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Abstract
We review a combinatoric approach to the Hodge conjecture for Fermat varieties and announce new cases
where the conjecture is true. We show the Hodge conjecture for Fermat fourfolds X4

m of degree m ≤ 100
coprime to 6, and also prove the conjecture for Xn

21 and Xn
27, for all n.

1. Introduction

The Hodge conjecture is major open problem in Complex Algebraic Geometry that has been puzzling
mathematician for decades now. The modern statement is the following: Let X be smooth complex
projective variety, then the (rational) cycle class map is surjective:

cl⊗ℚ :CHp Xð Þ⊗ℚ!Hp,p∩H2p X,ℚð Þ,

where cl⊗ℚ
P

aiXið Þ¼P
ai Xi½ �, ai ∈ ℚ, and Xi½ � is the class of the subvariety Xi.

The case p = 1 is the only case that it is known to hold in general, which follows from Lefschetz’s
theorem on (1,1)-classes. Special cases have emerged during the years, but all of them were specific for
certain classes of varieties, for example, abelian varieties of prime dimension, unirational and uniruled
fourfolds, and hypersurfaces of degree less than 6. For a summary of known cases before 2000, see Lewis
(1999), and for more recent approaches, see Arapura (2019), Bergeron et al. (2016), and Markman
(2021).

Using hard Lefschetz theorem, Lefschetz hyperplane theorem, and some Hilbert scheme arguments,
we can reduce the Hodge conjecture to the case of an even dimensional (>2) variety and primitive middle
cohomology classes.

Shioda (1979) gave an interesting characterization of theHodge conjecture for Fermat varieties, which
we now review.

2. Shioda’s work

Let Xn
m ∈ ℙnþ1 denote the Fermat variety of dimension n and degree m, that is, the solution to the

equation:

xm0 þxm1 þ…þxmnþ1 ¼ 0,

and μm the group ofmth roots of unity. LetGn
m be quotient of the group μm�…�μm

zfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflffl{nþ2

by the subgroup of
diagonal elements.
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The group Gn
m acts naturally on Xn

m by coordinatewise multiplication; moreover, the character groupbGn

m of Gn
m can be identified with the group:

bGn

m ¼ a0,…,anþ1ð Þjai ∈ ℤm,a0þ…þanþ1 ¼ 0f g

via ζ 0,…,ζ nþ1ð Þ↦ζ a00 …ζ anþ1
nþ1 , where ζ 0,…,ζ nþ1ð Þ ∈ Gn

m:
By the previous section, in order to prove the Hodge conjecture, it is enough to prove it for primitive

classes; therefore, in this paper, we will focus on primitive cohomology Hi
prim Xn

m,ℂ
� �

≔ker ^Hn�iþ1ð Þ,
whereH is a hyperplane class. The action ofGn

m into the primitive cohomology andmakesHi
prim Xn

m,ℚ
� �

and Hi
prim Xn

m,ℂ
� �

Gn
m-modules. For α ∈ bGn

m, we set:

V αð Þ¼ ξ ∈ Hn
prim Xn

m,ℂ
� �jg∗ ξð Þ¼ α gð Þξ for all g ∈ Gn

m

n o
:

Before stating the characterization of Hodge classes, we need a few notations. Let

Un
m≔ α¼ a0,…,anþ1ð Þ ∈ bGn

mjai 6¼ 0 for all i
n o

:

For α ∈ Un
m, we set ∣α∣¼

P
i
<ai>
m , where < ai > is the representative of ai ∈ ℤm between 1 andm� 1.

Suppose n = 2p: then, we set

Bn
m≔ α ∈ Un

mktαj¼ pþ1 for all t ∈ ℤ∗
m

� �
:

Theorem 2.1 (Ran, 1980; Shioda, 1979). Let Hdgp≔Hp,p∩H2p
prim X,ℚð Þ be the group of primitive

Hodge cycles. Then:

(a) dimV αð Þ¼ 0 or 1, and V αð Þ 6¼ 0( α ∈ Un
m,

(b) Hdgp ¼⊕α ∈ Bn
m
V αð Þ:

Now, let C Xn
m

� �
denote the subspace ofHdgp which are classes of algebraic cycles. Then, C Xn

m

� �
is a

Gn
m-submodule, and by the theorem above, there is a subset ℭn

m⊆B
n
m such that:

C Xn
m

� �¼ ⊕
α ∈ ℭn

m

V αð Þ

the Hodge conjecture can then be stated as follows.

Conjecture 1 (Hodge conjecture). For all n,m, we have ℭn
m ¼Bn

m:

By the discussion in the previous section, this is true for n ≤ 2 and allm.The idea to prove this equality
for Fermat varieties it to use the fact that Xn

m “contains” disjoint unions of Xk
m with k < n; we then blow

those subvarieties up to find a relation between the cohomologies and to inductively construct algebraic
cycles in Xn

m. More precisely, we have:

Theorem 2.2 (Shioda, 1979). Let n¼ rþ s with r,s ≥1. Consider the map h :Gr
m�Gs

m !Gn
m, which

sends ζ 0,…,ζ r ,1½ �, ζ 00,…,ζ 0s,1
� �� �

to ζ 0,…,ζ r ,ζ
0
0,…,ζ 0s

� �� �
, and set μm≔ker hð Þ. Then, there is an

isomorphism

f : Hr
prim Xr

m,ℂ
� �

⊗Hs
prim Xs

m,ℂ
� �h iμm

⊕Hr�1
prim Xr�1

m ,ℂ
� �

⊗Hs�1
prim Xs�1

m ,ℂ
� �e!Hn

prim Xn
m,ℂ

� �

with the following properties:

(a) f is Gn
m-equivariant.

(b) f is a morphism of Hodge structures of type (1,1) on the first summand and of type (1,1) on the
second.
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(c) If n = 2p, then f preserves algebraic cycles; moreover, if

Z1⊗Z2 ∈ Hr�1
prim Xr�1

m ,ℂ
� �

⊗Hs�1
prim Xs�1

m ,ℂ
� �

,

then f Z1⊗Z2ð Þ¼mZ1∧Z2, where Z1∧Z2 is the algebraic cycle obtained by joining Z1 and Z2 by lines on
Xn
m, when Z1, Z2 are viewed as cycles in Xn

m:

In light of this theorem, we introduce the following notation:

Ur,s
m ¼ β,γð Þ ∈ Ur

m�Us
m jβ¼ b0,…,brþ1ð Þ, γ¼ c0,…,csþ1ð Þ, 
and
brþ1þ csþ1 ¼ 0

� �
:

For β,γð Þ ∈ Ur,s
m , we define:

β#γ¼ b0,…,br ,c0,…,csð Þ ∈ Urþs
m ,

and for β0 ¼ b0,…,brð Þ ∈ Ur�1
m and γ0 ¼ c0,…,csð Þ ∈ Us�1

m , we set:

β0∗γ0 ¼ b0,…,br ,c0,…,csð Þ ∈ Urþs
m :

Then, we have a bijection

Ur,s
m∐ Ur�1

m �Us�1
m

� �$Urþs
m :

Using the theorem above, we have:

V β#γð Þ¼ f V βð Þ⊗V γð Þð Þ,
V β0∗γ0ð Þ¼ f V β0ð Þ⊗V γ0ð Þð Þ:

Corollary 2.3. Suppose n¼ 2p¼ rþ s, where r,s ≥1.

(a) If r, s are odd and β0,γ0ð Þ ∈ ℭr�1
m �ℭs�1

m , then β0∗γ0 ∈ ℭn
m:

(b) If r, s are even and β,γð Þ ∈ ℭr
m�ℭs

m

� �
∩Ur,s

m , then β#γ ∈ ℭn
m:

By the above corollary, theHodge conjecture can be proved inductively for the FermatXn
m if the following

conditions are true for every α ∈ Bn
m:

(P1) α� β0∗γ0 for some β0,γ0ð Þ ∈ Br�1
m �Bs�1

m r, s
oddð Þ,
(P2) α� β#γ for some β,γð Þ ∈ Br

m�Bs
m

� �
∩Ur,s

m r,s even
and
positiveð Þ,
where � means equality up to permutation between factors.

In order to make these conditions more explicit, we introduce the additive semigroup Mm of
nonnegative solutions x1,…,xm�1;yð Þ with y > 0, to the following system of linear equations:

Xm�1

i¼1

< ti> xi ¼my for all t ∈ ℤ∗
m:

Furthermore, defineMm(y) as those solutions, where y is fixed. Note that by Gordan’s lemma,Mm is
finitely generated.

Definition 2.4. An element a ∈ Mm is called decomposable if a = c þ d for some c,d ∈ Mm;
otherwise, it is called indecomposable.An element b is called quasi-decomposable if aþ b= cþ d for some
a ∈ Mm 1ð Þ and c,d ∈ Mm with c,d 6¼ b:

With this notation, we can identify elements of Bn
m with elements of Mm using the map:

Experimental Results 3

https://doi.org/10.1017/exp.2021.14 Published online by Cambridge University Press

https://doi.org/10.1017/exp.2021.14


fg : α¼ a0,…,anþ1ð Þ ∈ Bn
m↦ αf g¼ x1 αð Þ,…,xm�1 αð Þ,n

2
þ1

	 

∈ Mm

n
2
þ1

	 

,

where xk αð Þ is the number of i’s such that <ai > =k.
Note that α satisfies P1ð Þ above if and only if αf g is decomposable. If α satisfies P2ð Þ, then αf g is quasi-

decomposable. Conversely, if the latter is true, then α satisfies P1ð Þ or P2ð Þ. So it makes sense to introduce
the following conditions:

Pn
m

� �
Every indecomposable element of Mm(y) with 3 ≤ y ≤ n

2þ1, if any, is quasi-decomposable.
(Pm) Every indecomposable element of Mm(y) with y ≥ 3 is quasi-decomposable.

By the results above, we conclude:

Theorem 2.5 (Shioda, 1979). If condition (Pm) is satisfied, then theHodge conjecture is true for Xn
m, for

any n. If (Pn
m) is satisfied, then the Hodge conjecture is true for Xn

m:

For m prime or m = 4, Mm is generated by Mm 1ð Þ, which gives:

Theorem 2.6 (Ran, 1980; Shioda, 1979). If m is prime orm= 4, the Hodge conjecture is true for Xn
m, for

all n. Shioda manually verified condition (Pm) for m ≤ 20 and concluded:

Theorem 2.7 (Shioda, 1979). If m ≤ 20, the Hodge conjecture is true for Xn
m, for all n.

Starting atm= 21, the number of indecomposables and the length of elements ofMm are very large, so
it is hard to verify (Pm) by hand for unknown cases, unlessm¼ p2 is a square of a prime. In the latter case,
condition (Pm) is not always true; it is false for m¼ 25, for example. However, Aoki (1987) explicitly
constructed the algebraic cycles that generate each V αð Þ; such cycles are called standard cycles.

Theorem 2.8 (Aoki, 1987). If m = p2, the Hodge conjecture is true for Xn
m, for all n, even though

condition (Pm) may be false.

3. New cases of the Hodge conjecture

Anatural question is whether or not theHodge conjecture can always be proved using condition (Pm). As
described above, there are false negatives, that is, (Pm) is false, but theHodge conjecture is still true. This is
due to the fact that there are cycles not coming from the induced structure (see Aoki, 1987).

The next obvious question is then for which values of m, if any, the condition (Pm) is false, besides
m = p2. In such cases, one expects (if one believes the Hodge conjecture) that there are cycles, not of
standard type as inAoki (1987), such that they too do not come from the induced structure. Alternatively,
they are candidates for a counterexample to the Hodge conjecture.

We used SAGE math to answer that question by investigating when condition (Pm) is true. All the
code used in this section can be found in the Appendix.

In the case of Fermat fourfolds, we computed, first, all the indecomposable elements with length
3, because the (2,2) cycles have length exactly 3. So the idea was to find values ofm for which there were
none of them.

Proposition 3.1. If m ≤ 100 is an integer coprime to 6, then the Hodge conjecture is true for all
Fermat fourfolds X4

m.

This is a strong evidence that the Hodge conjecture should be true for fourfolds X4
m where m is

coprime to 6. It suggests the structure ofB4
m, namely, if 3∣m, then there are indecomposables elements of

length 3 (see Proposition 3.4 below).
The following corollary is immediate by Shioda (1979).

Corollary 3.2. Ifmi ≤ 100 are integers coprime to 6, then the Hodge conjecture is true for arbitrary
products of Fermat fourfolds X4

m1
�…�X4

mk
.
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We slightly extended Shioda’s work by verifying condition (Pm) form¼ 21,27. A computational proof
can be found in the Appendix.

Theorem 3.3. The Hodge conjecture is true for Fermats Xn
21 and Xn

27, for all n.

An interesting case ism= 33, where condition (Pm) is false, because we have explicitly found a Hodge
class that is not quasi-decomposable and is not of standard type either.

Proposition 3.4. Condition P33 is false. More precisely, the following cycle

0,0,0,0,0,0,1,0,0,1,0,0,1,0,0,0,0,0,1,0,0,1,0,0,0,0,0,1,0,0,0,0,3ð Þ

supported on X4
33 is not quasi-decomposable in M33.

This proposition confirms that starting at n = 4, there are cycles not coming from the induced
structure. Therefore, we cannot prove the Hodge conjecture only using this approach. One thing that can
be done is to find explicitly the algebraic cycles whose class project nontrivially to V αð Þ for each α ∈ Bn

m
(see Aoki, 1987).

In the particular case where m = 3d and 3∤d, as above, we have a candidate. Consider the following
elementary symmetric polynomials in x¼ x0,…,x5ð Þ:

p1 xð Þ≔x0þx1þx2þx3þx4þx5,

p2 xð Þ≔x0x1þx0x2þ…þx4x5,

p3 xð Þ≔x0x1x2þ…þx3x4x5:

(3.1)

Recall the Newton identity:

x30þx31þx32þx33þx34þx35 ¼ p1 xð Þ3�3p1 xð Þp2 xð Þþ3p3 xð Þ: (3.2)

Set xd ¼ xd0 ,…,xd5
� �

, then:

xm0 þxm1 þxm2 þxm3 þxm4 þxm5 ¼ p1 xd
� �3�3p1 xd

� �
p2 xd
� �þ3p3 xd

� �
: (3.3)

Let W denote the following variety in ℙ5:

p1 xd
� �¼ p2 xd

� �¼ p3 xd
� �¼ 0: (3.4)

By construction, W⊆X4
m is a subvariety of codimension 2, so W½ � ∈ Hdg2 X4

m

� �
:

Question 1. Can W½ � project nontrivially in V αð Þ for every α ∈ B4
m which is not quasi-decomposable

and not of standard type?
If the answer is yes, then we would have a positive answer to the Hodge conjecture in this case.
We know by Gordan’s lemma that the number of indecomposable elements is finite. Givenm ∈ ℤþ,

in order to prove the Hodge conjecture for Xn
m and any n, it is enough to prove for all Xn

m,n ≤ n0, where
n0 ¼ 2 m0 �1ð Þ and m0 is the largest length of all the indecomposable elements in Mm.

Let ℐm be set of indecomposable elements of Mm. Define ϕ :ℤþ !ℤþ by the rule

ϕ mð Þ¼ maxy j x1,…xm�1,yð Þ ∈ ℐmf g: (3.5)

We have the following:

Proposition 3.5. If theHodge conjecture is true forXn
m, for all n ≤ 2 ϕ mð Þ�1ð Þ, then it is true forXn

m
and any n.

Proof.TheHodge classes inXn
m are parametrized byBn

m, which can be viewed insideMm as elements of
length n

2þ1. Since the indecomposables generateMm, it is enough that those be classes of algebraic cycles.
But that is the case if the Hodge conjecture is true when n

2þ1 ≤ ϕ mð Þ, by definition of ɸ(m).
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Therefore, for Fermat varieties of degree m, we do not need to check the Hodge conjecture in every
dimension. It is enough to prove the result for dimension up to 2(ɸ(m)–1).

Clearly then, it is desirable to find an expression for the functionɸ(m). Form prime orm= 4, we know
already that ɸ(m)= 1. Furthermore, by Aoki (1987), we know that for p > 2 prime, ϕ p2ð Þ¼ pþ1

2 . Here is a
table with the a few values of ɸ(m):

Based on the values above and the ones already computed, we believe the following is true.

Conjecture 2. For p > 2 prime, we have ϕ pk
� �¼ pk�1þ1

2 , and ϕ 2l
� �¼ 2l�2þ1, for l > 2.

Computing ɸ(m) for m < 48 gives the following:

Form < 48, computations becomemore time-consuming, and specially ifm has a lot of prime powers
in its prime decomposition. But the results obtained here give us a glimpse about the structure ofMm and,
consequently, the Hodge conjecture in the case of Fermat varieties.
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m ɸ(m) m ɸ(m) m ɸ(m) m ɸ(m)

20 5 26 7 32 9 38 11

21 3 27 5 33 5 39 5

22 7 28 7 34 5 40 17

23 1 29 1 35 8 41 1

24 9 30 9 36 13 42 11

25 3 31 1 37 1 43 1

5 10 15 20 25 30 35 40 45

1

3

5

7

9

13

17

y = m+3
3

m

Á
(m

)
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Appendix: A code implementation of Shioda’s approach
The following SAGE code, for a fixedm> 1, checks whether or not every indecomposable element is quasi-decomposable. If such
condition is true, then the Hodge conjecture holds for Xn

m.

from itertools import product
from fractions import gcd
import sys
import numpy as np
#from sage.geometry.polyhedron.backend_normaliz import Polyhedron_normaliz

def how_many_indec(m):
p = MixedIntegerLinearProgram(base_ring=QQ)
w = p.new_variable(integer=True, nonnegative=True)
for k in range(1,m):

if gcd(k,m) == 1:
l=0
for i in range(1,m):

l += ((i*k) % m)*w[i-1]
l += -m*w[m-1]
#print l
p.add_constraint(l == 0)

p.add_constraint(w[m-1] >= 1)
indec = p.polyhedron(backend=’normaliz’).integral_points_generators()[0]
indec_less = [ x for x in indec if x[-1]> 2]
return len(indec_less)

def poly_sol(m):
p = MixedIntegerLinearProgram(base_ring=QQ)
w = p.new_variable(integer=True, nonnegative=True)
for k in range(1,m):

if gcd(k,m) == 1:
l=0
for i in range(1,m):

l += ((i*k) % m)*w[i-1]
l += -m*w[m-1]
p.add_constraint(l == 0)

p.add_constraint(w[m-1] >= 1)
return p.polyhedron(backend=’normaliz’)

def lengthOne(m):
p = MixedIntegerLinearProgram(base_ring=QQ)
w = p.new_variable(integer=True, nonnegative=True)
for k in range(1,m):

if gcd(k,m) == 1:
l=0
for i in range(1,m):

l += ((i*k) % m)*w[i-1]
l += -m*w[m-1]
p.add_constraint(l == 0)

p.add_constraint(w[m-1] == 1)
return p.polyhedron(backend=’normaliz’).integral_points()
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def get_indec(m):
p = MixedIntegerLinearProgram(base_ring=QQ)
w = p.new_variable(integer=True, nonnegative=True)
#print ’x is %d and m is %d’ % (x,m)
for k in range(1,m):

if gcd(k,m) == 1:
l=0
for i in range(1,m):

l += ((i*k) % m)*w[i-1]
l += -m*w[m-1]
#print l
p.add_constraint(l == 0)

p.add_constraint(w[m-1] >= 1)
return p.polyhedron(backend=’normaliz’).integral_points_generators()[0]

def get_standard(m,primes):
result = []
for p in primes:

d = m/p
if p == 2:

for i in range(1,m):
if (p*i) % m != 0 :#(d/gcd(i,d))>2:#(p*i) % m != 0 and

2*((p*i) % m) != m:##
temp = [i,(i+d) % m,(m-2*i) % m,d]
#print temp
std = []
for e in range(1,m):

std.append(temp.count(e))
std.append(2)
if tuple(std) not in result:

result.append(tuple(std))
else:

for i in range(1,m):
if (p*i) % m != 0: #and 2*((p*i) % m) != m:#d/gcd(i,d)>2:

#print i
temp = [0]*(p+1)
for k in range(p):

temp[k]= (i+k*d) % m
temp[p]=(m-p*i) % m
#print temp
std = []
for e in range(1,m):

std.append(temp.count(e))
std.append((p+1)/2)
#print gcd(i,d)
#print tuple(std)
#print ’--’
if p%2 == 1:

if tuple(std) not in result:
result.append(tuple(std))

else:
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if tuple(std) not in result:
result.append(tuple(2*x for x in std))

return result

def reverse_to(y,m):
r=[]
n = len(y)-2
for e in range(1,m):

r.append(y.count(e))
r = r + [n/2 + 1]
return tuple(r)

def convert_to_u(x,m):
last = x[-1]
n = 2*(last-1)
r = []
for k in range(m-1):

if x[k] != 0:
r = r + [k+1]*x[k]

return tuple(r)

def get_points_length_less_m(x,m):
p = MixedIntegerLinearProgram(base_ring=QQ)
w = p.new_variable(integer=True, nonnegative=True)
#print ’x is %d and m is %d’ % (x,m)
for k in range(1,m):

if gcd(k,m) == 1:
l=0
for i in range(1,m):

l += ((i*k) % m)*w[i-1]
l += -m*w[m-1]
#print l
p.add_constraint(l == 0)

p.add_constraint(w[m-1] >= 1)
p.add_constraint(w[m-1] <= x)
return p.polyhedron(backend=’normaliz’).integral_points()

arr = []

def get_indec_less(m,prm):
p = poly_sol(m)
print ’getting indecomposable elements for |m= %d| ...’ % m
indec = p.integral_points_generators()[0]
#length_one = [ x for x in indec if x[-1]==1]
#print ’there are %d length one’ % len(length_one)
standards = [list(x) for x in get_standard(m,prm)]
print ’there are %d STANDARDS ELEMENTS’ % len(standards)
indec_less = [ x for x in indec if x[-1]>= 3 and list(x) not in

standards]
print ’there are %d indec of length>=3’ % len(indec_less)
return indec_less

def prime_factors(n):
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i = 2
factors = []
while i * i <= n:

if n % i:
i += 1

else:
n //= i
if i not in factors:

factors.append(i)
if n > 1:

if n not in factors:
factors.append(n)

#print(’finished computing primes:’,factors)
return factors

m = 21
primes = prime_factors(m)
quasi = []
dict_ = {}
indec_less = get_indec_less(m,primes)
lasts_ =[]
length_one = lengthOne(m)
for el in indec_less:

last = el[-1]
print ’---’
print el
print ’position: %d’ % indec_less.index(el)
count=0
if last not in dict_:

possible = get_points_length_less_m(last,m)
dict_[last] = possible
for el2,el3,el4 in product(length_one,possible,possible):

if el + el2 == el3 + el4 and (el != el3 and el != el4):
print ’I am quasi’
quasi.append(el)
break

samples=len(possible)*len(possible)*len(length_one)
count+=1
sys.stdout.write("Progress: %.2f%% \r" %

(float(100*count)/samples))
sys.stdout.flush()

if el not in quasi:
print ’This element is not quasi’
print ’The HC CAN NOT be predicted for degree %d using this

method, there are only %d quasi of %d’ %
(m,len(quasi),len(indec_less))

break
else:

for el2,el3,el4 in product(length_one,dict_[last],dict_[last]):
if el + el2 == el3 + el4 and (el != el3 and el != el4):

print ’I am quasi’
quasi.append(el)
break

samples=len(dict_[last])*len(dict_[last])*len(length_one)
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count+=1
sys.stdout.write("Progress: %.2f%% \r" %

(float(100*count)/samples))
sys.stdout.flush()

if el not in quasi:
print ’This element is not quasi’
print ’The HC CAN NOT be predicted for degree %d using this

method, there are only %d quasi of %d’ %
(m,len(quasi),len(indec_less))

break
print ’The HC is TRUE for degree %d fermats’ % m
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