

denote by ‖φ‖A the supremum norm of φ over the compact set X ∩AG, that is,

‖φ‖A = supx∈X∩AG |φ(x)|. Next, given a set E ⊆ G, F ∈ F(G), and uE ∈ XE ∩AE , we
define

ZuE

F :=
∑

wF\E∈AF\E

exp
(
supφF ([wF\EuE ])

)
,

where the supremum is over x ∈ X ∩AG and, if [v] = ∅, then supφ([v]) = −∞ and

exp(−∞) = 0. Notice that ZF = ZuE

F for E = ∅.
Now, suppose that φ|X∩AG is nonnegative. Then, it is easy to check that for any E ⊆G

and uE ∈AE , the function ϕ̃ : F(G)→ R given by ϕ̃(F ) = ZuE

F satisfies that

i) ϕ̃(F )≥ 1 for every F ∈ F(G) and

ii) ϕ̃ is monotone, that is, if F1 ⊆ F2, then ϕ̃(F1)≤ ϕ̃(F2).

Next, consider the function ϕ : F(G)→R defined as ϕ(F ) = logZF . From the properties

above and properties of the log(·) function, it follows that ϕ is nonnegative and monotone.

Moreover, ϕ is G-invariant. The following lemma is a generalization of [25, Lemma 6.1]

designed to address the pressure case instead of just the topological entropy and, in
particular, it claims that ϕ satisfies Shearer’s inequality.

Lemma 3.3. Let φ : X → R be a potential and A ∈ F(N), such that φ|X∩AG is
nonnegative. Then, for every E ⊆G, uE ∈XE ∩AE, F ∈ F(G), and any k-cover K of F,

it holds that

ZuE

F ≤
∏
K∈K

(ZuE

K )1/k.

In particular, ϕ satisfies Shearer’s inequality.

Proof. Given a k -cover K of F, notice that, since φ|X∩AG is nonnegative,

φF (x) =
∑
g∈F

φ(g ·x)≤ 1

k

∑
K∈K

∑
g∈K

φ(g ·x) = 1

k

∑
K∈K

φK(x)
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for any x ∈ X ∩AG. We proceed by induction on the size of F \E. First, suppose that

|F \E|= 0. Then, F \E = ∅ and

ZuE

F = exp(supφF ([uE ]))

≤ exp

(
sup

1

k

∑
K∈K

φK([uE ])

)

≤ exp

(∑
K∈K

1

k
supφK([uE ])

)

=
∏
K∈K

(expsupφK([uE ]))
1/k

≤
∏
K∈K

⎛
⎝∑

wK\E

expsupφK([wK\EuE ])

⎞
⎠

1/k

=
∏
K∈K

(ZuE

K )
1/k

.

Now, suppose that ZuE

F ≤
∏

K∈K(Z
uE

K )1/k for every E ⊆ G,uE ∈ XE ∩AE , F ∈ F(G)

with |F \E| ≤ n, and every k -cover K of F. We will show that the same holds for E,F

with |F \E|= n+1. Fix g ∈ F \E, and notice that |F \ (E∪{g})|= n. Then,

ZuE

F =
∑
a∈A

ZaguE

F

≤
∑
a∈A

∏
K∈K

(
ZaguE

K

)1/k

=
∑
a∈A

∏
K∈K:g/∈K

(
ZaguE

K

)1/k
·

∏
K∈K:g∈K

(
ZaguE

K

)1/k

≤
∏

K∈K:g/∈K

(ZuE

K )
1/k
∑
a∈A

∏
K∈K:g∈K

(
ZaguE

K

)1/k

≤
∏

K∈K:g/∈K

(ZuE

K )
1/k ·

∏
K∈K:g∈K

(∑
a∈A

ZaguE

K

)1/k

=
∏

K∈K:g/∈K

(ZuE

K )
1/k ·

∏
K∈K:g∈K

(ZuE

K )
1/k

=
∏
K∈K

(ZuE

K )
1/k

.

Notice that the first inequality follows from the induction hypothesis and the third

inequality follows from the generalized Hölder inequality. Indeed, consider p ≤ 1, such
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that
∑

K∈K:g∈K
1
k = 1

p and the functions fK : A→ R given by fK(a) =
(
ZaguE

K

)1/k
. By

the generalized Hölder inequality,∥∥∥∥∥∥
∏

K∈K:g∈K

fK

∥∥∥∥∥∥
p

≤
∏

K∈K:g∈K

‖fK‖k,

where

∏
K∈K:g∈K

‖fK‖k =
∏

K∈K:g∈K

(∑
a∈A

((ZaguE

K )1/k)k

)1/k

=
∏

K∈K:g∈K

(∑
a∈A

ZaguE

K

)1/k

=
∏

K∈K:g∈K

(ZuE

K )
1/k

and, since ‖ · ‖p is monotonically decreasing in p for any fixed |A|-dimensional vector,∥∥∥∥∥∥
∏

K∈K:g∈K

fK

∥∥∥∥∥∥
p

≥

∥∥∥∥∥∥
∏

K∈K:g∈K

fK

∥∥∥∥∥∥
1

=
∑
a∈A

∏
K∈K:g∈K

(
ZaguE

K

)1/k
.

Therefore, ZuE

F ≤
∏

K∈K (ZuE

K )
1/k

. In particular, if E = ∅, ZF ≤
∏

K∈K (ZK)
1/k

.

Proof (of Theorem 3.1). As a consequence of Lemma 3.3, we have that if φ|X∩AG is
nonnegative, then ϕ satisfies Shearer’s inequality. Thus, by the Ornstein-Weiss lemma,

p(A,φ) exists, and it satisfies the infimum rule, that is,

p(A,φ) = inf
E∈F(G)

1

|E| logZE(A,φ).

Finally, in order to deal with the general case, it suffices to apply the previous result

to φ+‖φ‖ and then observe that p(A,φ+C) = p(A,φ)+C for any constant C.

Remark 3.4. Notice that the previous results (namely, Lemma 3.3 and Theorem 3.1)

also hold for G-subshifts, this is to say, any closed and G-invariant subset X of NG.

3.2. Tilings

Pressure is one of the most important notions in thermodynamic formalism. One key
technique to properly define pressure is subadditivity, which is based on our ability to

partition a system in smaller and representative pieces. In the context of countable

amenable groups, it appears to be necessary to generalize tools that are classically
used in the Zd case (e.g. [45, 52]). In order to do this, we will begin by exploring

the concept of (exact) tilings of amenable groups and the relatively recent techniques

introduced in [26].
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Definition 3.1. Given

1. a finite collection S(T ) of finite subsets of G containing the identity 1G, called the

shapes, and

2. a finite collection C(T ) = {C(S) : S ∈ S(T )} of disjoint subsets of G, called centre
sets (for the shapes),

the family T = {(S,c) : S ∈ S(T ),c ∈ C(S)} is called a tiling if the map (S,c) �→ Sc is
injective and {Sc}S∈S(T ),c∈C(S) is a partition of G. In addition, by the tiles of T (usually

denoted by the letter T ), we will mean either the sets Sc or the pairs (S,c), depending

on the context.

We say that a sequence {Tn}n of tilings is congruent if, for each n ≥ 1, every tile of
Tn+1 is equal to a (disjoint) union of tiles of Tn. The following theorem is the main result

in [26], which gives sufficient conditions so that we can guarantee the existence of such

sequence with extra invariance properties.

Theorem 3.5 [26, Theorem 5.2]. Let {εn}n be a sequence of positive real numbers

converging to zero and {Kn}n be a sequence of finite subsets of G. Then, there exists

a congruent sequence {Tn}n of tilings of G, such that the shapes of Tn are (Kn,εn)-

invariant.

Given a tiling T , we define ST =
⋃

S∈S(T )SS
−1. Notice that ST contains every shape

S ∈ S(T ), S−1
T = ST , and 1G ∈ ST . Given a tiling, the next lemma provides a way to

approximate any sufficiently invariant shape by a union of tiles.

Lemma 3.6. Given K ∈ F(G) and δ > 0, consider a tiling T with (K,δ)-invariant

shapes. Then, for any ε > 0 and any (ST ,ε)-invariant set F ∈ F(G), there exist centre

sets CF (S)⊆ C(S) for S ∈ S(T ), such that

F ⊇
⊔

S∈S(T )

SCF (S) and

∣∣∣∣∣∣F \
⊔

S∈S(T )

SCF (S)

∣∣∣∣∣∣≤ ε|F |.

Proof. Consider a tiling T made of (K,δ)-invariant shapes and ε > 0. Suppose that F is

(ST ,ε)-invariant. Consider the sets CF (S) = C(S)∩ IntS(F ) and CF (S) = C(S)∩S−1F
for S ∈S(T ). Notice that, since T induces a partition, |SCF (S)|= |S||CF (S)|, |SCF (S)|=
|S||CF (S)|, and ⊔

S∈S(T )

SCF (S)⊆ F ⊆
⊔

S∈S(T )

SCF (S).

Therefore,

F \
⊔

S∈S(T )

SCF (S)⊆
⊔

S∈S(T )

SCF (S)\
⊔

S∈S(T )

SCF (S)

=
⊔

S∈S(T )

S(CF (S)\CF (S))⊆ ∂ST (F ).
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Indeed, to check the last inclusion, notice that if g ∈
⊔

S∈S(T )S(CF (S)\CF (S)), then

g= sc, where s∈ S and c∈CF (S)\CF (S) for some S ∈S(T ). Therefore, since c∈CF (S),

ST g∩F ⊇ SS−1sc∩F ⊇ Sc∩F 	= ∅.

Similarly, since c /∈ CF (S),

ST g∩F c ⊇ SS−1sc∩F c ⊇ Sc∩F c 	= ∅,

so that g ∈ ∂ST (F ). Then,∣∣∣∣∣∣F \
⊔

S∈S(T )

SCF (S)

∣∣∣∣∣∣≤ |∂ST (F )| ≤ |ST F�F | ≤ ε · |F |,

where we have used that |∂K(F )| ≤ |(K ∪K−1∪{1G})F�F | for any K ∈ F(G) and that

S−1
T = ST and 1G ∈ ST .

3.3. Infimum rule for countable alphabet pressure

We say that φ : X → R is exp-summable if Z1G(φ) < ∞. Notice that ZF (φ) is

submultiplicative, that is, if E,F ∈ F(G) are disjoint, then ZE∪F (Φ) ≤ ZE(φ) ·ZF (φ).

Also, notice that ZF (φ) is G-invariant, namely, for any g ∈ G, ZF (φ) = ZFg(φ). Then,

in particular, ZF (φ) ≤ Z1G(φ)
|F |, so φ is exp-summable if, and only if, ZF (φ) < ∞ for

every F ∈ F(G). Finally, observe that if φ is exp-summable, then it must be bounded

from above.

Before stating the main result of this section, we begin by the next lemma, that
guarantees that given a finite shape F, one can approximate the partition function on F

using a finite alphabet.

Lemma 3.7. Let φ : X → R be an exp-summable and uniformly continuous potential.

Then, for every ε > 0 and every F ∈ F(G), such that |F | ≥ − 1
ε log(1− ε), there exists

AF ∈ F(N), such that

ZF (AF ,φ)≥ (1− ε)ZF (φ).

Proof. Let ε > 0 and F ∈ F(G) be such that |F | ≥ − 1
ε log(1− ε). For every such F, there

exists a finite set of words WF �XF , such that∑
w∈WF

exp(supφF )≥ ZF (φ)
√
1− ε.

On the other hand, since φ is uniformly continuous, there must be an index m ≥ 1 for

which

δEm
(φ)≤ 1

3|F | log
(

1√
1− ε

)
.

For each w ∈WF , pick a word w′ ∈ NEmF , such that w′
F = w and

supφF [w
′]≥ supφF [w]−

1

3
log

(
1√
1− ε

)
.
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In addition, for each such w′, pick a configuration xw ∈ [w′], such that

φF (xw)≥ supφF [w
′]− 1

3
log

(
1√
1− ε

)
.

Define AF to be
⋃

w∈WF
w′(EmF ), where w′(EmF ) =

⋃
g∈EmF {w′(g)}. It is direct that

AF is a finite subset of N. Pick y ∈ [w′]∩AG
F , and notice that (g ·xw)Em

= (g · y)Em
for

all g ∈ F . Then, for every w ∈WF ,

supφF [[w
′]∩AG

F ]≥ φF (y)

≥ φF (xw)−
∑
g∈F

|φ(g ·xw)−φ(g ·y)|

≥ φF (xw)−|F |δEm
(φ)

≥ φF (xw)−
1

3
log

(
1√
1− ε

)

≥ supφF [w
′]− 2

3
log

(
1√
1− ε

)

≥ supφF [w]− log

(
1√
1− ε

)
.

Hence,

ZF (AF ,φ) =
∑

w∈AF
F

exp
(
supφF [[w]∩AG

F ]
)

≥
∑

w∈WF

exp
(
supφF [[w]∩AG

F ]
)

≥
∑

w∈WF

exp
(
supφF [[w

′]∩AG
F ]
)

≥
∑

w∈WF

exp

(
supφF [w]− log

(
1√
1− ε

))

=
√
1− ε

∑
w∈WF

exp(supφF [w])

≥ (1− ε)ZF (φ).

The next proposition establishes a fundamental connection between the partition

function for sufficiently invariant sets F ∈ F(G) and the pressure for a sufficiently large
finite alphabet A.

Proposition 3.8. Let φ : X →R be an exp-summable and uniformly continuous potential

with finite oscillation. Then, for every 1
2 > ε > 0, there exist A ∈ F(N), K ∈ F(G), and

δ > 0, such that for every (K,δ)-invariant set F ∈ F(G), it holds that

1

|F | logZF (φ)≤ inf
E∈F(G)

1

|E| logZE(A,φ)+ ε. (3.1)
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Proof. Fix 1/2 > ε > 0 and an exhausting sequence {Em}m for G. Since φ is uniformly

continuous, we have that limF→G
ΔF (φ)
|F | = 0, by Lemma 2.4. Therefore, there exist

K ′ ∈ F(G) and δ′ > 0, such that ΔF (φ)< ε|F | for every finite (K ′,δ′)-invariant set F.
By Theorem 3.5, there exists a tiling T ′, such that its shapes are (K ′,δ′)-invariant. With-

out loss of generality, by possibly readjusting K ′ and δ′, assume that |S′| ≥ − 1
ε log(1− ε)

for every S′ ∈S(T ′). Therefore, by Lemma 3.7, for every S′ ∈S(T ′), there exists AS′ �N,

such that ZS′(AS′,φ) ≥ (1− ε)ZS′(φ). Define A to be
⋃

S′∈S(T ′)AS′ . Then, A is a finite
subset of N. Moreover, since AS′ ⊆A, for each S′ ∈ S(T ′), we have that

ZS′(A,φ)≥ (1− ε)ZS′(φ), (3.2)

for every S′ ∈ S(T ′).
Now, by Theorem 3.1, p(A,φ) = limF→G

1
|F | logZF (A,φ) exists, so we can pickK ∈F(G)

and δ > 0, such that K ⊇K ′, δ < δ′, and

logZF (A,φ)≤ |F |(p(A,φ)+ ε) (3.3)

for every (K,δ)-invariant set F ∈ F(G).

Next, by Theorem 3.5, we can obtain a tiling T of (K,δ)-invariant sets, such that every
tile in T is a union of tiles in T ′, that is, S =

⊔
S′∈S(T ′)

⊔
c′∈CS(S′)S

′c′. Furthermore,

by Lemma 3.6, for every (ST ,ε)-invariant set F ∈ F(G), there exist centre sets CF (S)⊆
C(S) ∈ C(T ) for S ∈ S(T ), such that

F ⊇ TF and |F \TF | ≤ ε|F |,

where TF =
⊔

S∈S(T )SCF (S).

Furthermore, for every S ∈ S(T ), we have that

ZS(A,φ) =
∑

wS∈AS

exp
(
supφS([wS ]∩AG)

)
≥

∑
wS∈AS

exp
(
inf φS

(
[wS ]∩AG

))
≥

∏
S′∈S(T ′)

∏
c′∈CS(S′)

∑
wS′c′∈AS′c′

exp
(
inf φS′c′

(
[wS′c′ ]∩AG

))

≥
∏

S′∈S(T ′)

∏
c′∈CS(S′)

∑
wS′c′∈AS′c′

exp
(
supφS′c′

(
[wS′c′ ]∩AG

)
−ΔS′c′(φ)

)

=
∏

S′∈S(T ′)

exp(−ΔS′(φ)|CS(S
′)|)

∏
c′∈CS(S′)

ZS′c′(A,φ)

=
∏

S′∈S(T ′)

exp(−ΔS′(φ)|CS(S
′)|)ZS′(A,φ)|CS(S′)|,

where we used that, for every g ∈ G, ZF (A,φ) = ZFg(A,φ) and that ΔF (φ) = ΔFg(φ).

Thus, ∏
S′∈S(T ′)

ZS′(A,φ)|CS(S′)| ≤ ZS(A,φ) ·
∏

S′∈S(T ′)

exp(|CS(S
′)|ΔS′(φ)) . (3.4)
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Now, given a (ST ,ε)-invariant set F ∈ F(G), we have that

ZTF
(φ)≤

∏
S∈S(T )

∏
c∈CF (S)

ZSc(φ)

=
∏

S∈S(T )

ZS(φ)
|CF (S)|

≤
∏

S∈S(T )

⎛
⎝ ∏

S′∈S(T ′)

∏
c′∈CS(S′)

ZS′c′(φ)

⎞
⎠

|CF (S)|

=
∏

S∈S(T )

∏
S′∈S(T ′)

(ZS′(φ)|CS(S′)|)|CF (S)|.

Therefore, from equation (3.2), we obtain that∏
S∈S(T )

∏
S′∈S(T ′)

(ZS′(φ)|CS(S′)|)|CF (S)|

≤
∏

S∈S(T )

∏
S′∈S(T ′)

(
1

1− ε
ZS′(A,φ)

)|CS(S′)||CF (S)|

≤
(

1

1− ε

)|TF | ∏
S∈S(T )

⎛
⎝ZS(A,φ)exp

⎛
⎝ ∑

S′∈S(T ′)

|CS(S
′)|ΔS′(φ)

⎞
⎠
⎞
⎠

|CF (S)|

≤
(

1

1− ε

)|F | ∏
S∈S(T )

exp

⎛
⎝|S|(p(A,φ)+ ε)+

∑
S′∈S(T ′)

|CS(S
′)|ΔS′(φ)

⎞
⎠

|CF (S)|

,

where the second inequality follows from equation (3.4) and the third from equation (3.3).

Hence, if 0< ε < 1
2 , we have that log

(
1

1−ε

)
≤ 2ε, so

1

|F | logZTF
(φ)

≤ log

(
1

1− ε

)
+

1

|F |
∑

S∈S(T )

|CF (S)|

⎛
⎝|S|(p(A,φ)+ ε)+

∑
S′∈S(T ′)

|CS(S
′)|ΔS′(φ)

⎞
⎠

= log

(
1

1− ε

)
+

|TF |
|F | (p(A,φ)+ ε)+

∑
S∈S(T )

∑
S′∈S(T ′)

|CF (S)||CS(S
′)||S′|

|F |
ΔS′(φ)

|S′|

≤ 2ε+(p(A,φ)+ ε)+
∑

S∈S(T )

∑
S′∈S(T ′)

|CF (S)||CS(S
′)||S′|

|F | ε

= p(A,φ)+3ε+
|TF |
|F | ε

≤ p(A,φ)+4ε.
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In addition,

ZF (φ)≤ ZTF
(φ)ZF\TF

(φ)≤ ZTF
(φ)Z1G(φ)

|F\TF | ≤ ZTF
(φ)Z1G(φ)

ε|F |,

so, considering that p(A,φ) = infE∈F(G)
1

|E| logZE(A,φ) by Theorem 3.1, we have that

1

|F | logZF (φ)≤ inf
E∈F(G)

1

|E| logZE(A,φ)+4ε+ ε · logZ1G(φ).

We conclude that, for every 0< ε< 1
2 , there exist A ∈F(N), K ∈F(G), and δ > 0, such

that for every (K,δ)-invariant set F ∈ F(G),

1

|F | logZF (φ)≤ inf
E∈F(G)

1

|E| logZE(A,φ)+ ε ·C,

where C = 4+logZ1G(φ). Since ε was arbitrary, we conclude the result.

Now we can prove the following generalization of Theorem 3.1.

Theorem 3.9. Let φ : X → R be an exp-summable and uniformly continuous potential
with finite oscillation. Then, p(φ) exists and p(φ) = infE∈F(G)

1
|E| logZE(φ). Moreover,

p(φ) = supA∈F(N) p(A,φ).

Proof. By Proposition 3.8, for every 1
2 > ε > 0, there exist A ∈ F(N), K ∈ F(G), and

δ > 0, such that for every (K,δ)-invariant set F ∈ F(G),

1

|F | logZF (φ)≤ inf
E∈F(G)

1

|E| logZE(A,φ)+ ε.

Therefore, for every such F,

inf
E∈F(G)

1

|E| logZE(φ)≤
1

|F | logZF (φ)

≤ inf
E∈F(G)

1

|E| logZE(A,φ)+ ε

≤ inf
E∈F(G)

1

|E| logZE(φ)+ ε.

Thus, limF→G
1
|F | logZF (φ) = infE∈F(G)

1
|E| logZE(φ), p(φ) exists, and there exists A ∈

F(N), such that

p(φ)≤ p(A,φ)+ ε≤ p(φ)+ ε,

so p(φ) = supA∈F(N) p(A,φ).

4. Permutations and specifications

In order to define conformal and DLR measures, it will be crucial to introduce coordinate-

wise permutations and specifications. We begin by describing and exploring some

properties of coordinate-wise permutations.
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4.1. Coordinate-wise permutations

Let SN be the set of all permutations of N. Following [38, 45], we now introduce a class

of local maps on X. Given an exhausting sequence {Em}m, this class will allow us to

understand how φEm
(x) behaves if x is changed at finitely many sites, and it will be

central when defining conformal measures in §5.

Definition 4.1. Given K ∈F(G), denote by EK the set of all maps τ : X →X, such that

τ(x)g =

{
τg(xg), if g ∈K;

xg, if g /∈K;

where τg ∈ SN. We usually denote τ by τK to emphasize the set K.

Let E =
⋃

K∈F(G) EK , and notice that there is a natural action of G on E given by

(g · τK)(x) = g · τK(g−1 ·x),

where g ∈G, x ∈X, K ∈F(G), τK ∈ EK , and g ·τK ∈ EKg−1 . In order to avoid ambiguity,

we will denote g · τK by τKg−1 and that will be enough for our purposes.
We can also restrict ourselves to permutations over a finite alphabet. More explicitly,

for A ∈ F(N) and K ∈ F(G), define

EK,A = {τ ∈ EK : ∀h ∈K, τh|Ac = IdN|Ac}.

Notice that E is a group with the composition generated by single-site permutations τg,

where EK and EK,A are subgroups. Moreover, observe that if g 	= h, then τgτh = τhτg. We
will also consider particular types of permutations, which are defined below.

Definition 4.2. Given K ∈ F(G) and w,w′ ∈ XK , let τw,w′ : X → X be the map
defined as

τw,w′(x) =

⎧⎪⎨
⎪⎩
wxKc, if xK = w′;

w′xKc, if xK = w;

x, otherwise.

It is clear that τw,w′ ∈ EK , τw,w′ = τw′,w and that τw,w′ is an involution, that is, it is

its own inverse. Moreover, there exists A ∈ F(N), namely, A = w(K)∪w′(K), such that
τw,w′ ∈ EK,A. For τ ∈ E and F ∈ F(G), define φτ

F : X → R as

φτ
F (x) = φF ◦ τ−1(x)−φF (x). (4.1)

Notice that, for τ ∈ EK ,

φτ
F (x) =

∑
g∈F

φ(g · τ−1
K (x))−φ(g ·x)

=
∑
g∈F

φ(g · τ−1
K (g−1 · (g ·x)))−φ(g ·x)

=
∑
g∈F

φ(τ−1
Kg−1(g ·x)))−φ(g ·x).
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Lemma 4.1. Let K ∈ F(G) and φ : X →R be a potential. Then, for every τK ∈ EK and

every E,F ∈ F(G) with F ⊆ E,

‖φτK
E −φτK

F ‖∞ ≤
∑

g∈G\F

∥∥∥φ◦ τ−1
Kg−1 −φ

∥∥∥∞.

Proof. Let K,E,F ∈ F(G) and τK ∈ EK be as in the statement of the lemma. Then, it is

easy to verify that, for any x ∈X, (φτK
E −φτK

F )(x) =
∑

g∈E\F

[
φ
(
τ−1
Kg−1(g ·x)

)
−φ(g ·x)

]
.

Thus,

‖φτK
E −φτK

F ‖∞ = sup
x∈X

|φτK
E (x)−φτK

F (x)|

= sup
x∈X

∣∣∣∣∣∣
∑

g∈E\F

[
φ
(
τ−1
Kg−1(g ·x)

)
−φ(g ·x)

]∣∣∣∣∣∣
≤ sup

x∈X

∑
g∈E\F

∣∣∣φ(τ−1
Kg−1(g ·x)

)
−φ(g ·x)

∣∣∣
≤

∑
g∈E\F

sup
x∈X

∣∣∣φ(τ−1
Kg−1(g ·x)

)
−φ(g ·x)

∣∣∣
=

∑
g∈E\F

∥∥∥φ◦ τ−1
Kg−1 −φ

∥∥∥∞

≤
∑

g∈G\F

∥∥∥φ◦ τ−1
Kg−1 −φ

∥∥∥∞.

Given a potential φ : X → R with summable variation according to an exhausting

sequence {Em}m, the next theorem tells us that the asymptotic behaviour of φEm
(x)

is essentially independent of the value of the configuration x at finite sets K ∈F(G). The

reader can compare the next result with [38, Lemma 5.1.6].

Theorem 4.2. Let φ : X → R be a potential with summable variation according to an

exhausting sequence {Em}m. Then, given any (possibly different) exhausting sequence
{Ẽm}m, for all K ∈ F(G) and for all τK ∈ EK , the limit

φτK
∗ := lim

m→∞
φτK
Ẽm

exists uniformly on X and on EK . Moreover, such limit does not depend on the exhausting

sequence.

Proof. First, suppose that K is a singleton {h} for some h∈G, and let ε > 0. Since φ has

summable variation according to {Em}m, there exists m0 ∈N, such that
∑

m≥m0
|E−1

m+1 \
E−1

m |δEm
(φ)< ε. Now, consider {Ẽm}m another (possibly different) exhausting sequence.

Then, there exists m1 ≥m0, such that E−1
m0

h⊆ Ẽm, for all m≥m1. On the other hand,
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since {Em}m is an exhausting sequence, for every m≥m1, there exists km ∈N, such that

for all k ≥ km, Ẽm ⊆Ek. Therefore, by Lemma 4.1, for every m≥m1 and every k ≥ km,∥∥∥φτh
Ek

−φτh
Ẽm

∥∥∥∞ ≤
∑

g∈G\Ẽm

∥∥∥φ◦ τ−1
hg−1 −φ

∥∥∥∞.

Moreover, since E−1
m0

h⊆ Ẽm, we obtain that G\ Ẽm ⊆G\E−1
m0

h, so that

∑
g∈G\Ẽm

∥∥∥φ◦ τ−1
hg−1 −φ

∥∥∥∞ ≤
∑

g∈G\E−1
m0

h

∥∥∥φ◦ τ−1
hg−1 −φ

∥∥∥∞

=
∑

g∈G\E−1
m0

∥∥∥φ◦ τ−1
g−1 −φ

∥∥∥∞

=
∑

m≥m0

∑
g∈E−1

m+1\E
−1
m

∥∥∥φ◦ τ−1
g−1 −φ

∥∥∥∞

≤
∑

m≥m0

∑
g∈E−1

m+1\E
−1
m

δEm
(φ)

=
∑

m≥m0

∣∣E−1
m+1 \E−1

m

∣∣δEm
(φ)< ε.

Therefore, for every ε > 0, there exists m1 ≥ m0, such that for every m ≥ m1, there

exists km, such that for every k ≥ km,∥∥∥φτh
Ek

−φτh
Ẽm

∥∥∥∞ < ε.

Notice that, in the particular case that {Ẽm}m is the same as {Em}m, one just needs to

take km =m and the same inequality would follow. This proves that {φτh
Ẽm

}m is a Cauchy

sequence for any τh ∈ E{h}, which implies that the uniform limit φτh∗ = limm→∞φτh
Em

exists. On the other hand, if {Ẽm}m is another exhausting sequence, this proves that

φτh∗ = limm→∞φτh
Ẽm

, that is, the limit is independent of the exhausting sequence, provided

φ has summable variation according to some exhausting sequence.

Now, let’s consider a general K ∈ F(G) and write K = {h1, . . . ,h|K|}. Then, for each

m ∈ N,

φEm
◦ τ−1

K −φEm
=

|K|−1∑
i=0

(
φEm

◦ τ−1
{h1,...,hi+1}−φEm

◦ τ−1
{h1,...,hi}

)

=

|K|−1∑
i=0

φ
τhi+1

Em
◦ τ−1

{h1,...,hi},

where we regard τ∅ as the identity, so the first equality follows from the fact that

the considered sum is telescopic. Therefore, by considering the uniform convergence for

singletons,
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lim
m→∞

φτK
Em

= lim
m→∞

|K|−1∑
i=0

φ
τhi+1

Em
◦ τ−1

{h1,...,hi}

=

|K|−1∑
i=0

lim
m→∞

φ
τhi+1

Em
◦ τ−1

{h1,...,hi}

=

|K|−1∑
i=0

φ
τhi+1
∗ ◦ τ−1

{h1,...,hi},

which concludes the result.

Corollary 4.3. Let φ : X → R be a potential with summable variation according to an
exhausting sequence {Em}m. Then, for all K ∈ F(G) and for all τK ∈ EK ,

φτK
∗ (g ·x) = φ

τKg
∗ (x),

for all g ∈G and x ∈X.

Proof. Notice that, given g ∈G and x ∈X, we have that τ−1
K (g ·x) = g · τ−1

Kg(x), so that

φτK
∗ (g ·x) = lim

m→∞
φτK
Em

(g ·x) = lim
m→∞

φ
τKg

Emg(x) = φ
τKg
∗ (x),

since {Emg}m is also an exhausting sequence.

Proposition 4.4. Let φ : X →R be a potential with summable variation according to an

exhausting sequence {Em}m. Then, for every F ∈ F(G) and τ in EF ,

‖φτ
∗ −φτ

F ‖∞ ≤ VF (φ).

Proof. Let F ∈ F(G). From Lemma 4.1, we know that∥∥φτF
Em

−φτF
F

∥∥∞ ≤
∑

g∈G\F

∥∥∥φ◦ τ−1
Fg−1 −φ

∥∥∥∞,

for every m ∈ N, such that F ⊆ Em. Therefore, by Theorem 4.2,

‖φτF
∗ −φτF

F ‖∞ = lim
m→∞

∥∥φτF
Em

−φτF
F

∥∥∞ ≤
∑

g∈G\F

∥∥∥φ◦ τ−1
Fg−1 −φ

∥∥∥∞.

Now, given m ∈ N, notice that g ∈ (E−1
m F )c ⇐⇒ Fg−1 ∩ Em = ∅, so that∥∥∥φ◦ τ−1

Fg−1 −φ
∥∥∥∞ ≤ δEm

(φ). Considering this, we have that

∑
g∈G\F

∥∥∥φ◦ τ−1
Fg−1 −φ

∥∥∥∞ =
∞∑

m=1

∑
g∈E−1

m+1F\E−1
m F

∥∥∥φ◦ τ−1
Fg−1 −φ

∥∥∥∞

≤
∞∑

m=1

|E−1
m+1F \E−1

m F | · δEm
(φ)

= VF (φ).

https://doi.org/10.1017/S1474748024000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000112


Thermodynamic formalism for amenable groups and countable state spaces 2671

4.2. Specifications

This section tackles results about specifications, a concept related to DLR measures. More

precisely, DLR measures can be defined using a special kind of specification, but here, we

begin by presenting some more general results.

Let B be the Borel σ-algebra, that is, the σ-algebra generated by the cylinder sets,
and, for each K ∈ F(G), let BK be the σ-algebra generated by cylinder sets [w], with

w ∈ XK . Now, a specification in our context, will mean a family γ = (γK)K∈F(G) of

maps γK : B×X → [0,1], such that

i) for each x ∈X, the map B �→ γK(B,x) is a probability measure on M(X);

ii) for each B ∈ B, the map x �→ γK(B,x) is BKc -measurable;

iii) (proper) for every B ∈ B and C ∈ BKc , γK (B∩C,·) = γK(B,·)1C ; and

iv) if F ⊆K, then γKγF = γK , where γKγF (B,x) =
∫
γK(dy,x)γF (B,y), for B ∈ B and

x ∈X.

In other words, γ is a particular family of proper probability kernels that satisfies
consistency condition (iv). An element γK in the specification maps each μ ∈M(X) to

μγK ∈M(X), where

μγK(B) =

∫
γK(B,x)dμ(x),

and each B-measurable function h :X → R to a BKc -measurable function γKh :X → R

given by

γKh(y) =

∫
h(y)γK(dy,x)dμ(x).

It can be checked that (μγK)(h) = μ(γKh). The probability measures on the set

G (γ) = {μ ∈M(X) : μ(B |BKc) = γK (B,·) μ-a.s. (almost surely), for all B ∈ B and K ∈ F(G)}

are said to be admitted by the specification γ.

Lemma 4.5 [30, Remark 1.24]. Let γ be a specification and μ ∈M(X). Then, μ ∈ G (γ)

if, and only if, μγK = μ, for all K ∈ F(G).

Now, we restrict ourselves to a particular kind of specification. Namely, given an

exhausting sequence of finite sets {Em}m and φ : X → R an exp-summable potential
with summable variation according to {Em}m, consider γ = (γK)K∈F(G) the specification

coming from φ, where each γK : B×X → [0,1] is given by

γK(B,x) := lim
m→∞

∑
w∈XK

exp(φEm
(wxKc))1{wxKc∈B}∑

v∈XK
exp(φEm

(vxKc))
, (4.2)

for each B ∈ B and x ∈X. The collection γ is a (Gibbsian) specification. The expression

in equation (4.2) is well-defined due to the following proposition.
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Proposition 4.6. Let φ : X →R be an exp-summable potential with summable variation
according to an exhausting sequence {Em}m. If K ∈ F(G), the limit

γK([w],x) = lim
m→∞

exp(φEm
(wxKc))∑

v∈XK
exp(φEm

(vxKc))

exists for each w ∈XK , uniformly on X. Furthermore, for every B ∈ B and every x ∈X,

it holds that

γK(B,x) =
∑

w∈XK

γK ([w],x)1{wxKc∈B}. (4.3)

In order to prove Proposition 4.6, we require two lemmas, which we state and prove
next.

Lemma 4.7. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, for any K ∈F(G) and for any m∈N,
such that K ⊆ Em,∣∣φτw,v

Em
(wxKc)− (supφK [v]− supφK [w])

∣∣≤ΔK(φ)+VK(φ)

for every v,w ∈XK and x ∈X.

Proof. Let K ∈F(G) and x,y ∈X be such that xG\K = yG\K . Notice that for any g ∈G,

(g ·x)G\Kg−1 = (g ·y)G\Kg−1 . In addition, given m ∈ N, we have that g ∈
(
E−1

m K
)c ⇐⇒

Kg−1∩Em = ∅. In particular, if g ∈
(
E−1

m K
)c
, we have that |φ(g ·x)−φ(g ·y)| ≤ δEm

(φ).

Considering this, we obtain that

∑
g∈G\K

|φ(g ·x)−φ(g ·y)|=
∞∑

m=1

∑
g∈E−1

m+1K\E−1
m K

|φ(g ·x)−φ(g ·y)|

≤
∞∑

m=1

∑
g∈E−1

m+1K\E−1
m K

δEm
(φ)

=
∞∑

m=1

|E−1
m+1K \E−1

m K| · δEm
(φ)

= VK(φ).

Now, let m0 ∈ N be the smallest index, such that K ⊆ Em0
. Then, for every m ≥m0,

every x ∈X, and every v,w ∈XK , we have that

φ
τw,v

Em
(wxKc) = φEm

(vxKc)−φEm
(wxKc)

≤ φK(vxKc)−φK(wxKc)+
∑

g∈G\K
|φ(g · (vxKc))−φ(g · (wxKc))|

≤ φK(vxKc)−φK(wxKc)+VK(φ)

≤ supφK [v]− supφK [w]+ΔK(φ)+VK(φ),
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and, similarly,

φ
τw,v

Em
(wxKc))≥ supφK [v]− supφK [w]−ΔK(φ)−VK(φ),

so we conclude that

|φτw,v

Em
(wxKc)− (supφK [v]− supφK [w])| ≤ΔK(φ)+VK(φ).

Lemma 4.8. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, for any K ∈ F(G) and w ∈ XK ,

0<
∑

v∈XK

exp(φ
τw,v
∗ (wxKc)) = lim

m→∞

∑
v∈XK

exp(φ
τw,v

Em
(wxKc)),

uniformly on X.

Proof. Given K ∈ F(G), w ∈ XK , and x ∈ X, consider the sequence of functions
fm : XK →R given by fm(v) := exp(φ

τw,v

Em
(wxKc)). By Theorem 4.2, we have that {fm}m

converges pointwise (in v) to exp(φ
τw,v
∗ (wxKc)), uniformly on X. In addition, by Lemma

4.7, there exist m0 ∈N and a constant C = exp(ΔK(φ)+VK(φ))> 0, such that for every
m≥m0 and for every v ∈XK ,

C−1 ·h(v)≤ fm(v)≤ C ·h(v),

where h(v) := exp(−supφK [w]) · exp(supφK [v]). Notice that∑
v∈XK

h(v) = exp(−supφK [w]) ·ZK(φ),

so h (and, therefore, C ·h) is integrable with respect to the counting measure in XK .

Therefore, by the Dominated Convergence Theorem, if follows that∑
v∈XK

exp
(
φ
τw,v
∗ (wxKc)

)
=
∑

v∈XK

lim
m

exp
(
φ
τw,v

Em
(wxKc)

)
= lim

m

∑
v∈XK

exp
(
φ
τw,v

Em
(wxKc)

)
≥ lim

m

∑
v∈XK

C−1 ·h(v)

= C−1 · exp(−supφK [w]) ·ZK(φ)> 0.

Proof (of Proposition 4.6). First, note that for any given K ∈ F(G),∑
v∈XK

exp(φEm
(vxKc))> 0,

for all m ∈ N and, due to Lemma 4.8, the left-hand side is bounded away from zero

uniformly in m. Furthermore, for each w ∈XK ,
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exp(φEm
(wxKc))∑

v∈XK
exp(φEm

(vxKc))
=

1∑
v∈XK

exp(φEm
(vxKc)−φEm

(wxKc)))

=
1∑

v∈XK
exp(φ

τw,v

Em
(wxKc))

.

Therefore, uniformly on X,

lim
m→∞

exp(φEm
(wxKc))∑

v∈XK
exp(φEm

(vxKc))
=

1

limm→∞
∑

v∈XK
exp(φ

τw,v

Em
(wxKc))

=
1∑

v∈XK
exp(φ

τw,v
∗ (wxKc))

,

again, due to Lemma 4.8. Now, let B ∈ B and x ∈X. Then, uniformly on X,∑
w∈XK

γK ([w],x)1{wxKc∈B}

=
∑

w∈XK

lim
m→∞

exp(φEm
(wxKc))1{wxKc∈[w]}1{wxKc∈B}∑
v′∈XK

exp(φEm
(v′xKc))

= lim
m→∞

∑
w∈XK

exp(φEm
(wxKc))1{wxKc∈[w]}1{wxKc∈B}∑

v′∈XK
exp(φEm

(v′xKc))

= lim
m→∞

∑
w∈XK

exp(φEm
(wxKc))1{wxKc∈B}∑

v′∈XK
exp(φEm

(v′xKc))

= γK(B,x),

where the exchange of the limit and the sum follows from Lemma 4.8.

Proposition 4.9. Let φ : X →R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, for every K ∈ F(G), w ∈ XK , and
x ∈X, the equation

γK([w],x) =
exp

(
φ
τw,v
∗ (vxKc)

)
∑

w′∈XK
exp

(
φ
τw′,v
∗ (vxKc)

)
holds for every v ∈XK .

Proof. Let K ∈ F(G), w ∈XK , and x ∈X. Then, for any v ∈XK ,

lim
m→∞

exp(φEm
(wxKc))∑

w′∈XK
exp(φEm

(w′xKc))
= lim

m→∞

exp
(
φEm

◦ τ−1
w,v −φEm

)
(vxKc)∑

w′∈XK
exp

(
φEm

◦ τ−1
w′,v −φEm

)
(vxKc)

=
limm→∞ exp

(
φEm

◦ τ−1
w,v −φEm

)
(vxKc)∑

w′∈XK
limm→∞ exp

(
φEm

◦ τ−1
w′,v −φEm

)
(vxKc)
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=
exp

(
limm→∞

(
φEm

◦ τ−1
w,v −φEm

)
(vxKc)

)
∑

w′∈XK
exp

(
limm→∞

(
φEm

◦ τ−1
w′,v −φEm

)
(vxKc)

)
=

exp
(
φ
τw,v
∗ (vxKc)

)
∑

w′∈XK
exp

(
φ
τw′,v
∗ (vxKc)

),
where the last equality follows from Theorem 4.2. Also, if m0 ∈ N is such that K ⊆Em0

,
the exchange of limit and sum in the denominator from the first to the second line follows

from Lemma 4.8.

Corollary 4.10. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, for every K ∈ F(G), γK is G-
invariant, that is, for every w ∈XK , x ∈X, and g ∈G, it holds that

γKg−1(g · [w],g ·x) = γK([w],x).

Proof. Let K ∈ F(G). Given v ∈ XK , let yv ∈ X be arbitrary and such that yvK = v.

Then,

γKg−1(g · [w],g ·x) = γKg−1([(g ·yw)Kg−1 ],g ·x)

=
exp

(
φ
τKg−1

∗ ((g ·yw)Kg−1(g ·x)(Kg−1)c)
)

∑
w′∈XK

exp
(
φ
τKg−1

∗ ((g ·yw′)Kg−1(g ·x)(Kg−1)c)
)

=
exp

(
φ
τKg−1

∗ (g · (ywKxKc))
)

∑
w′∈XK

exp
(
φ
τKg−1

∗ (g · (yw′
K xKc))

)
=

exp(φτK∗ (ywKxKc))∑
w′∈XK

exp
(
φτK∗ (yw

′
K xKc)

)
= γK([w],x),

where we have used the property of φτ
∗ from Corollary 4.3.

Definition 4.3. A potential h : X → R is local if h is BK-measurable for some K ∈
F(G). For each K ∈ F(G), denote by LK the linear space of all bounded BK -measurable
potentials and L=

⋃
K∈F(G)LK .

A potential h : X →R is quasilocal if there exists a sequence {φn}n of local potentials,

such that limn→∞ ‖h− hn‖∞ = 0. Note that L is the linear space of all bounded
quasilocal potentials, where L is the uniform closure of L on the linear space of bounded

B-measurable potentials.

Remark 4.11 [30, Remark 2.21]. A potential h : X →R is quasilocal if, and only if, for all

exhausting sequences of finite subsets {Em}m ofG, limm→∞ sup x,y∈X
xEm=yEm

|h(x)−h(y)|=0.
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Definition 4.4. A specification γ = (γK)K∈F(G) is quasilocal if, for each K ∈ F(G) and

h ∈ L, it holds that γKh ∈ L, where

γKh(x) =
∑

w∈XK

γK(w,x)h(wxKc).

Remark 4.12. In order to verify that a specification is quasilocal, it suffices to prove

that γKh ∈ L, for K ∈ F(G) and h ∈ L (see [30], page 32).

Theorem 4.13. Let φ : X → R be an exp-summable potential with summable variation
according to an exhausting sequence {Em}m. If γ = {γK}K∈F(G) is defined as in equation

(4.2), then γ is quasilocal.

Proof. Let h ∈ L, and let ε > 0. Given any K ∈ F(G), first notice that

|γKh(x)| ≤
∑

w∈XK

γK(w,x)|h(wxKc)| ≤ ‖h‖∞
∑

w∈XK

γK(w,x) = ‖h‖∞,

so ‖γKh‖∞ ≤ ‖h‖∞. In addition, if x,y ∈ X are such that xEn
= yEn

for n to be

determined, we have that

|γKh(x)−γKh(y)|

≤
∑

w∈XK

|γK(w,x)h(wxKc)−γK(w,y)h(wyKc)|

=
∑

w∈XK

γK(w,x)

∣∣∣∣h(wxKc)− γK(w,y)

γK(w,x)
h(wyKc)

∣∣∣∣
≤

∑
w∈XK

γK(w,x)
∣∣h(wxKc)− e±2εh(wyKc)

∣∣
≤

∑
w∈XK

γK(w,x) |h(wxKc)−h(wyKc)|+
∑

w∈XK

γK(w,x)(1− e±2ε) |h(wyKc)|

≤
∑

w∈XK

γK(w,x) |h(wxKc)−h(wyKc)|+
∑

w∈XK

γK(w,x)(1− e±2ε)‖h‖∞

≤ sup
x′,y′:x′

En
=y′

En

|h(x′)−h(y′)|+(1− e±2ε)‖h‖∞ .

To justify the second inequality, first observe that, for every w,v ∈XK , φ
τv,w
∗ is uniformly

continuous, since it is a uniform limit of uniformly continuous potentials, namely, φEm
.

Then, there exists n0 ∈N, such that for every n≥ n0, every w,v ∈XK , and every x,y ∈X

with xEn
= yEn

,

|φτv,w
∗ (wxKc)−φ

τv,w
∗ (wyKc)|< ε,

so

γK(w,y) =
exp

(
φ
τw,w
∗ (wyKc)

)
∑

v∈XK
exp

(
φ
τv,w
∗ (wyKc)

) ≤ exp
(
φ
τw,w
∗ (wxKc)+ ε

)
∑

v∈XK
exp

(
φ
τv,w
∗ (wxKc)− ε

) = e2εγK(w,x).
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Now, since h is local, we have that limn→∞ sup x,y∈X
xEn=yEn

|h(x)− h(y)| = 0, so that

there exists n1 ∈ N, such that for all n ≥ n1, sup x,y∈X
xEn=yEn

|h(x)− h(y)| < ε. Taking

n=max{n0,n1}, we obtain that

|γKh(x)−γKh(y)| ≤ ε+(1− e±2ε)‖h‖∞ ,

and since ε was arbitrary, we conclude.

5. Equivalences of different notions of Gibbs measures

In this section, we introduce the four notions of Gibbs measures to be considered, namely,

DLR, conformal, Bowen-Gibbs, and equilibrium measures, and prove the equivalence
among them provided extra conditions. We mainly assume that G is a countable amenable

group, the configuration space is X = NG, and φ :X → R is an exp-summable potential

with summable variation according to an exhausting sequence {Em}m.

We proceed to describe the content of each subsection: in Section 5.1, we provide a
rigorous definition of each kind of measure and results about entropy and pressure; in

Section 5.2, we establish that the set of DLR measures and the set of conformal measures

coincide; in Section 5.3, we prove that every DLR measure is a Bowen-Gibbs measure; in
Section 5.4, we show the existence of a conformal measure; in Section 5.5, we prove that

a G-invariant Bowen-Gibbs measure with finite entropy is an equilibrium measure; and

finally, in Section 5.6, we prove that if a measure is an equilibrium measure, then it is
also a DLR measure.

Below, we provide a diagram of the main results of this section, including extra

assumptions needed.

DLR measure ��
Theorem 5.8 ��

Theorem 5.10

��

Conformal measure

Bowen-Gibbs measure
+G-invariance and H(μ)<∞

Theorem 5.16 �� Equilibrium measure

Theorem 5.22
+G-invariance�������������

�������������

�� ������������

������������

Remark 5.1. We are not aware whether it is possible to prove that a Bowen-Gibbs
measure is necessarily a DLR measure without the finite entropy assumption. In fact, we

do not know if G-invariance is a necessary assumption for that implication.

5.1. Definitions of Gibbs measures

We start by giving the definitions of DLR, conformal, and Bowen-Gibbs measures.

Definition 5.1. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. A measure μ ∈M(X) is a DLR measure
(for φ) if

μ(B |BKc)(x) = γK(B,x) μ(x)-a.s.,
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for every K ∈ F(G), B ∈ B, and x ∈ X, where γK is defined as in equation (4.2). We

denote the set of DLR measures for φ by G(φ).

Definition 5.2. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. A measure μ ∈ M(X) is a conformal
measure (for φ) if

d(μ◦ τ−1)

dμ
= exp(φτ

∗) μ(x)-a.s., (5.1)

for every A ∈ F(N), K ∈ F(G), and τ ∈ EK,A.

Definition 5.3. Let φ : X → R be an exp-summable potential with summable variation
according to an exhausting sequence {Em}m. A measure μ ∈M(X) is a Bowen-Gibbs

measure (for φ) if there exists p ∈ R, such that, for every ε > 0, there exist K ∈ F(G)

and δ > 0, such that, for every (K,δ)-invariant set F ∈ F(G) and x ∈X,

exp(−ε · |F |)≤ μ([xF ])

exp(φF (x)−p|F |) ≤ exp(ε · |F |) . (5.2)

Remark 5.2. Notice that, in Definition 5.3, we can replace φF (x) by supφF ([xF ]) in an

equivalent way, so that we have

exp(−ε · |F |)≤ μ([xF ])

exp(supφF ([xF ])−p|F |) ≤ exp(ε · |F |) .

Proposition 5.3. Let φ : X →R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, if μ is a Bowen-Gibbs measure for φ,
the constant p is necessarily p(φ).

Proof. Indeed, given ε > 0, there exist K ∈ F(G) and δ > 0 so that

exp(−ε · |F |)exp(φF (x))≤ μ([xF ])exp(p|F |)≤ exp(ε · |F |)exp(φF (x))

for every (K,δ)-invariant set F ∈ F(G) and every x ∈ X. Since x is arbitrary, we have

that

exp(−ε · |F |)exp(supφF [xF ])≤ μ([xF ])exp(p|F |)≤ exp(ε · |F |)exp(supφF [xF ]),

and, since μ is a probability measure, adding over all xF ∈XF , we get

exp(−ε · |F |)ZF (φ)≤ exp(p|F |)≤ exp(ε · |F |)ZF (φ).

Then, if we take logarithms and divide by |F |, we obtain that

−ε+
logZF (φ)

|F | ≤ p≤ logZF (φ)

|F | + ε,

so, taking the limit as F becomes more and more invariant, we obtain that

−ε+p(φ)≤ p≤ p(φ)+ ε,

and since ε was arbitrary, we conclude that p= p(φ).
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Consider the canonical partition of X given by {[a]}a∈N. This is a countable partition

that generates the Borel σ-algebra B under the shift dynamic. Given a measure ν ∈M(X),

the Shannon entropy of the canonical partition associated with ν is given by

H(ν) :=−
∑
a∈N

ν([a]) logν([a]).

Now, for each F ∈ F(G), let {[w]}w∈XF
be the F -refinement of the canonical partition,

and consider its corresponding Shannon entropy, which is given by

HF (ν) :=−
∑

w∈XF

ν([w]) logν([w]).

We have the following proposition.

Proposition 5.4. Let φ : X →R be an exp-summable and continuous potential with finite

oscillation. If ν ∈M(X) is such that
∫
φdν >−∞, then H(ν)<∞. Furthermore, if ν is

G-invariant, then, for every F ∈ F(G), HF (ν)<∞.

Proof. Let {An}n be an exhausting sequence of finite alphabets and F ∈F(G). Consider

XF,n = {x∈X : xF ∈AF
n } ∈ BF . Since φ is exp-summable, then it is bounded from above.

Without loss of generality, suppose that it is bounded from above by 0. Thus, so is φF .

Define

φF,n(x) =

{
φF (x), x ∈XF,n;

0, otherwise.

Notice that, for every x ∈ X, φF (x) = limn→∞φF,n(x) and, for every n ∈ N, φF (x) ≤
φF,n+1(x)≤φF,n(x). Therefore, by the Monotone Convergence Theorem, we can conclude

that ∫
φF dν = lim

n→∞

∫
φF,n(x)dν.

For each n∈N, letHF,n(ν)=−
∑

w∈AF
n
ν([w]) logν([w]). Then, limn→∞HF,n(ν)=HF (ν).

Also, for each n∈N and F ∈F(G), notice that φF,n ≤
∑

w∈AF
n
1[w] supφF ([w]). Therefore,

for every n ∈ N and F ∈ F(G),

HF,n(ν)+

∫
φF,ndν =−

∑
w∈AF

n

ν([w]) logν([w])+

∫
φF,ndν

≤−
∑

w∈AF
n

ν([w]) logν([w])+
∑

w∈AF
n

ν([w]) supφF ([w])

=
∑

w∈AF
n

ν([w]) log

(
exp(supφF ([w]))

ν([w])

)

≤ log

⎛
⎝ ∑

w∈AF
n

expsupφF ([w])

⎞
⎠

= logZF (An,φ),
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where we assume that all the sums involved are over cylinder sets with positive measure.
The second inequality follows from Jensen’s inequality. In addition, notice that, in the

case that ν is G-invariant, it follows that

HF (ν) = lim
n→∞

HF,n(ν)

≤ lim
n→∞

(
logZF (An,φ)−

∫
φF,ndν

)

= logZF (φ)−
∫

φF dν

≤ |F |
(
logZ1G(φ)−

∫
φdν

)
,

where we have used that logZF (φ) ≤ |F | logZ1G(φ) and
∫
φF dν = |F |

∫
φdν. Therefore,

HF (ν)<∞ and, in particular, H(ν) =H{1G}(ν)<∞.

Through a standard argument (for example, for the case G = Z, see [24]; the general

case is analogous), it can be justified that if the canonical partition has finite Shannon
entropy, the Kolmogorov-Sinai entropy of ν can be written as

h(ν) = lim
F→G

1

|F |HF (ν).

Definition 5.4. Let φ : X → R be an exp-summable potential with summable variation
according to an exhausting sequence {Em}m. A measure μ ∈MG(X) is an equilibrium

measure (for φ) if
∫
φdμ >−∞ and

h(μ)+

∫
φdμ= sup

{
h(ν)+

∫
φdν : ν ∈MG(X),

∫
φdν >−∞

}
. (5.3)

Notice that it is not clear whether the supremum in equation (5.3) is achieved. The
answer to this problem is intimately related to the concept of Gibbs measures in its

various forms and their equivalences, which we address throughout this section.

Remark 5.5. Notice that, in light of Proposition 5.4, any measure ν ∈MG(X), such that

the
∫
φdν >−∞ has finite entropy, that is, h(ν)<∞, provided that φ is exp-summable

and has finite oscillation. Thus, in the particular case that φ is an exp-summable potential

with summable variation according to an exhausting sequence {Em}m, we obtain that

h(ν)<∞.

5.2. Equivalence between DLR and conformal measures

This section is dedicated to proving that the notions of DLR measure and conformal

measure coincide in the full shift with countable alphabet over a countable amenable

group context. Nevertheless, before proving this major result, notice that for B ∈ B,
K ∈ F(G), and x ∈X,

μ(B |BKc)(x) =
∑

w∈XK

μ([w] |BKc)(x)1{wxKc∈B}. (5.4)
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Indeed, it can be checked that 1{wxKc∈B}(x) is BKc -measurable, so μ(x)-a.s.,

∑
w∈XK

μ([w] |BKc)(x)1{wxKc∈B}(x) = μ

( ∑
w∈XK

1[w]1{wxKc∈B}

∣∣∣∣∣BKc

)
(x)

= μ

( ∑
w∈XK

1[w]1B

∣∣∣∣∣BKc

)
(x)

= μ(B|BKc)(x).

This observation will allow us to reduce our calculations from arbitrary Borel sets B ∈B
to cylinder sets of the form [w]. Next, we have the following result.

Corollary 5.6. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. A measure μ ∈ M(X) is a DLR measure

for φ if, and only if, for every K ∈ F(G), w ∈XK and x ∈X, then it holds that

μ([w] |BKc)(x) =
exp

(
φ
τw,v
∗ (vxKc)

)
∑

w′∈XK
exp

(
φ
τw′,v
∗ (vxKc)

) μ(x)-a.s., (5.5)

for every v ∈XK .

Proof. If μ is a DLR measure for φ, then for every K ∈ F(G), B ∈ B, and x ∈X,

μ(B |BKc)(x) = γK(B,x) μ(x)-a.s.

Thus, in particular, if w ∈XK , it holds that

μ([w] |BKc)(x) = γK([w],x) μ(x)-a.s.,

and the result follows from Proposition 4.9.

On the other hand, if we assume that for every K ∈F(G), w ∈XK , and x∈X, equation
(5.5) holds μ(x)-almost surely for every v ∈XK , then, from equation (5.4) and Proposition

4.9, μ(x)-a.s., it holds that

μ(B|BKc)(x) =
∑

w∈XK

μ([w]|BKc)(x)1{wxKc∈B} =
∑

w∈XK

γK([w],x)1{wxKc∈B} = γK(B,x).

In order to relate the functions γK that appear in the definition of DLR measures with

the permutations involved in the definition of conformal measures, we have the following

lemma.

Lemma 5.7. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, for every K ∈ F(G), v,w ∈XK and

τ ∈ EK , such that τ−1([v]) = [w],

γK([w],x) = exp(φτ
∗(vxKc))γK([v],x).
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Proof. Indeed, by Proposition 4.9, for every x ∈X,

γK([w],x) =
exp(φτ

∗(vxKc))∑
w′∈XK

exp
(
φ
τw′,v
∗ (vxKc)

)
=

exp
(
φ
τv,v
∗ (vxKc)

)
∑

w′∈XK
exp

(
φ
τw′,v
∗ (vxKc)

) · exp(φτ
∗(vxKc))

exp
(
φ
τv,v
∗ (vxKc)

)
= γK([v],x)exp

(
φτ
∗(vxKc)−φ

τv,v
∗ (vxKc)

)
.

Now, notice that φτ
∗(vxKc)−φ

τv,v
∗ (vxKc) = φτ

∗(vxKc), and the result follows.

Now we can prove the main result of this subsection. The proof is a slight adaptation
of the proof of [46, Theorem 3.3], and we include it here for completeness.

Theorem 5.8. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, a measure μ ∈ M(X) is a DLR
measure for φ if, and only if, μ is a conformal measure for φ.

Proof. Suppose, first, that μ ∈M(X) is a conformal measure for φ, and let K ∈ F(G).
Begin by noticing that if B ∈ BKc and, for some w ∈ XK and x ∈ X, wxKc ∈ B, then

vxKc ∈ B, for every v ∈ XK . As a consequence, we have that, for all τ ∈ EK and all

B ∈ BKc , B = τ−1(B).
For w,v ∈ XK , consider τw,v ∈ EK . Thus, τ−1

w,v([v]) = [w] and, for every B ∈ BKc ,

τ−1
w,v([v]∩B) = τ−1

w,v([v])∩ τ−1
w,v(B) = [w]∩B. Furthermore,∫

B

1[w](x)dμ(x) =

∫
B

1[v](x)d(μ◦ τ−1
w,v)(x)

=

∫
B

1[v](x)expφ
τw,v
∗ (x)dμ(x)

=

∫
B

1[v](x)expφ
τw,v
∗ (vxKc)dμ(x)

=

∫
B

μ
(
1[v](x)expφ

τw,v
∗ (vxKc)

∣∣BKc

)
(x)dμ(x)

=

∫
B

μ
(
1[v]

∣∣BKc

)
(x)expφ

τw,v
∗ (vxKc)dμ(x).

On the other hand, ∫
B

1[w](x)dμ(x) =

∫
B

μ
(
1[w]

∣∣BKc

)
(x)dμ(x).

Therefore, for any w,v ∈XK , μ(x)-almost surely it holds that

μ
(
1[v]

∣∣BKc

)
(x)expφ

τw,v
∗ (vxKc) = μ

(
1[w] |BKc

)
(x). (5.6)

Now, let A ∈ F(N) be a finite alphabet and v ∈ AK . For any w′ ∈ AK , we have that

τw′,v ∈ EK,A. Summing equation (5.6) over all w′ ∈AK , we obtain that μ(x)-almost surely
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it holds that

μ
(
1AK×XKc

∣∣BKc

)
(x) =

∑
w′∈AK

μ
(
1[w′]

∣∣BKc

)
(x) (5.7)

= μ
(
1[v]

∣∣BKc

)
(x)

∑
w′∈AK

expφ
τw′,v
∗ (vxKc). (5.8)

If {An}n is an exhausting sequence of finite alphabets, then
⋂

n≥1

(
AK

n ×XKc

)c
= ∅.

Moreover, for each n ∈ N,∫ (
1−1AK

n ×XKc

)2
dμ=

∫ ∣∣1−1AK
n ×XKc

∣∣dμ=

∫
1(AK

n ×XKc )c dμ.

Therefore,
∫ (

1−1AK
n ×XKc

)2
dμ−→ 0 as n→∞. Since conditional expectation given BKc

is a continuous linear operator on L2(μ), we have μ
(
1AK

n ×XKc

∣∣BKc

)
−→ μ(1|BKc), μ(x)-

almost surely in L2(μ) as n→∞. Therefore, for any fixed v ∈ XK , there exists n0 ∈ N

such that v ∈AK
n0

and, consequently, v ∈AK
n , for all n≥ n0. Therefore, μ(x)-almost surely

it holds that

1 = μ(1 |BKc)(x)

= lim
n→∞

μ
(
1AK

n ×XKc |BKc

)
(x)

= lim
n→∞

μ
(
1[v] |BKc

)
(x)

∑
w∈AK

n

expφ
τw′,v
∗ (vxKc)

= μ
(
1[v]

∣∣BKc

)
(x) lim

n→∞

∑
w′∈AK

n

expφ
τw′,v
∗ (vxKc)

= μ
(
1[v]

∣∣BKc

)
(x)

∑
w∈XK

expφ
τw′,v
∗ (vxKc).

Moreover, equation (5.6) yields that, for any w ∈XK , μ(x)-almost surely

1 = μ
(
1[v]

∣∣BKc

)
(x)

∑
w′∈XK

expφ
τw′,v
∗ (vxKc) =

μ
(
1[w]

∣∣BKc

)
(x)

expφ
τw,v
∗ (vxKc)

∑
w′∈XK

expφ
τw′,v
∗ (vxKc),

so that, for any w ∈XK , μ(x)-almost surely it holds that

μ([w]|BKc)(x) =
exp

(
φ
τw,v
∗ (vxKc)

)
∑

w′∈XK
expφ

τw′,v
∗ (vxKc)

.

Therefore, due to Corollary 5.6, μ is a DLR measure.
Conversely, suppose that μ ∈ M(X) is a DLR measure for φ, and let A ∈ F(N),

K ∈ F(G), and τ ∈ EK,A. For any v ∈ XK and w =
[
τ−1([v])

]
K
, due to Lemma 5.7,

we obtain
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μ◦ τ−1([v]) = μ([w]) =

∫
μ([w]|BKc)(x)dμ(x)

=

∫
expφτ

∗(vxKc)μ([v]|BKc)(x)dμ(x)

=

∫
μ
(
expφτ

∗(vxKc)1[v]

∣∣BKc

)
(x)dμ(x)

=

∫
expφτ

∗(vxKc)1[v](x)dμ(x)

=

∫
[v]

expφτ
∗(vxKc)dμ(x),

which concludes the result.

5.3. DLR measures are Bowen-Gibbs measures

This subsection is dedicated to proving that, provided some conditions, any DLR measure
for a potential φ is a Bowen-Gibbs measure for φ.

Proposition 5.9. Let φ : X →R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. If μ∈M(X) is a DLR measure for φ, then,
for every F ∈ F(G), w ∈XF and y ∈X, it holds μ(x)-almost surely that

exp(−2VF (φ)−3ΔF (φ))≤
μ([w] |BF c)(x)

exp(φF (wyF c)− logZF (φ))
≤ exp(2VF (φ)+3ΔF (φ)) .

Proof. Let F ∈ F(G) and τ ∈ EF . From Proposition 4.4, we have that for every x ∈X,

|φτ
∗(x)−φτ

F (x)| ≤ VF (φ), (5.9)

which, in particular, yields that, for every x ∈X,

0< exp(−VF (φ))expφ
τ
∗(x)≤ expφτ

F (x)≤ exp(VF (φ))expφ
τ
∗(x). (5.10)

For a fixed v ∈XF and for every w′ ∈XF , the map τw′,v belongs to EF . Thus, inequality
(5.10) holds for any such τw′,v and, summing over all those such maps, we obtain that,

for every x ∈X,

exp(−VF (φ))
∑

w′∈XF

expφ
τw′,v
∗ (x)≤

∑
w′∈XF

expφ
τw′,v
F (x)≤ exp(VF (φ))

∑
w′∈XF

expφ
τw′,v
∗ (x).

Therefore, for every F ∈ F(G), v ∈XF , and x ∈X, we have

exp(−VF (φ))≤
∑

w′∈XF
expφ

τw′,v
F (x)∑

w′∈XF
expφ

τw′,v
∗ (x)

≤ exp(VF (φ)). (5.11)

On the other hand, inequality (5.9) also yields that for every F ∈F(G), w,v ∈XF , and

x ∈X,

exp(−VF (φ))≤
expφ

τw,v
∗ (x)

expφ
τw,v

F (x)
≤ exp(VF (φ)). (5.12)
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Then, from inequalities (5.11) and (5.12), we obtain that, for every F ∈F(G), w,v ∈XF ,

and x ∈X,

exp(−2VF (φ))≤
∑

w′∈XF
expφ

τw′,v
F (x)∑

w′∈XF
expφ

τw′,v
∗ (x)

· expφ
τw,v
∗ (x)

expφ
τw,v

F (x)
≤ exp(2VF (φ)). (5.13)

So, if x ∈ [v], inequality (5.13) can be rewritten as

exp(−2VF (φ))≤
∑

w′∈XF
expφ

τw′,v
F (vxF c)∑

w′∈XF
expφ

τw′,v
∗ (vxF c)

· expφ
τw,v
∗ (vxF c)

expφ
τw,v

F (vxF c)
≤ exp(2VF (φ)). (5.14)

Since μ is a DLR measure for φ, from Corollary 5.6, we obtain that μ(x)-almost surely it

holds that

exp(−2VF (φ))≤ μ([w] |BF c)(x)

∑
w′∈XF

expφ
τw′,v
F (vxF c)

expφ
τw,v

F (vxF c)
≤ exp(2VF (φ)). (5.15)

Furthermore, notice that∑
w′∈XF

expφ
τw′,v
F (vxF c)

expφ
τw,v

F (vxF c)
=

∑
w′∈XF

expφF (w
′xF c)

expφF (wxF c)
,

so that inequality (5.15) can be rewritten as

exp(−2VF (φ))≤ μ([w] |BF c)(x)

∑
w′∈XF

expφF (w
′xF c)

expφF (wxF c)
≤ exp(2VF (φ)). (5.16)

For F ∈ F(G) and x ∈X, define the following auxiliary probability measure over XF :

πx
F (w) :=

expφF (wxF c)∑
w′∈XF

expφF (w′xF c)
, for w ∈XF .

Thus, inequality (5.16) yields that μ(x)-almost surely it holds that

exp(−2VF (φ))π
x
F (w)≤ μ([w] |BF c)(x)≤ exp(2VF (φ))π

x
F (w).

Now, given y ∈X, notice that the tail configuration xF c can be replaced by yF c with a

penalty of 2ΔF (φ) as follows

πy
F (w)exp(−2ΔF (φ))≤ πx

F (w)≤ πy
F (w)exp(2ΔF (φ)),

so that

exp(−2(VF (φ)+ΔF (φ)))≤
μ([w] |BF c)(x)

πy
F (w)

≤ exp(2(VF (φ)+ΔF (φ))) . (5.17)

Moreover, it is easy to verify that

exp(−ΔF (φ))≤
πy
F (w)

exp(φF (wyF c)− logZF (φ))
≤ exp(ΔF (φ)) .
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Therefore, for every w ∈XF , y ∈X, it holds μ(x)-almost surely that

μ([w] |BF c)(x)≥ exp(−2(VF (φ)+ΔF (φ)))exp(φF (wyF c)− logZF (φ)−ΔF (φ))

= exp(−2VF (φ)−3ΔF (φ))exp(φF (wyF c)− logZF (φ))

and that

μ([w] |BF c)(x)≤ exp(2(VF (φ)+ΔF (φ)))exp(φF (wyF c)− logZF (φ)+ΔF (φ))

= exp(2VF (φ)+3ΔF (φ))exp(φF (wyF c)− logZF (φ)) .

Thus,

exp(−2VF (φ)−3ΔF (φ))≤
μ([w] |BF c)(x)

exp(φF (wyF c)− logZF (φ))
≤ exp(2VF (φ)+3ΔF (φ)),

concluding the proof.

We now state the main theorem of this subsection.

Theorem 5.10. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. If μ is a DLR measure for φ, then, for

every ε > 0, there exist K ∈ F(G) and δ > 0, such that for every (K,δ)-invariant set F
and x ∈X, it holds μ(x)-almost surely that

exp(−ε · |F |)≤ μ([w] |BF c)(x)

exp(φF (x)−p(φ) · |F |) ≤ exp(ε · |F |) .

In particular, μ is a Bowen-Gibbs measure for φ.

Proof. Indeed, for every ε > 0, we obtain, from Proposition 2.3, Lemma 2.4, and Theorem
3.9, that there exist K ∈ F(G) and δ > 0, such that, for every (K,δ)-invariant set

F ∈ F(G),

ΔF (φ)≤ ε · |F |, VF (φ)≤ ε · |F |, and |logZF (φ)−p(φ)|F || ≤ ε · |F |,

respectively. Considering a sufficiently large K and sufficiently small δ so that the three

conditions are satisfied at the same time, we obtain from Proposition 5.9 that

exp(−ε · |F |)≤ μ([w] |BF c)(x)

exp(φF (x)−p(φ) · |F |) ≤ exp(ε · |F |) .

Integrating this inequality with respect to dμ(x), it follows that μ is a Bowen-Gibbs
measure for φ.

5.4. Existence of conformal measures

In order to guarantee that the equivalences we prove here are nontrivial, we prove the
existence of a conformal measure for an exp-summable potential with summable variation

in the context of a countably infinite state space over an amenable group. The strategy

is to apply a version of Prokhorov’s theorem.
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Definition 5.5. A sequence of probability measures {μn}n in M(X) is tight if for every

ε > 0, there exists a compact set Kε ⊆X, such that

μn(Kε)> 1− ε for all n ∈ N.

We now state a version of Prokhorov’s theorem (see [8, 47]).

Theorem 5.11. Every tight sequence of probability measures in M(X) has a weak

convergent subsequence.

Let φ : X →R be an exp-summable potential with summable variation according to an

exhausting sequence {Em}m. Consider A⊆N a finite alphabet. Then, φ|AG is also an exp-

summable potential with summable variation according to {Em}m, and the specification
defined by equation (4.2) is quasilocal. Moreover, the set of Borel probability measures on

AG is compact. Then, following [30, Comment (4.18)], for all x ∈ AG, any accumulation

point of the sequence {γEm
(·,x)}m will be a DLR measure μ. Finally, if we want to obtain

a G-invariant DLR measure, for each g ∈G, let gμ be given by gμ(A) = μ(g−1 ·A), for any
A∈B. Notice that, for every g ∈G, the measure gμ is also a DLR measure for φ|AG due to

the G-invariance of γ (see Corollary 4.10). Then, it suffices to consider any accumulation

point of the sequence
{

1
|Fn|

∑
g∈Fn

gμ
}
n
, for a Følner sequence {Fn}n.

Now, let {An}n in F(N) be a fixed exhaustion of N and, for each n ∈ N, denote the

set of DLR measures and G-invariant DLR measures for φn = φ|AG
n
by Gn(φ) and GI

n(φ),

respectively. For each n∈N and each μn ∈ GI
n(φ), consider its extension μ̃n ∈M(X) given

by

μ̃n(·) = μn(·∩AG
n ).

The next result establishes that {μ̃n}n is tight, and the reader can compare this to [45,

Lemma 5.15].

Lemma 5.12. Let φ : X → R be an exp-summable potential with summable variation

according to some exhausting sequence {Em}m. Then, for any sequence {μn}n with μn ∈
GI
n(φ), for all n ∈ N, the sequence of extensions {μ̃n}n is tight.

Proof. Fix some n ∈ N. Then, for any a ∈ N and any y ∈ A
{1G}c

n , Proposition 5.9 yields
that

exp(−C(φn))≤ μn([a])

exp(φn(ay)− logZE1
(φn))

≤ exp(C(φn)),

where φn = φ|AG
n

and C(φn) = 2VE1
(φn) + 3δ(φn). Furthermore, 0 < ZE1

(φn) ≤
ZE1

(φn+1) < ∞ and {ZE1
(φn)}n converges monotonically to ZE1

(φ). In particular,

there exists c=− logZE1
(φ1), such that c≥− logZE1

(φn), for all n ∈ N.

If a /∈An, then μ̃n([a]) = 0. On the other hand, if a ∈An, then for every y ∈A
{1G}c

n ,

μ̃n([a]) = μn([a])≤ exp(C(φn))exp(φn(ay)− logZE1
(φn))

≤ exp(C(φ)+φ(ay)+ c),

where C(φ) = 2VE1
(φ)+3δ(φ)
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Now, let ε > 0. Since φ is exp-summable, for each m ∈ N, there must exist a finite
alphabet Aε,m ∈ F(N), such that

∑
b∈N\Aε,m

exp

(
sup
x∈[b]

φ(x)

)
<

ε · exp(−C(φ)− c)

2m|Em \Em−1|
. (5.18)

Let

Kε =AE1
ε,1×A

E2\E1

ε,2 ×A
E3\E2

ε,3 ×·· · .

By Tychonoff’s theorem (see [47]), Kε is compact. Moreover, notice that

Kε =

∞⋂
m=1

⋂
g∈Em\Em−1

⋃
a∈Aε,m

[ag],

where [ag] = {x ∈X : x(g) = a}. Therefore, for each n ∈ N,

μ̃n (X \Kε) = μ̃n

⎛
⎝ ∞⋃

m=1

⋃
g∈Em\Em−1

⋂
a∈Aε,m

[ag]c

⎞
⎠

≤
∞∑

m=1

∑
g∈Em\Em−1

μ̃n

⎛
⎝ ⋂

a∈Aε,m

[ag]c

⎞
⎠

=

∞∑
m=1

∑
g∈Em\Em−1

μ̃n

⎛
⎝ ⊔

b∈N\Aε,m

[bg]

⎞
⎠

=

∞∑
m=1

∑
g∈Em\Em−1

∑
b∈N\Aε,m

μ̃n ([b
g]) .

Since all the measures considered here are G-invariant, it follows that, for any y ∈A
{1G}c

n ,

μ̃n (X \Kε)≤
∞∑

m=1

∑
g∈Em\Em−1

∑
b∈N\Aε,m

μ̃n ([b])

≤
∞∑

m=1

∑
g∈Em\Em−1

∑
b∈N\Aε,m

exp(C(φ)+φ(by)+ c)

=

∞∑
m=1

∑
g∈Em\Em−1

exp(C(φ)+ c)
∑

b∈N\Aε,m

exp(φ(by))

<
∞∑

m=1

∑
g∈Em\Em−1

exp(C(φ)+ c)
ε · exp(−C(φ)− c)

2m|Em \Em−1|

=
∞∑

m=1

∑
g∈Em\Em−1

ε

2m|Em \Em−1|

= ε,
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where the fifth line follows from estimate (5.18). Therefore, for all n ∈N, μ̃n (X \Kε)< ε,

so that μ̃n (Kε) = 1− μ̃n (K
c
ε )> 1− ε, which proves the tightness of {μ̃n}n.

We have proven that for each sequence {μn}n with μn ∈ GI
n(φ), the sequence {μ̃n}n

of their extensions is tight. Then, the existence of at least one accumulation point is
guaranteed by Prokhorov’s theorem. Let’s see that an arbitrary accumulation point, which

we will denote by μ̃, is conformal for φ and, moreover, that it is G-invariant.

Theorem 5.13. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, the set of G-invariant DLR measures

for φ is nonempty.

Proof. Let {μn}n be such that, for each n ∈ N, μn is a G-invariant conformal measure

for φn : AG
n → R (or, equivalently, μn is a G-invariant DLR measure for φn). Thus, for

each n ∈ N, any K ∈ F(G), and any τ ∈ EK,An
,

exp((φn)τn∗ ) =
d(μn ◦ (τn)−1)

dμn
, (5.19)

where τn = τ |AG
n
. This yields that

exp(φτ
∗) =

d(μ̃n ◦ τ−1)

dμ̃n
.

Indeed, let ψ : X → R be a bounded continuous potential. Observe that, for τ ∈ EK,An
,

(φn)τn∗ = (φτ
∗)|AG

n
. Moreover, for every B ∈ B, since τ−1

n (AG
n ) = AG

n and μ̃n(X \AG
n ) = 0,

we have that ˜μn ◦ τ−1
n (B) = μ̃n(τ

−1(B)). Then, we obtain∫
ψd(μ̃n ◦ τ−1) =

∫
ψd( ˜μn ◦ τ−1

n )

=

∫
ψnd( ˜μn ◦ τ−1

n )

=

∫
ψnd(μn ◦ τ−1

n )

=

∫
ψn exp((φn)τn∗ )dμn

=

∫
ψn exp

(
(φn|AG

n
)τ∗
)
dμn

=

∫
ψ exp(φτ

∗)dμ̃n,

where ψn = ψ|AG
n
.

Furthermore, Lemma 5.12 guarantees that the sequence of induced measures {μ̃n}n is

tight, and we can apply Prokhorov’s theorem to guarantee the existence of a limit point

for some subsequence {μnk
}k, which we denote by μ̃. Now, we are going to prove that μ̃ is
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a conformal measure for φ. For that, consider a bounded continuous potential ψ : X →R,
A ∈ F(N), K ∈ F(G), and τ ∈ EK,A. Then,∫

ψd(μ̃◦ τ−1) =

∫
ψ ◦ τ dμ̃

= lim
k→∞

∫
ψ ◦ τ dμ̃nk

= lim
k→∞

∫
ψd(μ̃nk

◦ τ−1)

= lim
k→∞

∫
ψ expφτ

∗ dμ̃nk

=

∫
ψ expφτ

∗ dμ̃,

where the fourth equality follows from the fact that for k large enough, A⊆Ank
, and the

last equality follows from weak convergence and the fact that ψ expφτ
∗ is a continuous and

bounded function. Indeed, first notice that φτ
∗ is a uniform limit of continuous functions

that are bounded from above, since φ is exp-summable. Therefore, the same holds for φτ
∗ ,

so that exp(φτ
∗) is continuous and bounded (from above and below). Since A, K, and τ

are arbitrary, this proves that μ̃ is conformal for φ and, therefore, DLR for φ.

It remains to show that μ̃ is G-invariant. For that, notice that, due to the weak
convergence, for any B ∈ B,

μ̃(g ·B) = lim
k→∞

μ̃nk
(g ·B) = lim

k→∞
μ̃nk

(B) = μ(B),

where we have used that, for each k ∈ N, μ̃nk
is G-invariant due to G-invariance of AG

n

and to the fact that μnk
is G-invariant.

5.5. Finite entropy Bowen-Gibbs measures are equilibrium measures

Thus far, we have proven that if φ : X →R is an exp-summable potential with summable
variation, then a measure μ ∈M(X) is a DLR measure if, and only if, it is a conformal

measure. Also, if μ is a DLR measure, then μ is also a Bowen-Gibbs measure. For Bowen-

Gibbs measures, we begin by exploring some equivalent hypothesis to having HF (μ)<∞
for every F ∈F(G) or, equivalently, to have finite Shannon entropy at the identity element.

This will allow us to assume, indistinctly, that the energy of the potential is finite. The

following lemma generalizes [43, Lemma 3.4].

Proposition 5.14. Let φ : X →R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. Then, if μ ∈ M(X) is a Bowen-Gibbs
measure for φ, the following conditions are equivalent:

i)
∫
φdμ >−∞;

ii)
∑

a∈N
supφ([a])exp(supφ([a]))>−∞; and

iii) H(μ)<∞.
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Proof. Begin by noticing that, since μ is a Bowen-Gibbs measure for φ, we have that,
in particular, for ε= 1, there exist K ∈ F(G), δ > 0, and a (K,δ)-invariant set F ∈ F(G)

with 1G ∈ F , such that, for every x ∈X, it holds that

exp(−|F |(1+p(φ))+supφF ([xF ]))≤ μ([xF ])≤ exp(−|F |(−1+p(φ))+supφF ([xF ])) .
(5.20)

We now prove that i) =⇒ iii) =⇒ ii) =⇒ i).

[i) =⇒ iii)] Notice that, since φ has summable variation according to {Em}m, then, in

particular, φ has finite oscillation. Therefore, the result follows directly from Proposition

5.4, disregarding whether μ is a Bowen-Gibbs measure for φ or not.
[iii) =⇒ ii)] Begin by noticing that, due to standard properties of Shannon entropy,

H(μ)≤HF (μ)≤ |F |H(μ). Then,

−∞<−HF (μ)

=
∑

xF∈XF

μ([xF ]) logμ([xF ])

≤
∑

xF∈XF

μ([xF ]) (−|F |(−1+p(φ))+supφF ([xF ]))

=−|F |(1+p(φ))+
∑

xF∈XF

μ([xF ]) supφF ([xF ]).

Thus,

−∞<
∑

xF∈XF

μ([xF ]) supφF ([xF ])

≤
∑

xF∈XF

exp(−|F |(−1+p(φ))+supφF ([xF ])) · supφF ([xF ])

= exp(−|F |(−1+p(φ)))
∑

xF∈XF

exp(supφF ([xF ])) · supφF ([xF ]),

so that

−∞<
∑

xF∈XF

exp(supφF ([xF ])) supφF ([xF ]).

Also, for each xF ∈XF ,

supφF ([xF ])≥ inf φF ([xF ])≥
∑
g∈F

inf
(
φ{g}([xF ])

)
≥
∑
g∈F

inf
(
φ{g}([xg])

)
.

Now, due to exp-summability, without loss of generality, we can assume that φ(x)≤ 0,
for all x∈X, so supφF ([xF ])≤ supφF ([x1G ])≤ supφ([x1G ])≤ 0. Then, abbreviating φ{g}
by φg, we obtain that

https://doi.org/10.1017/S1474748024000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000112


2692 E. R. Beltrán et al.

−∞<
∑

xF∈XF

supφF ([xF ])exp(supφF ([xF ]))

≤
∑

xF∈XF

supφF ([xF ])
∏

g∈F

exp(inf φg([xg]))

≤
∑

xF∈XF

supφF ([xF ])
∏

g∈F

exp(supφg([xg])− δ(φ))

= exp(−δ(φ)|F |)
∑

xF∈XF

supφF ([xF ])
∏

g∈F

exp(supφg([xg]))

= exp(−δ(φ)|F |)
∑

xF∈XF

supφF ([xF ])exp(supφ([x1G ]))
∏

g∈F\{1G}
exp(supφg([xg]))

≤ exp(−δ(φ)|F |)
∑

xF∈XF

supφF ([x1G ])exp(supφ([x1G ]))
∏

g∈F\{1G}
exp(supφg([xg]))

= exp(−δ(φ)|F |)
∑

x1G
∈N

supφF ([x1G ])exp(supφ([x1G ]))
∑

xF\{1G}

∏

g∈F\{1G}
exp(supφg([xg]))

≤ exp(−δ(φ)|F |)
∑

x1G
∈N

supφ([x1G ])exp(supφ([x1G ]))
∑

xF\{1G}

∏

g∈F\{1G}
exp(supφg([xg])) .

Moreover, notice that if m= |F |−1 and g1, · · · ,gm is an enumeration of F \{1G}, then∑
xF\{1G}

∏
g∈F\{1G}

exp(supφg([xg])) =
∑
xg1

· · ·
∑
xgm

exp(supφg1([xg1 ])) · · ·exp(supφgm([xgm ]))

=
∑
xg1

exp(supφg1([xg1 ])) · · ·
∑
xgm

exp(supφgm([xgm ]))

=
∏

g∈F\{1G}

∑
xg∈Xg

exp(supφg([xg])),

so that

−∞<
∑

x1G
∈N

supφ([x1G ])exp(supφ([x1G ]))
∏

g∈F\{1G}

∑
xg∈Xg

exp(supφg([xg]))

=
∑

x1G
∈N

supφ([x1G ])exp(supφ([x1G ]))
∏

g∈F\{1G}
Zg(φ)

=
∑

x1G
∈N

supφ([x1G ])exp(supφ([x1G ]))
∏

g∈F\{1G}
Z1G(φ)

=
∑

x1G
∈N

supφ([x1G ])exp(supφ([x1G ]))Z1G(φ)
|F |−1.

Therefore, ∑
x1G

∈N

supφ([x1G ])exp(supφ([x1G ]))>−∞.
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[ii) =⇒ i)] Indeed,∫
φdμ≥

∑
a∈N

inf φ([a])μ([a])

=
∑
a∈N

inf φ([a])
∑

xF :xF (1G)=a

μ([xF ])

≥
∑
a∈N

inf φ([a])
∑

xF :xF (1G)=a

exp(−|F |(1+p(φ))+supφF ([xF ]))

= exp(−|F |(1+p(φ)))
∑
a∈N

inf φ([a])
∑

xF :xF (1G)=a

exp(supφF ([xF ]))

≥ exp(−|F |(1+p(φ)))
∑
a∈N

inf φ([a])
∑

xF :xF (1G)=a

exp

⎛
⎝∑

g∈F

supφg([xF ])

⎞
⎠

≥ exp(−|F |(1+p(φ))
∑
a∈N

inf φ([a])
∑

xF :xF (1G)=a

∏
g∈F

exp(supφ[x(g)])

= exp(−|F |(1+p(φ))
∑
a∈N

inf φ([a])exp(supφ[a])
∑

xF\{1G}

∏
g∈F\{1G}

exp(supφ[x(g)]) .

Notice that, due to the same argument as in the proof of [iii) =⇒ ii)], we have that∑
xF\{1G}

∏
g∈F\{1G}

exp(supφ[x(g)]) = Z1G(φ)
|F |−1.

Therefore, since exp(−|F |(1+p(φ))Z1G(φ)
|F |−1 > 0, it suffices to prove that∑

a∈N

inf φ([a])exp(supφ[a])>−∞,

but this is true since∑
a∈N

inf φ([a])exp(supφ[a])≥
∑
a∈N

(supφ([a])− δ(φ))exp(supφ[a])

=
∑
a∈N

supφ([a])exp(supφ[a])− δ(φ)
∑
a∈N

exp(supφ[a])

=
∑
a∈N

supφ([a])exp(supφ[a])− δ(φ) ·Z1G(φ)

>−∞.

The next proposition is based on [45, Lemma 4.9] and gives us an upper bound in terms
of the pressure for the sum of the entropy and energy of a potential according to a given

measure. Sometimes this fact is known as the Gibbs inequality.

Proposition 5.15. Let φ : X → R be an exp-summable and uniformly continuous

potential with finite oscillation. If μ ∈ M(X) is G-invariant and
∫
φdμ > −∞, then

h(μ)+
∫
φdμ≤ p(φ).
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Proof. Since φ : X → R is an exp-summable and uniformly continuous potential with
finite oscillation, due to Theorem 3.9, the pressure p(φ) exists. Then,

h(μ)+

∫
φdμ= lim

F→G

1

|F |HF (μ)+

∫
φdμ≤ lim

F→G

1

|F | logZF (φ) = p(φ).

We now proceed to prove that Bowen-Gibbs measures with finite Shannon entropy at

the identity are equilibrium measures.

Theorem 5.16. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. If μ ∈M(X) is a G-invariant Bowen-Gibbs
measure for φ and H(μ)<∞, then μ is an equilibrium measure for φ.

Proof. Since μ is a Bowen-Gibbs measure for φ, for every ε > 0, there exist K ∈ F(G)

and δ > 0, such that for every (K,δ)-invariant set F ∈ F(G) and x ∈X,

exp(−ε · |F |)≤ μ([xF ])

exp(φF (x)−p(φ) · |F |) ≤ exp(ε · |F |) . (5.21)

Moreover, notice that, for every x ∈X and F ∈ F(G),

supφF ([xF ])≤ φF (x)+ΔF (φ) =
∑
g∈F

φ(g ·x)+ΔF (φ). (5.22)

Therefore,

lim
F→G

1

|F |

∫
supφF ([xF ])dμ(x)≤ lim

F→G

1

|F |

∫ ⎛⎝∑
g∈F

φ(g ·x)+ΔF (φ)

⎞
⎠dμ(x)

= lim
F→G

1

|F |

⎛
⎝∑

g∈F

∫
φ(x)dμ(x)

⎞
⎠+ lim

F→G

ΔF (φ)

|F |

= lim
F→G

1

|F |

(
|F |
∫

φdμ

)

=

∫
φdμ,

where the second line follows from the G-invariance of μ and the third line follows from
Lemma 2.4.

On the other hand, after taking logarithms in equation (5.21) and dividing by |F |, we
obtain

−ε≤ logμ([xF ])−φF (x)

|F | +p(φ)≤ ε.

Thus, for every x ∈X and every (K,δ)-invariant set F ∈ F(G),

p(φ)≤ − logμ([xF ])+φF (x)

|F | + ε≤ − logμ([xF ])+supφF ([xF ])

|F | + ε.
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Integrating the last equation with respect to μ, we get

p(φ)≤ −1

|F |
∑

xF∈XF

μ([xF ]) logμ([xF ])+
1

|F |

∫
supφF ([xF ])dμ+ ε

=
1

|F |HF (μ)+
1

|F |

∫
supφF ([xF ])dμ+ ε.

Therefore, if we take the limit as F becomes more and more invariant, we have that

p(φ)≤ h(μ)+ lim
F→G

1

|F |

∫
supφF ([xF ])dμ+ ε≤ h(μ)+

∫
φdμ+ ε,

where the last inequality follows from inequality (5.22). Since ε > 0 is arbitrary, we obtain

that

p(φ)≤ h(μ)+

∫
φdμ.

The reverse inequality follows from Proposition 5.15, and this concludes the proof.

Remark 5.17. Notice that Theorem 5.16 together with Proposition 5.15 establish a

variational principle for suitable potentials φ, that is,

p(φ) = sup

{
h(ν)+

∫
φdν : ν ∈MG(X),

∫
φdν >−∞

}

for any exp-summable potential φ with summable variation that satisfies condition ii)

from Proposition 5.14. This can be checked by invoking Theorem 5.13 (which provides

the existence of a conformal measure), Theorem 5.8 (which proves the equivalence between

conformal and DLR measures), and Theorem 5.10 (which proves that DLR measures are
Bowen-Gibbs measures).

5.6. Equilibrium measures are DLR measures

In Section 5.4, we proved that if φ : X →R is an exp-summable potential with summable

variation according to an exhausting sequence {Em}m, then the set of G-invariant DLR

measures for φ is nonempty. Throughout this section, fix a G-invariant ν ∈ G(φ).
Given E ∈ F(G) and μ ∈ MG(X), denote by fμ,E the Radon-Nikodym derivative of

μ|E with respect to ν|E , where μ|E and ν|E denote the restrictions of μ and ν to BE ,

respectively. More precisely, for every x ∈X,

fμ,E(x) =
∑

w∈XE

μ([w])

ν([w])
1[w](x). (5.23)

Notice that fμ,E is well-defined, because any DLR measure for φ, in our context, is
fully supported. Moreover, we can understand it as the pointwise limit of the simple

functions fn
μ,E =

∑
w∈XE∩AG

n

μ([w])
ν([w])1[w], where {An}n is a fixed exhausting sequence of

finite alphabets.
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Consider the function ψ : [0,∞) → [0,∞) given by ψ(x) = 1 − x + x logx, where

0log(0) = 0. Define, for each n ∈ N and E ∈ F(G), the simple function Inμ,E :=∑
w∈XE∩AG

n
ψ
(

μ([w])
ν([w])

)
1[w]. Notice that 0 ≤ Inμ,E(x) ≤ In+1

μ,E (x), so we can define a

measurable function Iμ,E by considering the pointwise limit IE(x) := limn→∞ InE(x) in
[0,∞].

When there is no ambiguity, we will omit the subscript μ from the previous notations.

Observe that, by the Monotone Convergence Theorem,

lim
n→∞

∫
InEdν =

∫
lim

n→∞
InEdν =

∫
IEdν ∈ [0,∞].

In addition,

Hn
E(μ|ν) :=

∫
InEdν =

∑
w∈XE∩AG

n

(
ν([w])−μ([w])+μ([w]) log

(
μ([w])

ν([w])

))
,

so that ∫
IEdν = lim

n→∞

∫
InEdν

=
∑

w∈XE

(
ν([w])−μ([w])+μ([w]) log

(
μ([w])

ν([w])

))

=
∑

w∈XE

μ([w]) log

(
μ([w])

ν([w])

)
.

We define the relative entropy of a measure μ ∈MG(X) with respect to ν to be

HE(μ|ν) :=
∫

Iμ,Edν,

when E ∈ F(G), and 0 if E = ∅. Notice that, a priori, HE(μ|ν) ∈ [0,∞]. Also, if

μ ∈MG(X), then HEg(μ|ν) =HE(μ|ν) for every g ∈G.

Lemma 5.18. Let E,F ∈ F(G) be such that E ⊆ F and μ ∈ M(X). Then, for every
n ∈ N, Hn

E(μ|ν)≤Hn
F (μ|ν). Moreover, HE(μ|ν)≤HF (μ|ν).

Proof. Fix n ∈N. First, observe that fn
μ,E = ν[fn

μ,F |BE ]. Indeed, it suffices to prove that

for any v ∈XE , ∫
[v]∩AG

n

fn
E dν =

∫
[v]∩AG

n

fn
F dν, (5.24)

since the supports of fn
E and fn

F are contained in AG
n and BE is generated by cylinder sets

of this form. If v /∈AE
n , then both sides of equation (5.24) are 0 and the result is proven.

Otherwise, if v ∈AE
n , then
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∫
[v]∩AG

n

fn
F dν =

∫
[v]∩AG

n

∑
w∈XF∩AG

n

μ([w])

ν([w])
1[w]dν

=

∫
AG

n

∑
w∈XF\E∩AG

n

μ([vwF\E ])

ν([vwF\E ])
1[vwF\E ]dν

=
∑

w∈XF\E∩AG
n

μ([vwF\E ])

ν([vwF\E ])

∫
AG

n

1[vwF\E ]dν

=
∑

w∈XF\E∩AG
n

μ([vwF\E ])

= μ([v]∩AG
n )

=

∫
[v]∩AG

n

dμ

=

∫
[v]∩AG

n

fn
E dν.

Thus,

Hn
E(μ|ν) =

∫
fn
E logfn

E dν

=

∫
ν(fn

F |BE) logν(f
n
F |BE)dν

≤
∫

ν(fn
F logfn

F |BE)dν

=Hn
F (μ|ν),

where the inequality follows from Jensen’s inequality for conditional expectations. Finally,

observe that

HE(μ|ν) = lim
n→∞

Hn
E(μ|ν)≤ lim

n→∞
Hn

F (μ|ν) =HF (μ|ν).

Proposition 5.19. Let φ : X →R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m and μ ∈ MG(X). Then, HE(μ|ν) < ∞ for

every E ∈ F(G). Moreover, if
∫
φdμ >−∞,

h(μ |ν) := lim
F→G

1

|F |HF (μ|ν) = p(φ)−
(
h(μ)+

∫
φdμ

)
.

Proof. Let E ∈ F(G). Since ν is a DLR measure for φ, by Theorem 5.10, ν is a Bowen-

Gibbs measure for φ. Then, for every ε > 0, there exist K ∈ F(G) and δ > 0, such that

for all (K,δ)-invariant set F ∈ F(G), the following conditions hold at the same time:∣∣∣∣h(μ)− HF (μ)

|F |

∣∣∣∣≤ ε

https://doi.org/10.1017/S1474748024000112 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748024000112


2698 E. R. Beltrán et al.

and

exp(−ε · |F |)≤ ν([xF ])

exp(supφF (x)−p(φ) · |F |) ≤ exp(ε · |F |) .

Observe that, by considering the lower bound of the equation above,

−
∑

xF∈XF∩AG
n

μ([xF ]) log(ν([xF ]))≤−
∑

xF∈XF∩AG
n

μ([xF ]) (supφF ([xF ])−p(φ)|F |− ε|F |)

= (p(φ)+ ε)|F |−
∑

xF∈XF∩AG
n

μ([xF ]) supφF ([xF ])

≤ (p(φ)+ ε)|F |−
∫
AG

n

φF dμ

=

(
p(φ)+ ε−

∫
AG

n

φdμ

)
|F |,

for any (K,δ)-invariant set F. Then, we have that

HF (μ|ν) = lim
n→∞

(Hn
F (μ|ν)−Hn

F (μ))+ lim
n→∞

Hn
F (μ)

= lim
n→∞

−
∑

xF∈XF∩AG
n

μ([xF ]) log(ν([xF ]))+HF (μ)

≤ lim
n→∞

(
p(φ)+ ε−

∫
AG

n

φdμ

)
|F |+(h(μ)+ ε)|F |

=

(
p(φ)+h(μ)−

∫
φdμ+2ε

)
|F |+HF (μ)<∞,

where Hn
F (μ) :=−

∑
xF∈XF∩AG

n
μ([xF ]) log(μ([xF ])).

First, observe that for any E, we can find a (K,δ)-invariant set F, such that E ⊆ F .
Then, by Lemma 5.18, HE(μ|ν)≤HE(μ|ν)<∞. Second, for any (K,δ)-invariant set F,

HF (μ|ν)
|F | ≤ p(φ)+

(
h(μ)−

∫
φdμ

)
+2ε.

Finally, by considering the upper bound given by the definition of Bowen-Gibbs measure

and using a similar argument, we obtain that

HF (μ|ν)
|F | ≥ p(φ)+

(
h(μ)−

∫
φdμ

)
−2ε.

Since ε was arbitrary, we conclude that

lim
F→G

HF (μ|ν)
|F | = p(φ)−

(
h(μ)+

∫
φdμ

)
.

In particular, given φ : X → R an exp-summable potential with summable variation
according to an exhausting sequence {Em}m, a G-invariant measure μ is an equilibrium

measure for φ if, and only if, h(μ |ν) = 0, for some (or every) DLR measure ν. The next

proposition is a generalization of step 1 in the proof of [30, Theorem 15.37].
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Proposition 5.20. Let φ : X →R be an exp-summable potential with summable variation
according to an exhausting sequence {Em}m and μ ∈MG(X) be an equilibrium measure

for φ. Then, for every α> 0 and K ∈F(G), there exists E ∈F(G), such that K ⊆E and

0≤HE(μ|ν)−HE\K(μ|ν)≤ α.

Proof. Pick δ > 0 small enough so that every (K,δ)-invariant set F ∈ F(G) satisfies

IntK(F ) 	= ∅. Consider 0 < ε < 1 and a tiling T with (K,δ)-invariant shapes, which we
can do by Theorem 3.5. Then, from Lemma 3.6, for every (ST ,ε)-invariant set F ∈F(G),

there exist centre sets CF (S)⊆ C(S) ∈ C(T ) for S ∈ S(T ), such that

F ⊇
⊔

S∈S(T )

SCF (S) and

∣∣∣∣∣∣F \
⊔

S∈S(T )

SCF (S)

∣∣∣∣∣∣≤ ε|F |.

Since μ is an equilibrium measure, h(μ |ν) = 0. Recall that ST =
⋃

S∈S(T )SS
−1. Then,

considering Lemma 5.19, pick K ′ ⊇ ST and δ′ < ε so that, for every (K ′,δ′)-invariant set
F ∈ F(G), we have

1

|F |HF (μ|ν)≤
α(1− ε)

maxS∈S(T ) |S|
.

Fix a (K ′,δ′)-invariant set F ∈ F(G) and an arbitrary enumeration of the tiles {Sc : S ∈
S(T ),c ∈ CF (S)}, say T1, . . . ,TM , where M :=

∑
S∈S(T ) |CF (S)|. Notice that (1− ε)|F | ≤∑

S∈S(T ) |S||CF (S)| ≤MmaxS∈S(T ) |S|. Moreover, since each Ti is a (K,δ)-invariant set,
for every 1≤ i≤M , IntK(Ti) 	= ∅, that is, there exists gi ∈G, such that Kgi ⊆ Ti. Denote

W (i) =
⊔i

j=1Tj for 0≤ i≤M . Then,

0≤ 1

M

M∑
i=1

(
HW (i)(μ|ν)−HW (i)\Kgi(μ|ν)

)
≤ 1

M

M∑
i=1

(
HW (i)(μ|ν)−HW (i)\Ti

(μ|ν)
)

=
1

M
HW (M)(μ|ν)

≤ |F |
M

1

|F |HF (μ|ν)

≤
MmaxS∈S(T ) |S|

M(1− ε)

α(1− ε)

maxS∈S(T ) |S|
= α,

where the first and second inequality follow from Lemma 5.18 and, the first equality, from
the fact that the sum is telescopic. Consequently, there must exist an index i′ ∈ {1, . . . ,M},
such that

HW (i′)(μ|ν)−HW (i′)\Kgi′ (μ|ν)≤ α.

Therefore, taking E =W (i′)g−1
i′ , the result follows from the G-invariance of μ and ν.

The next lemma is a version of step 2 in [30, Theorem 15.37].
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Lemma 5.21. Let φ : X →R be an exp-summable potential with summable variation with
respect to an exhausting sequence {Em}m and μ∈M(X) be an equilibrium measure for φ.

Then, for every ε > 0, there exists α> 0, such that, if E ⊇K and HE(μ|ν)−HE\K(μ|ν)≤
α, then ν

(∣∣fE −fE\K
∣∣)≤ ε.

Proof. Notice that, for each ε > 0, there exists rε > 0, such that

|x−1| ≤ rεψ(x)+
ε

2
, (5.25)

where ψ(x) = 1−x+x logx.
For a given ε > 0, consider α = ε

2rε
, and let E,K ∈ F(G) be such that K ⊆ E and

HE(μ|ν)−HE\K(μ|ν) ≤ α, which we can do by Proposition 5.20. Let B = {x ∈ X :

fE\K(x) 	= 0}. Notice that B ∈ BE\K∫
1X\BfEdν =

∫
X\B

fEdν =

∫
X\B

ν(fE |BE\K)dν =

∫
X\B

fE\Kdν = 0.

Then, since fE(x)≥ 0, we obtain that fE(x) = 0 ν(x)-almost surely on X \B. Next, notice

that ∫
B

fE log

(
fE

fE\K

)
dν =

∫
B

log

(
fE

fE\K

)
dμ

=

∫
B

logfE dμ−
∫
B

logfE\K dμ

=

∫
B

fE logfEdν−
∫
B

fE\K logfE\K dν

=

∫
fE logfEdν−

∫
fE\K logfE\K dν

=HE(μ |ν)−HE\K(μ |ν),

where, making an abuse of notation, we just write μ and ν, ignoring the restrictions.

Thus,

HE(μ |ν)−HE\K(μ |ν) =
∫
B

fE log

(
fE

fE\K

)
dν.

Furthermore, in B, observe that

ψ

(
fE

fE\K

)
= 1− fE

fE\K
+

fE
fE\K

log

(
fE

fE\K

)
,

so that

fE\Kψ

(
fE

fE\K

)
= fE\K −fE +fE log

(
fE

fE\K

)
.

Therefore,∫
B

fE\Kψ

(
fE

fE\K

)
dν =

∫
B

(
fE\K −fE

)
dν+

∫
B

fE log

(
fE

fE\K

)
dν.
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Since fE\K = ν(fE |BE\K), we have that
∫
B

(
fE\K −fE

)
dν = 0, so that we can rewrite

HE(μ |ν)−HE\K(μ |ν) =
∫
B

fE\Kψ

(
fE

fE\K

)
dν.

Therefore, from inequality (5.25), it follows that

ν(|fE −fE\K |) =
∫
B

|fE −fE\K |dν+
∫
X\B

|fE −fE\K |dν

=

∫
B

∣∣fE −fE\K
∣∣dν

=

∫
B

∣∣∣∣ fE
fE\K

−1

∣∣∣∣fE\Kdν

≤ rε

∫
B

fE\Kψ

(
fE

fE\K

)
dν+

ε

2

∫
B

fE\Kdν

= rε(HE(μ |ν)−HE\K(μ |ν))+ ε

2

∫
B

dμ

≤ rεα+
ε

2
= ε.

Theorem 5.22. Let φ : X → R be an exp-summable potential with summable variation

according to an exhausting sequence {Em}m. If μ ∈ MG(X) is an equilibrium measure

for φ, then μ is a DLR measure for φ.

Proof. Since μ is an equilibrium measure, then h(μ|ν) = 0. The strategy is to prove that,

for every K ∈ F(G), μγK = μ, where γ is the Gibbsian specification defined by equation
(4.2). Then, by Lemma 4.5, it will follow that μ is a DLR measure for φ.

Let h : X → R be a bounded local function and ε > 0. Since γ is a quasilocal

specification (see Theorem 4.13), then γKh is a bounded quasilocal BKc -measurable
function. Thus, there exists a bounded local BKc -measurable function h̃ : X → R, such

that
∥∥∥γKh− h̃

∥∥∥∞ < ε. Since h̃ is a local potential, there exists B ∈F(G), B⊇K, such that

h̃ is a BB\K-measurable. Also, since h is local, we can assume, without loss of generality,

that h is BB-measurable.
Consider α as in Lemma 5.21, that is, whenever E ⊇B and HE(μ|ν)−HE\B(μ|ν)≤ α,

then ν
(∣∣fE −fE\B

∣∣) ≤ ε. Now, using Proposition 5.20, fix a set E ∈ F(G), such that

E ⊇ B and HE(μ|ν)−HE\B(μ|ν) ≤ α. Therefore, by the monotonicity of the relative
entropy, we obtain that HE(μ|ν)−HE\K(μ|ν)≤ α, so that ν

(∣∣fE −fE\K
∣∣)≤ ε.

We now compute |μγK(h)−μ(h)|. First observe that since h̃ is BB\K-measurable and

B ⊆ E, then h̃ is BE\K-measurable. Therefore, recalling that μγK(h) = μ(γKh),

|μγK(h)−μ(h)| ≤
∣∣∣μ(γKh)−μ(h̃)

∣∣∣+ ∣∣∣μ(h̃)−ν(fE\K h̃)
∣∣∣+ ∣∣∣ν(fE\K h̃)−ν(fE\K(γKh))

∣∣∣
+
∣∣ν(fE\K(γKh))−ν(fE\Kh)

∣∣+ ∣∣ν(fE\Kh)−ν(fEh)
∣∣+ |ν(fEh)−μ(h)|

≤ μ
(∣∣∣γKh− h̃

∣∣∣)+0+ν
(
fE\K

∣∣∣h̃−γKh
∣∣∣)+0+‖h‖∞ν

(∣∣fE\K −fE
∣∣)+0.
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We begin by justifying the terms that vanished from the first inequality to the second.

Notice that
∣∣∣μ(h̃)−ν(fE\K h̃)

∣∣∣=0 and |ν(fEh)−μ(h)|=0, because h̃ is BE\K-measurable

and because h is BE-measurable. We also have that
∣∣ν (fE\K(γKh)

)
−ν

(
fE\Kh

)∣∣ = 0,
because fE\K is BKc -measurable and γ is proper, so ν(fE\K(γKh)) = ν(γK(fE\Kh))

and, in addition, since ν is a DLR measure, we have that

ν(γK(fE\Kh)) = (νγK)(fE\Kh) = ν(fE\Kh).

We now have to deal with the three other terms. Notice that

μ
(∣∣∣γKh− h̃

∣∣∣)< ε and ν
(
fE\K

∣∣∣h̃−γKh
∣∣∣)< ε,

because
∥∥∥γKh− h̃

∥∥∥∞ < ε. Lastly, since ν
(∣∣fE\K −fE

∣∣)≤ ε, it follows that

|μγK(h)−μ(h)|< 2ε+‖h‖∞ε.

Since ε > 0 and h : X → R are arbitrary, we obtain that, μγK = μ, which concludes the

result.

6. Final considerations

In this section, we consider the case when the group is finitely generated, which includes
the well-studied case G=Zd and show that our approach generalizes previous ones. Next,

we present a version of Dobrushin’s uniqueness theorem adapted to our framework, and

we apply it to a concrete class of examples of potentials defined in the G-full shift for any
countable amenable group G.

6.1. The finitely generated case

We now restrict ourselves to the case that G is a finitely generated group. The main

goal is to prove that our definition of a Bowen-Gibbs measure (Definition 5.3) for a given

exp-summable potential with summable variation according to an exhausting sequence is

related to the standard — but more restrictive — way to define Bowen-Gibbs measures
(e.g. [38, 45]). For that, we will prove that the bounds in Definition 5.3 can be replaced

by a bound which involves the size of the boundary of invariant sets.

Suppose that G is finitely generated, and let S be a finite and symmetric generating
set. Without loss of generality, suppose that 1G ∈ S. In this context, it is common to

implicitly consider an exhausting sequence Em+1 = Sm. For example, if G= Zd and S is

the set of all elements s ∈ Zd with ‖s‖∞ ≤ 1, the sequence {Em}m recovers the notion of
‘boxes’ with sides of length 2m+1 centred at the origin, which is the most usual in the

literature. In particular, one recovers the more standard definition of summable variation

for a potential φ : X → R, which is given by∑
m≥1

|E−1
m+1 \E−1

m | · δEm
(φ) =

∑
m≥0

|Sm+1 \Sm| · δSm(φ) =
∑
m≥0

|∂B(1G,m)| · δB(1G,m)(φ),
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where B(1G,m) = Sm denotes the ball of radius m (according to the word metric), ∂F :=

SF \F denotes the ‘(exterior) boundary’ of a set F, and |∂B(1G,m)| is proportional to

md−1 in the Zd case. Usually, potentials that have summable variation according to this
particular exhausting sequence are called regular (see, for example, [38]).

Notice that when {Em}m is an exhausting sequence of the form Sm, we have that

|∂(SmF )|= |S(SmF )\SmF |= |Sm+1F \SmF | ≤ |Sm+1 \Sm||∂intF |,

where ∂intF = ∂F c denotes the ‘interior boundary’ of F. Indeed, if g ∈ Sm+1F \SmF ,

there must exist h ∈ ∂intF , such that dS(g,h) =m+1, where dS denotes the word metric.

In addition, we also have that |∂intF | ≤ |S||∂F |, so

|∂(SmF )|= |Sm+1F \SmF | ≤ |Sm+1 \Sm||S||∂F |.

From this, it is direct that

VF (φ) =
∑
m≥0

|Sm+1F \SmF | · δSm(φ)≤
∑
m≥0

|Sm+1 \Sm||S||∂F | · δSm(φ) = V (φ)|S||∂F |.

On the other hand, if x,y ∈X are such that xF = yF , we have that

|φF (x)−φF (y)| ≤
∑
g∈F

|φ(g ·x)−φ(g ·y)|

=
∑
m≥0

∑
g∈IntSm (F )\IntSm+1 (F )

|φ(g ·x)−φ(g ·y)|

≤
∑
m≥0

|IntSm(F )\ IntSm+1(F )| · δSm(φ).

Notice that if g ∈ IntSm(F )\ IntSm+1(F ), then dS(g,∂F ) =m+1, that is, g ∈ Sm+1∂F \
Sm∂F , so

|IntSm(F )\ IntSm+1(F )| ≤ |Sm+1∂F \Sm∂F |
≤ |Sm+1 \Sm||∂int(∂F )|
≤ |Sm+1 \Sm||S||∂(∂F )|
≤ |Sm+1 \Sm||S|2|∂F |

and

|φF (x)−φF (y)| ≤
∑
m≥0

|Sm+1 \Sm||S||∂F | · δSm(φ) = V (φ)|S|2|∂F |.

Therefore, we conclude that ΔF (φ)≤ V (φ)|S|2|∂F |.
We now provide an alternative way of proving Proposition 2.3 and Lemma 2.4. Begin

by noticing that a finitely generated group is amenable if, and only if, limF→G
|∂F |
|F | = 0

(indeed, given ε > 0, we have that |∂F | ≤ |SF�F | < ε · |F | for every (S,ε)-invariant set
F ). Therefore, if φ has summable variation, it follows that

0≤ lim
F→G

VF (φ)

|F | ≤ V (φ)|S| lim
F→G

|∂F |
|F | = 0
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and, similarly,

0≤ lim
F→G

ΔF (φ)

|F | ≤ V (φ)|S|2 lim
F→G

|∂F |
|F | = 0.

In particular, in this context, we could alternatively have defined a Bowen-Gibbs

measure as follows: if G is a finitely generated amenable group with generating set S and
φ : X → R is an exp-summable potential with summable variation according to {Sm}m,

a measure μ ∈ M(X) is a Bowen-Gibbs measure for φ if for every ε > 0, there exist

K ∈ F(G) and δ > 0, such that for every (K,δ)-invariant set F ∈ F(G) and x ∈X,

exp(−C|∂F |)≤ μ([xF ])

exp(φF (x)−p(φ) · |F |) ≤ exp(C|∂F |),

where C > 0 is a constant that we can choose to be

C := 5V (φ)|S|2 ≥ 2V (φ)|S|+3Δ(φ)|S|2.

This recovers the more standard definition of Bowen-Gibbs measure in terms of

boundaries. Furthermore, with this choice of C, it is not difficult to check that we could

mimic the proofs of Proposition 5.9 and Theorems 5.10 and 5.16, thus providing all the

implications involving Bowen-Gibbs measures.

6.2. Dobrushin’s uniqueness theorem

From Section 5.4, we know that if φ : X →R is an exp-summable potential with summable
variation according to an exhausting sequence {Em}m, then the set of G-invariant DLR

measures for φ is nonempty. One natural question that may arise is under which conditions

we have uniqueness of the DLR measure. When a specification is a Gibbsian specification,
the Dobrushin’s uniqueness theorem (see [30]) addresses this question. For a detailed proof

of a version of this theorem adapted to our setting, see [11].

Let 2N be the set of all subsets of N, which is a σ-algebra, and M(N,2N) be the set of
probability measures on (N,2N). For A ∈ 2N, w ∈X, and g ∈G, denote

γ0
{g}(A,w)(η) = γ{g}

(
A×NG\{g},x

)
,

where γ is a specification, notice that, for each x ∈X, γ0
g(·,x) ∈M(N,2N). Now, for each

h ∈G, the wh-dependence of γ0
{g}(·,w) is estimated by the quantity

ρgh(γ) = sup
w,η∈X

wG\{h}=ηG\{h}

∥∥∥γ0
{g}(·,η)−γ0

{g}(·,w)
∥∥∥,

where, for any given μ,μ̃ ∈ M(N,2N), ‖μ− μ̃‖ = maxA∈E |μ(A)− μ̃(A)| (see [30, Section

8.1]).

The infinite matrix ρ(γ) = (ρgh(γ))g,h∈G is called Dobrushin’s interdependence matrix
for γ. When there is no ambiguity, we will omit the parameter γ from the notation.

Remark 6.1. Notice that ρgg = 0, for all g ∈G.
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Definition 6.1. Let γ be a specification. We say that γ satisfies the Dobrushin’s condition
if γ is quasilocal and

c(γ) := sup
g∈G

∑
h∈G

ρgh < 1.

Theorem 6.2 (Dobrushin’s uniqueness theorem). If γ is a specification that satisfies
the Dobrushin’s condition, then there is at most one measure that is admitted by the

specification γ.

We now present an example of a potential inspired by the Potts model [27, 29], such

that, under some conditions to be presented, is exp-summable and has summable variation
according to an exhausting sequence {Em}m. Moreover, this potential will also satisfy

that, if μ is a Bowen-Gibbs measure,
∫
φdμ > −∞. Another important property of this

potential is that it is nontrivial, in the sense that it depends on every coordinate of G.
We will also explore conditions on β > 0, such that the potential βφ satisfies Dobrushin’s

condition.

6.2.1. Main example. Given a countable amenable group G, consider the potential

φ : X → R given by

φ(x) :=−
∑
g∈G

c(g,x(1G))1{x(1G)=x(g)}, (6.1)

with c : G×N → [0,∞), such that, given an exhausting sequence {Em}m of G, it holds

that

1.
∑

m≥1 |Em+1 \Em|
∑

g∈G\Em
C(g)<∞, with C(g) := supn c(g,n) for g 	= 1G; and

2. for all M > 0, there exists n0 ∈ N, such that for all n≥ n0, M log(n)≤ c(1G,n).

Lemma 6.3. If the potential φ : X →R given by φ(x) =−
∑

g∈G c(g,x(1G))1{x(1G)=x(g)}
satisfies conditions (1) and (2), then, for every β > 0, the potential βφ is well-defined,

has summable variation according to the exhausting sequence {Em}m, is exp-summable,
and

∫
φdμβ >−∞ for any Bowen-Gibbs measure μβ ∈M(X) for βφ.

Remark 6.4. The set of functions c : G×N → [0,∞) satisfying conditions (1) and (2)

is nonvacuous. For example, given an exhausting sequence {Em}m, consider c : G×N→
[0,∞) and some constant L≥ 0, such that

(a) for every m≥ 1, 0≤ c(g,n)≤ L2−m−1

|Em+1|2 for every g ∈ Em+1 \Em; and

(b) any c(1G,n) of polynomial order will satisfy condition (2).

Our next goal is to study under which conditions we have uniqueness of Gibbs measures

for βφ, where β can be interpreted as the inverse of the temperature of the system. For
that, we use the Dobrushin’s uniqueness theorem (Theorem 6.2). In order to obtain

explicit conditions on β, we divide the rational into claims that, for the sake of brevity,

we leave their proofs to the reader.
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Claim 1. If x,y ∈X are such that xG\{g} = yG\{g}, for some g ∈G, then∑
h∈G

(φ(h ·x)−φ(h ·y))

converges absolutely. Moreover,∑
h∈G

(φ(h ·x)−φ(h ·y)) =− c(1G,x(g))+ c(1G,y(g))

+
∑
h∈G
h �=1G

(
c(h,x(hg))+ c(h−1,x(hg))

)(
−1{xhg=xg}+1{yhg=yg}

)
.

Now, for a fixed b ∈N, define, for each g ∈G and z ∈X, the potential ϕg
z : N→R given

by

ϕg
z(a) = φ

τa,b
∗ (bzG\{g}). (6.2)

Notice that, from Claim 1,

ϕg
z(a) = φ

τa,b
∗ (bzG\{g})

=
∑
h∈G

[
φ(h · (azG\{g}))−φ(h · (bzG\{g}))

]
= c(1G,b)− c(1G,a)+

∑
h∈G
h �=1G

[
(c(h,zhg)+ c(h−1,zhg))(1{zhg=b}−1{zhg=a})

]
. (6.3)

Now, pick h0 	= g and z,z′ ∈ X, such that zG\{h0} = z′G\{h0} and define the function

ϕg
z,z′ : N× [0,1]→ R given by

ϕg
z,z′(a,t) := tϕg

z′(a)+(1− t)ϕg
z(a) = ϕg

z(a)+ tΔg
z,z′(a),

with Δg
z,z′(a) = ϕg

z′(a)−ϕg
z(a). Notice that ϕg

z,z′(a,0) = ϕg
z(a) and ϕg

z,z′(a,1) = ϕg
z′(a).

Claim 2. Let g ∈G. Then, for every h0 	= g and z,z′ ∈X, such that zG\{h0} = z′G\{h0},
it holds that

‖Δg
z,z′‖∞ ≤ 2(C(h0g

−1)+C(gh−1
0 )).

Claim 3. Let g,h0 ∈ G and z,z′ ∈ X be such that zG\{h0} = z′G\{h0}. Then, for every

A ∈ E,

γ0
g(A,z) = γg(A×NG\{g},z) =

∑
a∈A exp

(
ϕg
z,z′(a,0)

)
∑

n∈N
exp

(
ϕg
z,z′(n,0)

) (6.4)

and

γ0
g(A,z

′) = γg(A×NG\{g},z′) =

∑
a∈A exp

(
ϕg
z,z′(a,1)

)
∑

n∈N
exp

(
ϕg
z,z′(n,1)

), (6.5)

where γ is the Gibbsian specification given by equation (4.2).
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Now, let m be the counting measure on N and, for each t ∈ [0,1], g ∈ G, and a ∈ N,

consider the measure

νt = χg(·,t)dm, with χg(a,t) =
exp

(
ϕg
z,z′(a,t)

)
∑

n∈N
exp

(
ϕg
z,z′(n,t)

) .
For each A⊆N, g,h0 ∈G, and z,z′ ∈X, such that zG\{h0} = z′G\{h0}, from Claim 3, we

obtain that

ν0(A) =

∑
a∈A exp

(
ϕg
z,z′(a,0)

)
∑

n∈N
exp

(
ϕg
z,z′(n,0)

) = γ0
g(A,z)

and

ν1(A) =

∑
a∈A exp

(
ϕg
z,z′(a,1)

)
∑

n∈N
exp

(
ϕg
z,z′(n,1)

) = γ0
g(A,z

′).

In order to study conditions under which Theorem 6.2 holds, we need some estimates,

which we calculate now. First, notice that ‖ν1−ν0‖TV = 1
2

∫
|χg(a,1)−χg(a,0)|dm.

Claim 4. For each a ∈ N and g ∈G, the map t �→ χg(a,t) is differentiable and

∂

∂t
χg(a,t) = χg(a,t)

(
Δg

z,z′(a)−
∫

Δg
z,z′(b)dνt(b)

)
.

Considering Claim 4, we have that∫
|χg(a,1)−χg(a,0)|dm(a) =

∫ ∣∣∣∣
∫ 1

0

(
∂

∂t
χg(a,t)

)
dt

∣∣∣∣ dm(a)

≤
∫ 1

0

∫ ∣∣∣∣ ∂∂tχg(a,t)

∣∣∣∣dm(a)dt

=

∫ 1

0

∫ ∣∣∣∣χg(a,t)

(
Δg

z,z′(a)−
∫

Δg
z,z′(b)dνt(b)

)∣∣∣∣dm(a)dt

=

∫ 1

0

∫ ∣∣∣∣Δg
z,z′(a)−

∫
Δg

z,z′(b)dνt(b)

∣∣∣∣dνt(a)dt
≤
∫ 1

0

∫ (
‖Δg

z,z′‖∞+

∫
‖Δg

z,z′‖∞ dνt(b)

)
dνt(a)dt

= 2‖Δg
z,z′‖∞.

Thus, by Claim 2, we have

ρgh0
≤ 1

2
sup

z,z′∈X
zG\{h0}=z′

G\{h0}

2‖Δg
z,z′‖∞ ≤ 2(C(h0g

−1)+C(gh−1
0 )).
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Therefore, considering that ρgg = 0,∑
h∈G

ρgh ≤ 2
∑
h∈G
h �=g

[
C(hg−1)+C(gh−1)

]
= 2

∑
h∈G
h �=1G

[
C(h)+C(h−1)

]
= 4

∑
h∈G
h �=1G

C(h),

so

c(γ) = sup
g∈G

∑
h∈G

ρgh(γ)≤ 4
∑
h∈G
h �=1G

C(h).

Finally, if we consider the potential βφ for β > 0, then by linearity, we have

c(γβφ) = sup
g∈G

∑
h∈G

ρgh(γ
βφ)≤ 4β

∑
h∈G
h �=1G

C(h),

where γβφ is the specification given by equation (4.2) for the potential βφ. Thus, if

β <

⎛
⎜⎝4

∑
h∈G
h �=1G

C(h)

⎞
⎟⎠

−1

,

Dobrushin’s condition is satisfied and, by Theorem 6.2, we have at most one DLR measure

for the potential βφ. Furthermore, if β > 0, then the set of G-invariant DLR measures

for βφ is nonempty, so that we can guarantee that if β ∈
(
0, 1

4
∑

h �=1G
C(h)

)
, there exists

exactly one DLR measure for βφ.
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