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In aerodynamic and hydrodynamic devices and locomotive organisms, passive appendages
have practical purposes such as drag reduction and flow control. Although these
appendages also affect the dynamics of freely falling bodies, underlying principles of
their functions remain elusive. We investigate experimentally the dynamics of a falling
sphere with a filament appended on its rear side by varying the ratio of filament length
to sphere diameter (//D = 0—3.0) and sphere-to-fluid density ratio (o; /0y = 1.06—1.36),
and maintaining a similar dimensionless moment of inertia (I* ~ 0.96). At the Reynolds
number of 0(10%), a sphere without any filament exhibits vertical descent. However, the
falling of the sphere with a filament is accompanied by periodic horizontal displacements,
and the degree of zigzag motion is maximised under specific filament length. The filament
induces periodic rotation of the sphere by shifting the centre of mass of the entire model
and through the hydrodynamic interaction of the filament with the surrounding fluid. The
rotation of the sphere increases the drag force acting on the model, reducing tangential
velocity along the trajectory by 14 % compared to a plain sphere. Furthermore, the sphere
rotation enhances the lift force normal to the trajectory, extending trajectory length by
5 %. These combined effects improve falling time over a certain vertical distance by 20 %
compared to the plain sphere. With increasing sphere density, the effects of the filament
on the falling dynamics weaken, because the offset distance between the centre of mass of
the model and the geometric centre of the sphere becomes smaller.

Key words: flow-structure interactions

1. Introduction

Many organisms use passive appendages to improve their locomotion by effectively
manipulating the surrounding flow. For instance, elongated tails behind a wing enhance
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lift and longitudinal stability by modifying the vortical structure in the wake (Park et al.
2010). The hairy coating of long appendages enlarges the recirculation bubble formed
behind a bluff body, reducing both the drag and the fluctuations in lift (Favier et al. 2009).
These passive appendages influence the surrounding flow and fluid-dynamic forces, and
thus have significant potential for use in engineering applications.

Investigations into the fluid dynamics of passive appendages have mainly considered a
splitter plate (a plate attached to the rear side of a bluff body) as the model for passive
appendages. A rigid splitter plate attached behind a fixed circular cylinder has been
extensively studied in terms of suppressing vortex formation and reducing drag force (e.g.
Roshko 1955; Gerrard 1966; Apelt et al. 1973; Kwon & Choi 1996; Anderson & Szewczyk
1997; Qiu et al. 2014). Compared with a plain cylinder, the splitter plate suppresses vortex
shedding in the wake of the cylinder under a uniform flow, and enhances the pressure at
the rear of the cylinder, resulting in drag reduction. In addition to rigid splitter plates,
flexible splitter plates have been investigated with regard to the fluid force exerted on
a fixed circular cylinder and its wake (e.g. Bagheri er al. 2012; Lee & You 2013; Wu
et al. 2014; Mao et al. 2022a; Shukla et al. 2023). The flexibility and length of the plate
determine the hydrodynamic interaction between the splitter plate and the flow, affecting
the Strouhal number of vortex shedding, and the drag and lift coefficients of the cylinder.
Increasing the number of splitter plates enhances drag reduction for both rigid (Bao & Tao
2013; Abdi et al. 2019) and flexible (Niu & Hu 2011; Mao er al. 2022b) splitter plates.

In addition to fixed bodies, appendages have been observed to have pronounced effects
when attached to the rear side of freely falling bodies. A falling sphere without any
appendage follows a straight path at the Reynolds number Re (=u,D/v) = 0(10?),
where v;, D and v are the average vertical velocity, the diameter of the sphere, and the
kinematic viscosity of the fluid, respectively (Jenny et al. 2004; Veldhuis & Biesheuvel
2007; Horowitz & Williamson 2010; Ern et al. 2012). With an increase in Re, the sphere
undergoes a transition to an oblique trajectory. When an elliptic sheet is appended to
the rear (upper) side of a falling sphere, the wake of the sphere exerts a fluid force on
the sheet, generating a horizontal force to the sphere—sheet model (Lacis er al. 2014).
Accordingly, the sphere exhibits an oblique falling motion rather than falling vertically.
Lacis et al. (2017) numerically investigated the effects of the elliptic sheet configuration
on the falling dynamics of a sphere. Through a parametric study of various lengths and
aspect ratios (the ratio of major axis to minor axis) for the elliptic sheet, the optimal values
for maximizing the force in the horizontal direction were identified. In addition to sheet-
shaped appendages, the dynamics of falling objects can also be influenced by fibre-shaped
appendages. A circular disk, initially inclined as it begins to fall, experiences lateral and
angular displacements after release. The multiple bristles attached to the side of the disk
mitigate these displacements and allow the disk to fall stably at Re = 0(10%-0(10%),
unlike disks without bristles (Lee et al. 2020).

For a body freely falling or rising in a fluid, the translational and rotational dynamics are
coupled, causing the body to exhibit different translational dynamics when the rotational
dynamics of the body is altered. The rotational motions are largely affected by the moment
of inertia and the location of the centre of mass with respect to the geometric centre
of the body (Mathai et al. 2017; Will & Krug 2021a,b; Assen et al. 2024). Previous
studies on a falling body with appendages have focused primarily on the translational
dynamics of the body, although the coupling of rotational and translational dynamics
is critical in determining the trajectory. To elucidate the mutual interaction of a falling
body and a rear-side appendage, we experimentally investigate the effects of a single thin
filament appendage on the translational and rotational dynamics of a freely falling sphere.
Furthermore, although numerous studies have examined the effects of appendages, most
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Figure 1. (a) Geometry of a sphere with a filament and internal configuration of the sphere. (b) Schematic of
experimental set-up.

have focused on two-dimensional (2-D) objects. The effects of three-dimensional (3-D)
filament-shaped appendages attached to a falling object have not been fully understood.
Because the falling object possesses higher degrees of freedom compared to a fixed
one, the attachment of filament-shaped appendages, even a single appendage, may induce
remarkable changes in the trajectory. By varying the filament length and sphere density,
the physical mechanisms that determine the falling motions are analysed.

A sphere model with a rear-side filament and experimental methods to measure the
3-D trajectory and rotation of the sphere are described in §2. In § 3.1, the trajectories
and descending times of the sphere are compared for various filament lengths. Section 3.2
examines the role of sphere rotation on the trajectory, with particular emphasis on the
forces exerted on the rotating sphere. Section 3.3 discusses the contributions of two
mechanisms induced by the attachment of a filament — the shift in the centre of mass and
the hydrodynamic interaction of the filament — to the rotational and translational dynamics
of the sphere. Subsequently, § 3.4 explores how variations in sphere density determine the
falling dynamics. Finally, the main findings of this study are summarised in § 4.

2. Experimental set-up

Our experimental model consists of a sphere with a filament attached to its rear (upper)
surface (figure 1a). The diameter D of the spheres in all experimental cases is constant
at 16 mm. To maintain almost the same moment of inertia in the sphere while varying its
density, the spheres were fabricated to have different internal configurations. Will & Krug
(2021b) fabricated spheres with various densities and mass distributions by modifying
the internal structure of a shell with a metal ball at its centre. Similarly, we modified the
internal structure of two hemispherical shells encompassing a stainless steel ball with mass
0.44 g and diameter 4.76 mm. The hemispherical shells were made from a plastic material
(VisiJet M2R-WT, 3D Systems, Inc.) with density 1.16 x 10> kg m~ using a 3-D printer
(ProJet MJP 2500 Plus, 3D Systems, Inc.). The 3-D printer features layer thickness 32 pm
and accuracy £0.1 mm per 25.4 mm. The stainless steel ball was positioned at the centre of
the sphere, and the hemispherical shells were carefully bonded. The bonded area was sand-
ed to ensure a smooth spherical surface. By modifying the internal configuration of the 3-D
printed halves, spheres with different densities ranging from pg = 1.06 x 103 to 1.36 x
10° kg m~3 have a nearly constant dimensionless moment of inertia I*(= I;/I) ~ 0.96;
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here, Iy and I are the moments of inertia of the 3-D printed sphere and a sphere with a
uniform density distribution inside and the same mass, respectively. The sphericity of each
sphere was estimated by measuring the diameter at different cross-sections with a calliper.
The difference between the maximum and minimum diameters was less than 1 % of the
desired diameter, confirming that the printed models could be assumed to be ideal spheres.

To attach the thin filament, a small hole of depth 1 mm was made at the apex of the
upper hemisphere. The filament, made of acrylonitrile butadiene styrene with density
prit=1.08 x 10° kg m~—3 and having diameter d = 0.5 mm, was inserted into this hole and
carefully aligned to ensure that it remained perpendicular to the surface of the sphere. The
mass of the filament was less than 2 % of the sphere mass, having negligible influence on
the inertia of the entire model. The filament length / was varied such that the dimensionless
filament length //D ranged from O (a plain sphere with no filament) to 3.0. The elastic
modulus of the filament was measured to be 2.71 x 10°> MPa at room temperature through
tensile test with gauge length 30 mm. All filaments in the range //D = 0-3.0 were rigid
enough to resist bending by fluid force, as confirmed by the images captured during the
falling experiments.

The experiments were conducted in a glass tank of height 160 cm with cross-section
60 x 60 cm”. The tank was filled with tap water to height 158 cm (figure 1b). Room
temperature was maintained at 21 °C, whereupon the water density oy is 998 kg m~3

and the kinematic viscosity v is 0.980 mm? s~!. To release the sphere with minimal
fluid disturbance, a remotely controlled syringe with a suction cup was used. The syringe
restrained the top surface of the sphere to 75 mm below the free surface, then carefully
released the sphere. Because the syringe tip was positioned vertically above the centre
of the sphere, the filament on the upper surface of the sphere was initially tilted at an
angle 15° from the vertical direction. We assessed the effect of this tilting angle on the
falling dynamics through a comparison with the same model released at a 0° tilting
angle using tweezers, and confirmed that the falling dynamics after the initial transient
phase was insensitive to the initial tilting angle. All experimental cases were repeated
four times, and each experiment was performed after an interval of at least 15 min to
eliminate disturbances in the fluid caused by the previous experiment; 15 min was found
to be sufficient according to several trials with different settling times.

To capture 3-D falling motions, two synchronised cameras (VLXT-28M.I, Baumer, Ltd)
with resolution 1920 x 1464 pixels were positioned at the front and side of the tank
(figure 1b), and the image planes were illuminated using four LED lamps. The falling
sphere was filmed at 250 frames per second. Based on the period of sphere motion, the
size of the field of view was determined to be 171 mm (in either the x- or y-direction) x
430 mm (in the z-direction) on the focal plane for each camera. In the images recorded
by each camera, the sphere was detected using the Hough circle transform method. The
detected sphere centres were used to reconstruct the 3-D position of the sphere, based on
calibration using 39 predetermined points in 3-D space (Hedrick 2008).

The investigation of rotational dynamics requires time-resolved measurements for the
3-D orientation of the sphere. To measure the orientation angle of the sphere during
the fall, the predetermined black pattern employed by Mathai et al. (2016) was marked
on the white surface of the sphere. By comparing the filmed image of the sphere and
the projection of the analytical pattern onto the 2-D synthetic image, the orientation
of the sphere was estimated. The white filament was located on the white part of the
sphere to obtain intact images of the black pattern. The orientation measurement could
be conducted using a single camera, whereas the position measurement required two
cameras. In this study, the results related to the rotational dynamics were obtained from
the images captured by one of the two cameras. To validate the accuracy of the orientation

1010 A43-4


https://doi.org/10.1017/jfm.2025.271

https://doi.org/10.1017/jfm.2025.271 Published online by Cambridge University Press

Journal of Fluid Mechanics

(a) /D=0 (b) I/D=1.0 (o) I/D=3.0
1 1 1
yD 0 < D 0 =———"~ yD 0 ;
-1 -1 -1
-1 0 1 -1 0 1
0 0 0 T
5 5 5
10 1 10 10
z/D z/D z/D
15 1 15 15
20 1 20 20
25 1 25 25
0 1 O 0 1
x/D x/D x/D

Figure 2. Trajectories of falling spheres with different filament lengths //D: (a) O (plain sphere), (b) 1.0,
and (¢) 3.0. Here, ps/py =1.06 and I* =0.967, as for all figures and the table in §§ 3.1-3.3. The upper and
lower panels are top and side views, respectively, and the z-axis aligns with the gravitational direction. See
supplementary movie 1.

measurement, the sphere was rotated by a predetermined angle while its centre was
fixed. The measured angular difference between the initial and final orientations was then
compared with this predetermined angle. Small errors between the predetermined and
measured angles confirm that the orientation measurement method used in this study is
reliable for analysing the sphere’s rotational dynamics. Detailed procedure and validation
of the orientation measurement are explained in Appendix A.

3. Results and discussion
3.1. Characteristics of zigzag trajectory

When a filament is attached to the upper side of a sphere falling in a quiescent fluid,
the moment of inertia of the model increases, and its centre of mass shifts upwards from
the geometric centre of the sphere alone. These altered properties of the sphere induce
different hydrodynamic interactions between the sphere and fluid compared with those of
a plain sphere with no filament, resulting in distinct falling motions. In this subsection,
we analyse the effects of the rear-side filament on the translational dynamics of the falling
sphere. The filament length /, which is made dimensionless using the sphere diameter D,
is the major parameter in this study, and the sphere exhibits distinct trajectories depending
on //D (see figure 2 and supplementary movie 1). To focus on the effects of //D, the
density ratio of the sphere to the fluid is fixed at ps /0 ¢ = 1.06 for all experimental results
in §§ 3.1-3.3, regardless of the filament length; the corresponding dimensionless moment
of inertia I™* of the sphere is constant at 0.967.

The falling mode of a plain sphere is determined by the Reynolds number Re =v,D /v
and the density ratio ps/pf, where v, is the average vertical velocity of the sphere
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Figure 3. (a) Description of 2-D trajectory plane (blue) and length parameters to represent zigzag trajectory.
The upper inset shows the top view of the trajectory. (b) Degree of zigzag motion w*, with respect to //D. The
error bar represents the standard deviation from the mean for each measurement point.

(Horowitz & Williamson 2010). For our plain sphere, Re =2.71 x 103 and p,/p r=1.06.
According to the previous study (Horowitz & Williamson 2010), these values of Re
and p;/ps correspond to the region where the sphere falls vertically. In figure 2(a), the
falling trajectory of the plain sphere (//D = 0) is predominantly rectilinear, with a slight
horizontal deviation; the scale of the z-axis differs from that of the other axes in the figure.
The maximum horizontal distance between any two points projected onto the xy-plane
is 0.77D, which is sufficiently small compared with the vertical travel distance, thus the
motion can be classified as vertical falling. The fluid domain depicted in figure 2 is far from
the release point controlled by the syringe, so the trajectory does not include the initial
transient phase immediately after release; z/D = 0 in the figure is located 900 mm below
the syringe tip. For our plain sphere, Re generally belongs to the intermediate regime
between laminar and turbulent flows, and the minor horizontal displacement in figure 2(a)
might be induced by flow instability around the sphere. However, the amplitude of the
horizontal displacement is so small that the trajectory of our plain sphere can be considered
to be vertical. Although the Re values of the models in this section range from 2.31 x 10°
to 2.71 x 103, the falling sphere exhibits a distinct zigzag motion for an intermediate
filament length [/ D = 1.0, instead of the almost rectilinear motion observed for [/D =0
(figure 2b). This zigzag trajectory is not completely within a 2-D plane. In other words, the
sphere with the zigzag motion moves periodically in both the major direction of maximum
horizontal displacement and the minor direction normal to the major direction (upper panel
of figure 2b).

To quantify the degree of zigzag motion, a 2-D trajectory plane is first defined, on which
the horizontal amplitude of the zigzag motion is maximum along the direction parallel
to the plane; see the blue plane in figure 3(a). The 2-D trajectory plane is constructed
by fitting all positions of the trajectory onto the plane using the least squares method.
During the zigzag motion, the sphere periodically reaches peak positions at which the
horizontal movement along the major direction reverses. The horizontal displacement
between two successive peak positions along the direction parallel to the trajectory
plane is denoted as w (figure 3a). The horizontal displacement in the minor direction
has a similar magnitude, regardless of the filament length. The filament length has a
pronounced effect on the horizontal displacement in the major direction. Therefore, only
the horizontal displacement along the major direction is considered for the degree of
zigzag motion. The trajectory height A is the distance between two successive peak
positions along the direction perpendicular to the direction defining w, and parallel to the
trajectory plane (figure 3a), indicating how quickly the direction of the trajectory changes.
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Figure 4. (a) Falling time 7/1, (b) trajectory length L/Lg, and (c) average tangential velocity v;/v; o with
respect to [/ D.

These two parameters are the basic parameters to quantify the zigzag motion. The average
horizontal displacement in the major direction, wgyg, is made dimensionless using the
average trajectory height hgye: W* = Wayg/ havg. Here, wyyg and hyy, are the averages
of w and h, respectively, calculated over multiple periods within a single experimental
trial. Rather than using wgyg and hqy, separately, we present the zigzag motion using a
single dimensionless parameter w*, which effectively characterises the intensity of zigzag
motion by quantifying the sphere’s horizontal displacement relative to the distance over
which the sphere completes half a cycle of the zigzag motion.

For small I/D (typically < 0.4), w* is close to zero, which indicates that the sphere
exhibits almost no zigzag motion (figure 3b). However, when [/D exceeds 0.4, w*
increases remarkably until //D = 0.8 with the emergence of a distinct zigzag motion.
In figure 3(b), the spread of measured values is represented by an error bar, which
indicates the standard deviation above and below the mean; throughout this study, all
error bars denote the standard deviation from the mean at each measurement point. The
large standard deviation of the experimental results for //D = 0.6 signifies a transition
regime from non-zigzag to zigzag motion. In this regime, both the zigzag and non-zigzag
motions are observed in the experimental trials. As [/ D increases from 0.8, the zigzag
motion becomes weaker, with a smaller value of w*. For the sphere with a long filament
(I/D =~ 3.0), the zigzag path almost disappears, as depicted in figure 2(c). Interestingly,
Wqyg Temains nearly constant for //D =0.6 and 1.2, with wgye/D =2.43 and 2.44,
respectively. Despite these similar wgyg/D values, w* for [/ D = 0.6 is much smaller than
that for // D = 1.2 due to the greater average trajectory height 44,,, which exemplifies that
Wavg/ D alone does not successfully quantify the degree of zigzag motion, and w* should
be employed as a primary parameter.

Because the filament displaces the sphere horizontally, it also affects the vertical falling
speed of the sphere. Here, the falling time ¢ required for the sphere to move from z/D =0
to z/D =26.9 is made dimensionless using the falling time of the plain sphere, #; the
z-axis is positive downwards, and hereafter the subscript O denotes the result of the plain
sphere (/D =0). All experimental data obtained in this study are measured between
z/D =0 and z/D =26.9 (top and bottom of the 3-D trajectory domain, respectively).
The value of ¢/#y is greater than unity for all spheres with a filament, which means that
when a filament of any length is attached, the sphere takes a longer time to fall a certain
vertical distance than the plain sphere (figure 4a). As [/ D increases from 0 to 0.8, 7/1
increases, reaching a plateau near #/ty = 1.2 within the range [/ D = 0.8—1.4. Beyond this
range, t/ty decreases with increasing [/D. The trend of w* versus [/D in figure 3(b) is
similar to that of #/fy. The falling time associated with a strong zigzag motion tends to be
greater than that with a weak zigzag motion.

When the sphere follows the zigzag trajectory, the total distance travelled by the sphere
(i.e. trajectory length) increases from the vertical falling distance, which contributes to
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the prolongation of the falling time. In addition to the extension of the trajectory length,
the filament changes the tangential velocity of the sphere along the trajectory, which also
affects the falling time. The trajectory length L and average tangential velocity v; along
the trajectory between z/D =0 and z/D = 26.9 are computed to examine their effects on
the falling time. The trajectory length divided by that of the plain sphere, L /L, exhibits
a correlation with ¢/f9: L/Lo grows from [/D =0 to [/D = 0.8, and thereafter declines
from /D =0.8 to /D = 3.0 (figure 4b). That is, the extended trajectory length owing to
the filament contributes to the prolonged falling time.

In contrast to the trajectory length, the ratio of the average tangential velocity to that
of the plain sphere, v;/v; 0, exhibits the inverse trend to that of ¢/#y (figure 4c). The
upper bar denotes the time-averaged value of the results obtained during the experimental
trial. The minimum value of v;/v; o reaches 0.86 near //D = 0.8 and 1.4, and the ratio
approaches unity almost monotonically as //D decreases below 0.8 or increases beyond
1.4. This result indicates that the attachment of a filament induces the falling dynamics
that differ from those expected based on previous investigations on the effects of rear-side
appendages. For instance, previous studies focused primarily on the role of appendages on
drag reduction for fixed bluff bodies in 2-D configurations (Roshko 1955; Apelt et al. 1973;
Kwon & Choi 1996; Anderson & Szewczyk 1997; Qiu et al. 2014). If the same mechanism
of these appendages was applicable to our experimental model, then one would expect an
increase in tangential velocity because of drag reduction. However, this study reveals an
unexpected result. The 2-D appendages in the previous studies split the wake of the fixed
bluff body, thereby reducing the drag coefficient. By contrast, our sphere is free to move,
and the filament does not split the wake in the same manner due to its small cross-sectional
area relative to the sphere’s wake. Thus the mechanism by which the filament-shaped
appendage affects the freely falling sphere is fundamentally different from how a 2-D
appendage influences a fixed bluff body. Indeed, for all filament lengths, the tangential
velocity of the sphere with the filament is lower than that of the plain sphere. Furthermore,
the reduction in v; is pronounced when the zigzag pattern becomes dominant with greater
w* (figure 3b).

The attachment of a filament to the sphere results in an extended trajectory and slower
movement, leading to prolonged falling time compared to the plain sphere. While changes
in both the trajectory length and tangential velocity affect the falling time, the effect of
reducing the tangential velocity is more significant than that of elongating the trajectory
length. For example, v; decreases by a maximum of 14 % from v; o, while L increases by
a maximum of 5% from L, according to figures 4(b) and 4(c). To elaborate the trend of
the tangential velocity along the zigzag path, the rotational motion of the sphere and its
coupling with the translational motion are discussed in § 3.2.

3.2. Mechanism of sphere rotation

The rotational dynamics of the sphere with a filament is now analysed in terms of the
angular velocity of the sphere and the orientation of the filament. To represent the angular
velocity as a single parameter, instead of expressing it with three Cartesian components,
the angular velocity vector of the sphere, w, is obtained from the axis—angle notation
(Zimmermann et al. 2011; Mathai et al. 2016). During the falling process, the rotation of
the sphere exhibiting a zigzag translational motion is mostly confined in two opposing
directions that share a single axis, which are depicted as red and blue arrows on the top
sphere of figure 5(a). This rotation axis is normal to the 2-D trajectory plane described
in §3.1. The unit normal vector of the trajectory plane, n, is defined as the vector
perpendicular to this plane with a positive x-component in the global coordinate system.

1010 A43-8


https://doi.org/10.1017/jfm.2025.271

https://doi.org/10.1017/jfm.2025.271 Published online by Cambridge University Press

Journal of Fluid Mechanics

(b)
1
3
30
s
-1
0 0.5 1.0
t/1o

Figure 5. (a) Sign convention of angular velocity w and definition of filament angle 6. (b) Inner product of
unit angular velocity vector ®/|@| and unit normal vector of the trajectory plane, n, for [/D = 1.0.

As a representative result, the inner product of the unit angular velocity vector ®/|®|
and the unit normal vector n is presented in figure 5(b) for the case of [/ D = 1.0, which
undergoes a strong zigzag motion. The value of n - (w/|w|) is close to either 1 or —1,
indicating that the rotation axis of the sphere is almost aligned with the normal vector of
the trajectory plane during the fall. In contrast to cases with a distinct zigzag motion, the
cases with a subtle zigzag motion have weaker alignment, thus the transition of n - (®/|®|)
between 1 and —1 occurs over a longer time, resulting in a smoother plot.

Considering the sign of the rotation direction, the angular velocity of the sphere, w, is
defined as

w=sgn(w-n) ||, (3.1

where sgn is the signum function. To characterise the behaviour of the filament with
respect to the sphere motion, the filament angle 6 is introduced as the angle between
—v; (the negative value of the tangential velocity vector along the trajectory) and e r;; (the
vector from the sphere centre to the filament), as shown in figure 5(a):

6 =sgn [{esi x (—vy)}-n]|0|. (3.2)

In this study, w and 6 represent fundamentally different quantities, and « should not be
interpreted as the time derivative of 6. This distinction arises because the filament deviates
from the trajectory plane, thus e 7;; is not parallel to this plane.

The time series of the filament angle 6 and the sphere angular velocity ratio w /lwo|
for I/D =1.0 are presented in figures 6(a) and 6(b), respectively. Here, |wg| is the
time-averaged magnitude of the plain sphere’s angular velocity between z/D =0 and
z/D =26.9. For a falling plain sphere of the same density and Reynolds number as
our model, two vortex rings appear in the wake during one period of wake formation
(Horowitz & Williamson 2010). In the present experiment, the plain sphere exhibits slight
rotation due to interaction with the unsteady wake, having non-zero |wo|. Despite its small
magnitude, |wp| is used as the denominator in the angular velocity ratio to express the
magnitude of the angular velocity of the sphere with a filament relative to that of the
plain sphere. For five representative instants during the fall (red dots in the figures),
their corresponding positions are marked along the 3-D falling trajectory in figure 6(c).
Positions 2 and 4 are the peak positions at which the horizontal displacement of the sphere
attains a local maximum. Positions 1, 3 and 5 are determined as the locations that make
the vertical distances between neighbouring positions equal.

Although w is not the time derivative of 6 by definition (as mentioned above), their time
series in figures 6(a) and 6(b) show some correlation. Specifically, w approaches zero and
changes its sign when 6 reaches its local maximum or minimum value, and 6 approaches
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Figure 6. Time histories of (@) filament angle 6 and (b) sphere angular velocity w/|wo| for //D =1.0.
(c) The 3-D trajectory corresponding to (a) and (). The insets (c) depict the orientation of the filament at
each position represented by the red dots.

zero and changes its sign when w reaches its local extreme value. This is because the
rotation axis of the sphere almost aligns with n in this case. As explained in § 3.1, the
translational motion of the sphere is dominant in the major direction over the minor
direction. The alignment between the rotation axis and the normal vector of the trajectory
plane constructed based on the translational motion suggests that the translational motion
of the sphere is strongly coupled with its rotational motion. Pronounced alignment is
observed in cases with a strong zigzag motion (e.g. //D = 1.0 in figure 6). In contrast, for
cases with a weak or negligible zigzag motion, no clear correlation is observed between 6
and w.

The relationship between the translational and rotational motions can also be identified
from the degree of zigzag motion and the angular velocity of the sphere. To reveal the
effects of the filament length on the rotational dynamics, the magnitude of the sphere
angular velocity, |w| averaged between z/D =0 and z/D = 26.9, with respect to [/ D is
shown in figure 7(a). All spheres with a filament rotate faster than the plain sphere; |w|
increases from [/D =0 to [/D = 0.8, then decreases as [/D increases beyond 0.8. The
trend of |w] is similar to that of w* in figure 3(b), indicating that the enhanced rotation
of the sphere is correlated with the strong zigzag motion. In contrast, the maximum
magnitude of the filament angle, |0,,,4, exhibits a similar trend to |w| for//D > 0.8, but a
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Figure 7. (a) Average magnitude of sphere angular velocity |w|/]wp|. (b) Maximum magnitude of filament
angle 0|4 for different filament lengths.
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Figure 8. (a) Schematic illustrating a wake region (grey) and the components of forces and torques acting on
the model. The reference frame is fixed with the sphere. Time histories of sphere angular velocity w (solid line)
and lift force Fy (dashed line) for () [/D =1.0 and (c) /D =2.0.

different trend for // D < 0.8 (figure 7b). For [/ D > 0.8, the sphere with a longer filament
rotates with a smaller amplitude of the filament angle. However, when [/ D is less than 0.8,
|6|max exhibits significant scatter, despite having large values. A large standard deviation
is also observed for |w| in the range [/ D = 0.2-0.6 (figure 7a). In this range, the filament
is not sufficiently long to affect the rotational behaviour of the sphere in a deterministic
manner, but flow instability induced by the short filament may be critical.

During the fall, a wake region is generated behind the sphere, and the force exerted on
the filament is affected by this wake. Lacis et al. (2014) assumed that the wake of a bluff
body was a simple elliptical region for a fixed but rotatable 2-D cylinder with a rear-side
filament in a uniform flow, and showed that the estimated fluid force acting on the filament
was in good agreement with experimental results. Lacis et al. (2014, 2017) applied this
assumption to a falling sphere with an elliptic plate. Similarly, we introduce a simplified
wake with an elliptic shape (grey region in figure 8a) to account for the rotation mechanism
of a sphere with a filament in terms of the centre of mass and the relative position of the
filament to the wake. In addition to simplifying the wake shape, we also choose the size
of the wake region arbitrarily to illustrate the relative position of the filament to the wake
as the sphere rotates. The attachment of the filament means that the centre of mass of
the entire model (® symbol in figure 8a) is above the geometric centre of the sphere; the
position of the centre of mass is exaggerated in the figure for clarity. To quantify the shift
in the centre of mass by the attachment of the filament, the offset distance y is defined
as the distance between the geometric centre of the sphere and the centre of mass of the
entire model. Although the value of y is 0.2 % of D for /[/D = 1.0 (the case exhibiting a
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strong zigzag motion), it is sufficient to affect the rotational behaviour of the sphere (Will
& Krug 2021b).

With the rotation of the sphere, a lift force F7 is generated in the direction normal to the
tangential velocity v; (figure 8a); in the figure, the reference frame is fixed with the sphere,
and v; is directed towards the sphere. The hydrodynamic force exerted on the filament is
negligible compared with that on the sphere because the filament has significantly smaller
surface area and volume. Therefore, only the force acting on the sphere is considered in this
study. In analysing the force balance of the sphere perpendicular to its tangential velocity
vector vy, we define the lift force vector F . This vector encompasses all fluid-dynamic
forces exerted on the sphere normal to v, including unsteady effects but excluding the
hydrostatic (buoyancy) force. It can be acquired from the experimental data as follows:

F L oap3® Loap’ |9 (Pr (3.3)
= —0.7 _ = — 0T —_— _— = . .
L 6,05 dr g.net ) 6/05 ar 05 8 )

The subscript n denotes the component in the direction normal to v, and F ., is the net
gravitational force. In this study, Fr is determined by

Fp=sgn[{Fp x (—=v;)}-n] |Fp]|. (3.4)

In (3.3) and (3.4), v; is the tangential velocity of the sphere in the global reference frame.

Figures 8(b) and 8(c) present the angular velocity ratio w/|wg| and lift force ratio
Fr/|FL ol for /D =1.0 and 2.0, respectively. As shown in figure 2(a), the plain sphere
exhibits slight horizontal displacements, and the time-averaged magnitude of the plain
sphere’s lift force, |Fr o|, is non-zero, albeit small. The angular velocity @ exhibits a
similar temporal profile and period to the lift force F; with a slight phase delay, implying
that the rotation of the sphere is responsible for generating the lift force. This result is in
agreement with the finding of Will & Krug (20215), who reported that the angular velocity
and the lift force are coupled for a plain falling sphere with significant angular velocity
because of the shifted centre of mass. As the zigzag motion of the sphere becomes weaker
(e.g. [/ D =2.0), the magnitudes of @ and Fy, decrease. Although not presented here, the
correlation between  and Fr, is almost indistinguishable for [/D < 0.4 and //D =~ 3.0,
where the degree of zigzag motion is very small (figure 3b).

Figure 8(a) describes the fluid-dynamic forces and torques with respect to the centre of
mass, allowing us to explain the rotational mechanism of the model in more detail. The
drag force Fp acting on the sphere is parallel to the tangential velocity v, and generates
torque Tp in the direction that causes the filament to move away from the centreline, which
is defined as the line parallel to the tangential velocity and passing through the sphere
centre (vertical dashed line in figure 8a). By contrast, the flow outside the wake region
generates a fluid force on the filament, resulting in torque 7,y in the direction towards
the centreline. The portion of the filament outside the wake is illustrated as the blue line
in figure 8(a). The magnitude of the flow velocity (in the reference frame fixed with the
sphere) outside the wake is much greater than that inside the wake, and the area outside
the wake is located farther away from the centre of mass than the area inside the wake.
Therefore, we focus on the torque generated by the flow outside the wake, which greatly
exceeds the torque produced by the flow inside the wake.

As a sphere rotates in a certain direction, a lift force F; normal to the tangential velocity
is generated on the sphere. According to Will & Krug (2021b), in the case of a falling
plain sphere where the centre of mass is positioned below its geometric centre, the torque
induced by the lift force opposes the rotating direction of the sphere and suppresses its
rotation. Consequently, no zigzag falling trajectory can be identified. By contrast, for
a rising plain sphere with the centre of mass below the geometric centre, the external
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flow in the reference frame fixed with the sphere acts in the opposite direction, so the
lift-induced torque is generated in the rotating direction, enhancing the sphere’s rotation,
which eventually leads to a zigzag trajectory. That is, the centre of mass and the direction
of external flow are important in determining the rotational dynamics and resulting
trajectory of the plain sphere. For our model, where the centre of mass is positioned
above the geometric centre of the sphere because of the filament, a lift-induced torque
Ty is generated in the same direction as the rotation of the sphere, further strengthening
its rotation (figure 8a).

The sphere with a strong zigzag motion undergoes periodic rotational oscillations, as
demonstrated in figure 6 and supplementary movie 1(b). During the fall, the relative
position of the filament to the wake region is shifted continuously by the rotation
of the sphere. The positions of the filament with respect to the wake region were
determined using dye visualisation experiments with fluorescein disodium salt. The
visualised wake and filament were filmed by a high-speed camera (FASTCAM MINI-
UXS50, Photron, Inc.). The experimental trials were repeated to make the direction of
maximum horizontal displacement nearly parallel to the field of view of the camera.
Figure 9(a) and supplementary movie 2 present visualised wakes in sequence for
[/ D = 1.0, which produces a strong zigzag motion. In addition, the simplified schematics
of the rotation process in the reference frame fixed with the sphere are illustrated in
figure 9(b). The schematics are represented in two dimensions because the sphere rotation
is dominant with respect to the axis normal to the trajectory plane for [/ D = 1.0, and the
incoming flow velocity v; is expressed consistently in the upward direction for ease of
comparison between the schematics.

A large portion of the filament is inside the wake when the filament is near the middle
of the wake, i.e. when |0]| is small (figure 9ai,bi). In this phase, the magnitudes of the
angular velocity w and the lift force Fy, are significant according to figures 8(b) and 8(c).
The lift-induced torque 77, acts in the same direction as the drag-induced torque Tp, and
the counter-torque produced by the external flow, T,,;, is small. As the sphere rotates with
increasing 6, the area of the filament exposed to the flow outside the wake becomes greater,
leading to an increase in T,y;. Eventually, 6 reaches its maximum magnitude while @ and
Fp almost vanish (figure 9aii,bii). Thereafter, the sphere begins to rotate in the opposite
direction because T, is still large, generating F, in the opposite direction from the phase
in figure 9(ai), and Ty aligns with the new rotation direction (figure 9aiii,biii); Tp does
not change its direction before the filament returns to the centreline. As the filament moves
to the other half of the wake region, reversing the sign of 6, the directions of the lift force
and torques are symmetric to those in the preceding half of the rotation process, and the
sphere exhibits symmetric rotational behaviour (figure 9aiv—avi,biv—bvi).

As the filament extends from //D = 1.0, the rotational motion of the sphere weakens
as the average sphere angular velocity and maximum filament angle decrease (figure 7).
Even when the filament is positioned near the middle of the wake, the area of the
filament outside the wake becomes significant (figure 10). Consequently, the greater T,
throughout the rotation process yields smaller values of |w| and |0],,,4x. Moreover, when
[/ D increases to 3.0, the moment of inertia of the model increases by 28.8 % from that
of /D = 1.0, which plays a role in reducing the angular velocity. The less-pronounced
rotation reduces the lift force acting on the sphere, leading to a weak zigzag motion.

Regarding shorter filaments (//D < 0.8), with which the degree of zigzag motion is
very small (figure 3b), the filament does not cross to the other half of the wake region,
in contrast to cases where the model exhibits symmetric rotational behaviour with a
strong zigzag motion (e.g. [/ D = 1.0). Instead, the filament maintains a large 6 within
the original half of the wake during the rotation process (figure 11). This asymmetric
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Figure 9. (a) Sequential snapshots of wake visualisation for //D =1.0 with strong zigzag motion.
(b) Corresponding simplified schematics illustrating the rotation process. For (a), see supplementary
movie 2.

rotational behaviour results in a smaller |w| compared with that for //D = 1.0 (figure 7a).
In cases with symmetric rotational behaviour, the angular velocity of the sphere reaches its
peak at approximately the time when the filament crosses the centreline (6 = 0) by virtue
of T, being exerted in the prior half of the wake (figure 6a,b). However, for shorter
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Figure 10. (a) Snapshots of wake visualisation for a long filament (I/ D = 2.0). (b) Corresponding simplified
schematics of the rotation process.

(@) (b)

Ut Ut
Figure 11. Simplified schematics of the rotation process for a short filament.

filaments, T,,; is minor, and the counter-torque, which is produced by the recirculating
wake flow moving towards the rear side of the sphere in the middle of the wake region
(grey arrows in figure 11), causes the filament to remain in one half of the wake, having a
smaller |w|. Thus the zigzag motion, which basically requires symmetric rotation crossing
the centreline, almost disappears.

Next, we evaluate the drag and lift coefficients of the sphere, and determine their trends
in terms of the filament length. In previous studies of a falling or rising plain sphere, the
drag coefficient of the sphere is defined based on its vertical velocity: Cp ; =4D |ps/pf —
11g/3 EZZ) (Jenny et al. 2004; Horowitz & Williamson 2010; Will & Krug 2021a,b). In this
study, to include the effects of the tangential velocity directly, the drag and lift coefficients
Cp and Cy, are calculated using the tangential velocity of the sphere. The drag force vector
F p, which is the total fluid-dynamic force exerted on the sphere in the direction opposite
to the tangential velocity vector in the global reference frame, is calculated based on the
experimental data. The force balance equation is employed in a manner similar to the lift
force Fy in (3.3):

1 dv 1 dv
Fp= <__,OSTED3—t +Fg,net> = _,OsTfD3 |:——t +( - /O_f g] . (3.5

6 dr ; 6 dr Os p
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Figure 12. (a) Average drag coefficient Cp and (b) average lift coefficient C; with respect to [/D.

The subscript ¢ denotes the component parallel to v,. Then Cp and C, are defined in the
tangential and normal directions of the trajectory, respectively, and given as

p|Psdv (1 _ &) g
_ 2Fpl pypdr s )%, 60
prvim(D/2) 3v;
4D‘&%+<1—&)g
_ 2Fy py dt er) 1, (3.6b)
L= 2 2 2 ) )
prvim(D/2) 3v;

Because Cp and Cy, are derived from Fp and F, respectively, these coefficients also
include the effects of unsteady fluid dynamics, rather than reflecting only quasi-steady
forces.

When a sphere with a centre fixed in space is placed in a uniform flow, its rotation with
respect to an axis transverse to the flow affects the wake structure, resulting in greater drag
and lift compared with a fixed sphere without rotation (Giacobello et al. 2009; Kim 2009;
Poon et al. 2014). The sphere’s rotation deflects the wake in a direction determined by
the cross-product of the angular velocity vector and the free-stream vector. As the angular
velocity of the sphere increases, the drag and lift coefficients also increase due to changes
in the flow structure. Similar trends are observed in our model. In figure 12, both Cp and
Cp averaged over the trajectory length between z/D =0 and z/D =26.9 show similar
trends to the average magnitude of angular velocity |wl/]ewo]| presented in figure 7(a). Both
Cp and Cy, increase in accordance with an increase in the angular velocity. As discussed
in § 3.1, the tangential velocity of a falling sphere with a filament is lower than that of a
plain sphere, and its trajectory is longer because of the horizontal displacement associated
with the zigzag motion. In the presence of the filament, Cp and Cp are enhanced owing
to the rotation of the sphere, which eventually leads to the reduced tangential velocity and
elongated trajectory, respectively.

3.3. Effects of shifted centre of mass and hydrodynamic interaction of a filament

The attachment of a filament to the sphere enhances rotational dynamics through two
mechanisms: shift in the centre of mass for the entire model, and hydrodynamic interaction
between the filament and surrounding fluid. In this subsection, we examine quantitatively
how each mechanism influences the falling dynamics by employing two additional models
(figure 13). In the experimental model discussed in §§ 3.1 and 3.2, the sphere’s centre
of mass coincides with its geometric centre when no filament is attached. However, the
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Figure 13. Schematics of the models with (a) I/D=1.0and y/D =0.2%, (b) /D =1.0 and y/D =0, and
(¢)l/D=0and y/D =0.2 %. The geometric centre of the sphere and the centre of mass of the entire model
are denoted by e and ®, respectively.

attachment of a filament shifts the centre of mass of the entire model above the geometric
centre of the sphere (figure 13a). For example, with a filament of length ratio [/ D = 1.0,
the dimensionless offset distance y /D is 0.2 %.

To separate the effects of the shifted centre of mass and the hydrodynamic interaction of
the filament, we designed an additional experimental model, in which the centre of mass
of the entire model coincides with the geometric centre of the sphere when a filament
is attached (figure 13b). To achieve zero offset distance between the centre of mass and
the geometric centre (y/D = 0), the centre of mass of a sphere is positioned below the
geometric centre by modifying its internal configuration. The offset distance of this sphere
was calculated to ensure that the magnitude of this initial downward offset precisely
matched the upward shift that would occur upon filament attachment. As a result, when
the filament is attached to this sphere, the centre of mass of the entire model coincides
with the geometric centre of the sphere.

Experimental results of the models with and without a shifted centre of mass are
compared, focusing on a fixed filament length ratio //D = 1.0, where a strong zigzag
motion is observed. For comparison, the results of the model without a shifted centre
of mass (y/D =0, figure 13b) are made dimensionless using those of the model with a
shifted centre of mass (y/D =0.2 %, figure 13a), which is discussed in §§ 3.1 and 3.2
(table 1). In the table, the parameters denoted with subscript 1 refer to those of the
model with /[/D =1.0 and y/D =0.2 %. For the model with y/D =0, zigzag motion
becomes weaker than in the model with y/D = 0.2 %. Specifically, when y /D changes
from 0.2 % to 0, the degree of zigzag motion decreases, having w*/w} = 0.73. In addition
to the weakened zigzag motion, the lift force generated by the sphere merely affects the
rotation of the sphere due to zero offset distance. Consequently, the sphere rotation is
mitigated, as indicated by the average magnitude ratio of angular velocity |w|/|w;| = 0.76
and the maximum filament angle ratio |0|,,4x/16|max,1 = 0.49: slower angular velocity
and a narrower range of rotation. The reduced rotational dynamics also influences the
translational dynamics, albeit in a minor way. With the change in /D from 0.2 % to
0, the ratios of the average tangential velocity, trajectory length and falling time are
Vs /v;1=1.04, L/L1 =0.99 and ¢t /#; = 0.95, respectively.

To examine the effects of the hydrodynamic interaction of the filament, we manufactured
another experimental model (figure 13c), a plain sphere with the same offset distance
(y/D =0.2%) as the model with [/D =1.0 in figure 13(a), by adjusting the internal
configuration of the sphere. The results for the plain sphere with a shifted centre of mass
(/D =0, y/D =0.2 %) are presented in dimensionless form, using those of the model
with [/D =1.0 and y/D = 0.2 % (table 1). When the model is influenced solely by the
shifted centre of mass without the hydrodynamic interaction of the filament, the zigzag

1010 A43-17


https://doi.org/10.1017/jfm.2025.271

https://doi.org/10.1017/jfm.2025.271 Published online by Cambridge University Press

S. Choi, M. Lee, C. Roh and D. Kim

Experimental model u)*/wik m/m |9|max/‘9|max,l 1_)t/ﬁl‘,l L/Ll t/tl
i) I!/D=1.0andy/D=0 0.73 0.76 0.49 1.04 099 095
@) [//D=0andy/D=0.2% 0.19 0.29 - 1.19 0.96 0.81

Table 1. Degree of zigzag motion w*, average magnitude of sphere angular velocity |w|, maximum magnitude
of filament angle |6|,,4x, average tangential velocity v;, trajectory length L, and falling time ¢ for two models
with different configurations: (i) /[/D=1.0 and y/D =0; (ii) /[/D =0 and y/D =0.2 %. The models of
(i) and (ii) correspond to those in figures 13(b) and 13(c), respectively. The subscript 1 denotes the result
of the model with //D =1.0 and y/D = 0.2 % in figure 13(a).

motion becomes weaker, and the rotational dynamics is significantly reduced compared
to the model experiencing both effects. Notably, the mitigation of the zigzag motion
and the reduction in the rotational dynamics is more pronounced than the model with
l/D=1.0 and y/D =0 corresponding to figure 13(b). For [/D =0 and y/D =0.2 %,
w*/w} =0.19 and |w|/|w;| = 0.29, whereas these values are significantly higher at 0.73
and 0.76, respectively, for [/D = 1.0 and y/D = 0. Consequently, in the absence of the
filament, changes in v;, L and ¢ are greater: v;/v;1, L/L and t/t; for [/D =0 and
y/D =0.2 % are 1.19, 0.96 and 0.81, respectively, while they are 1.04, 0.99 and 0.95 for
[/D=1.0 and y/D =0. In summary, these results hint that for the model considered
in §§ 3.1 and 3.2, the hydrodynamic interaction of the filament has a more substantial
influence on the sphere’s falling dynamics than the shifted centre of mass, under the
condition of a strong zigzag motion (e.g. [/ D = 1.0).

3.4. Change in sphere density

The effects of the filament length on the translational and rotational dynamics of the sphere
have been discussed in the preceding subsections, with the sphere density remaining
constant at ps/p s = 1.06. As the sphere becomes heavier, it is expected that the tangential
velocity of the model will increase, affecting its rotational motion. In this subsection,
we compare the falling dynamics of the model for higher density ratios. Preliminary
experiments with spheres lighter than p;/p s = 1.06 yielded significantly scattered results
due to their proximity to neutral buoyancy. Therefore, this section focuses on the effects
of increased sphere density. We first examine the dynamics of a sphere with a higher
density ratio pg/p = 1.12 with respect to filament length //D, and compare the results
with those for a sphere at ps/pr = 1.06. Additionally, to comprehensively understand the
effects of sphere density over a broader range, several cases with density ratios exceeding
ps/py = 1.12 are investigated while maintaining the filament length constant at//D = 1.0,
where a strong zigzag motion is observed. As stated in § 2, the dimensionless moment of
inertia I* (= I;/Ir) remains very similar between the spheres with different pg/p  values
(I* =~ 0.96), and the filament properties remain unchanged.

Regardless of sphere density, the centre of mass of the model is positioned above the
geometric centre of the sphere due to the attached filament. The rotational mechanism
described in § 3.2 also applies to the model with the greater density. Thus the model with
ps/pf = 1.12 exhibits a zigzag falling trajectory, similar to the model with p;/p s = 1.06.
For both density ratios, the degree of zigzag motion w* exhibits quite similar trends with
respect to [/ D (figure 14a). As the sphere density increases, its velocity also increases. In
the reference frame fixed to the sphere, the velocity of the flow surrounding the sphere
becomes greater for the heavier sphere. Consequently, the effects of T,,, are amplified,
resulting in greater magnitudes of the angular velocity and lift force. Because of the
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Figure 14. (a) Degree of zigzag motion w*, and (b) average magnitude of sphere angular velocity |w|/|wo],
for pg/pf =1.06 (black) and p;/ps =1.12 (blue). Here, I* =0.967 for ps/ps =1.06, and I* =0.959 for

ps/pr=1.12.
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Figure 15. (@) Trajectory length L /Ly, (b) average tangential velocity v, /v; o, and (c) falling time ¢/ 19, for
ps/py =1.06 (black) and ps /0 = 1.12 (blue).

enhanced lift force, the magnitudes of the horizontal displacement and the degree of zigzag
motion appear to be comparable between the two density ratios in the entire range of [/ D,
although the heavier sphere falls faster; strictly, w* for p;/py = 1.12 is slightly smaller
than that for py/p ¢ = 1.06 near [/ D = 1.0 with the strong zigzag motion.

For the heavier sphere, the centre of mass of the model is located closer to the geometric
centre of the sphere. This reduced offset distance annihilates the torques induced by the
shifted centre of mass. Figure 14(b) compares the average magnitude of the sphere’s
angular velocity || divided by that of the plain sphere |wo| with the same density for
the two cases. In this subsection, results denoted with subscript O refer to those of the
plain sphere with the same density as the sphere in the numerator of the dimensionless
quantities. Although the dimensional |w| of pg/pr=1.12 significantly exceeds that
of ps/pr=1.06 across all //D values, the dimensionless m/m of ps/pr=1.12
is less than that of p;/ps =1.06, indicating that the filament has less impact on the
rotational dynamics for the heavier sphere. For example, at /D = 1.0, |w|/lwo| = 3.7 for
ps/pf=1.12, while |w|/|wo| = 8.0 for ps/p s =1.06.

In addition to the rotational dynamics, the translational dynamics is less affected by
the filament in the case of the heavier sphere. Figures 15(a) and 15(b) present the
dimensionless trajectory length L/L( and average tangential velocity v, /v; o, respectively,
for different density ratios. Both L/Lq and v;/v; o exhibit similar trends with respect to
[/ D, regardless of the sphere density. The dimensional trajectory length L is similar for
both density ratios across the entire range of //D. However, the dimensionless L/Lg is
smaller for the sphere with p; /0 = 1.12. In terms of a dimensional quantity, the average
tangential velocity v, of the heavier sphere is significantly greater than that of the lighter
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Figure 16. (a) Degree of zigzag motion w*, (b) average magnitude of angular velocity |w|/]wo], () trajectory
length L/Ly, (d) average tangential velocity v;/v; 0, and (e) falling time ¢ /#y, with respect to ps/ps for the
spheres with //D = 1.0. Here, I* ~ 0.96 for all cases.

sphere for all //D. Moreover, the dimensionless v;/v;0 with p;/ps =1.12 exhibits a
greater magnitude than that of p; /oy = 1.06. The smaller L /L and greater v, /v, o reduce
the dimensionless falling time ¢/ for the heavier sphere (figure 15¢).

To further examine the effects of sphere density ratios greater than pg/pr=1.12,
the spheres with four different density ratios, pg/pf=1.18,1.24,1.30, 1.36, were
manufactured additionally by modifying the internal configurations of the spheres. Similar
to the aforementioned results between ps/pr =1.06 and p;/ps = 1.12, for the spheres
with ps/pr > 1.12, increasing density further reduces the influence of the filament on
the falling dynamics because the offset distance between the centre of mass of the
entire model and the geometric centre of the sphere becomes smaller. As the sphere
density increases, the zigzag motion gradually weakens, and w* decreases monotonically
(figure 16a). This reduction in the zigzag motion correlates with a decrease in |w|/|wo]
(figure 16b). Consequently, with increasing sphere density, the differences in translational
dynamics between a sphere with a filament and a plain sphere of the same density become
less pronounced. Specifically, both the dimensionless trajectory length L/Lg and the
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dimensionless average tangential velocity v;/v; o approach unity as the sphere density
increases (figures 16¢,d). This convergence leads to the shorter dimensionless falling
time 7/ty for the heavier sphere (figure 16¢). In summary, regarding the dimensionless
parameters, the rotational motion of the sphere with the higher density is less distinct
than for the lower-density sphere due to the smaller offset distance between the centre of
mass and the geometric centre. This change mitigates the effects of the filament on the
translational motion.

4. Concluding remarks

In this study, we have experimentally investigated the role of a filament-type appendage
on the falling dynamics of a sphere by varying the filament length and sphere density.
The sphere, which falls vertically in the absence of the filament, exhibits a distinctive
zigzag trajectory and periodic rotation when a filament is attached to its rear side. The
sphere falls more slowly as the degree of zigzag motion becomes greater because of the
extended path length and the reduction in tangential velocity. A strong zigzag motion is
accompanied by enhanced rotational dynamics. The rotation mechanism of the sphere
according to the filament length was determined in terms of the location of the centre of
mass and the relative position between the filament and the wake region. The coupling
between the translational and rotational dynamics of the sphere was identified through the
correlation between the angular velocity and the fluid force coefficients. As the sphere
density increases, the centre of mass shifts closer to the geometric centre of the sphere,
annihilating the effects of the filament on the falling dynamics.

Although experimental measurements of flow velocity are required in order to examine
the associated effects on fluid forces and torques, this would be challenging for a freely
falling sphere. Thus our analysis of the flow surrounding the sphere has been limited to
qualitative observations. Nevertheless, this study has identified the zigzag falling motion
that is rarely observed in plain spheres, and has revealed the rotational mechanism induced
by the interaction between the filament and the surrounding fluid, which is essential
in elucidating the complicated falling behaviours. Following this experimental study,
numerical simulations would permit the quantitative analysis of the distribution of the
flow surrounding a falling sphere. Regarding applications, by virtue of the zigzag motion
and increased falling time, a filament-type appendage may be adopted as a strategy for
enhancing the dispersion of bluff objects under the presence of external flows.

Supplementary movies. Supplementary movies are available at https://doi.org/10.1017/jfm.2025.271.
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Korea government (MSIT) (RS-2024-00355146).
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Appendix A. Procedure and validation of orientation measurement

The orientation measurement in this study follows the method described by Mathai et al.
(2016). In this method, the orientation of the sphere is determined by analysing the filmed
image of a pattern on the sphere’s surface. The measured orientation represents how the
sphere has rotated from a predetermined reference orientation. This rotation is expressed
using the axis—angle notation as ¢ = (ky, ky, k;, o), where (ky, ky, k;) is the direction of
the axis of rotation and « is the angle of rotation with respect to the axis. The reference
orientation is defined as g, = (1, 0, 0, 0).
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Figure 17. Schematic of perspective projection geometry for an objective plane and an image sensor. The ®
symbol represents the focal point of the camera.

When the position of the sphere in the captured image deviates from the image centre,
the measured orientation ¢ is slightly rotated due to perspective distortion. To correct
for this distortion and accurately calculate the orientation in the global reference frame,
q .ps» @ correction based on the method of Zimmermann (2012), was applied (figure 17).
Specifically, g is rotated by an angle & pe,sp, which is the angle between the vector from the
camera’s focal point to the centre of an objective plane and the vector from the focal point
to the sphere. The measured orientation ¢ is first converted into a rotation matrix R using
Rodrigues’ rotation formula. Next, the perspective distortion angle a5, is calculated
as Upersp = arctan(l persp /L focal), Where lpersp and [ ¢ocq) represent the distance from the
image centre to the sphere centre on an image sensor, and the focal length of the camera,
respectively. The corresponding rotation matrix R .., is constructed. For R .y, the
axis of rotation is defined as the vector parallel to the objective plane and perpendicular
to the line connecting the focal point to the sphere centre. To correct for the perspective
distortion, R is multiplied by the transpose of R p.sp, yielding Ryps = R;er SpR. Finally,
the orientation without perspective distortion, q 4., is then derived from R ;.

To validate the accuracy of the measured orientation angles, the sphere was rotated
by a predetermined angle A, and the measured angle difference between the initial
and final orientations of the sphere was compared with the predetermined angle. The
sphere with the pattern, which was fixed in translation but freely rotatable with respect to a
vertical axis, was rotated by A« = 10°, 20°, 30°, 40°, 50°, 60° from the initial random
orientation. The camera filmed the sphere before and after the rotation at 250 frames per
second for 0.4 s each, and the time-averaged initial and final orientations of the sphere, g;
and ¢q 5, were measured from the captured images. To calculate the angle difference, the
initial and final orientations, ¢; and g s, were first converted to rotation matrices R; and
R ¢, respectively, using the Rodrigues’ rotation formula. These rotational matrices were

then corrected as R; 455 and R g, 4p5. The measured angle difference Aoy, between g; ;¢
and ¢ 7,4, Was then obtained by calculating the matrix Rx = RI abs K f.abs- Finally, RA
was converted to the axis—angle notation g5 = (kax, kay, kaz, Adeyp), yielding Aaeyp,
where kay, kay and ka are the x-, y- and z-components of the axis of rotation from g;

t0 §q f.4ps- The values of Aw,y), are almost identical to those of the predetermined angle
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Figure 18. Measured angle difference Ac,,, between the initial and final orientations of the fixed but rotatable
sphere versus predetermined angle difference A .. The sphere rotates with respect to a vertical axis in the
validation experiment.

Aoy (figure 18), with maximum error less than 1°. This indicates that the method used
to measure the orientation of the sphere is sufficiently reliable for analysing the sphere’s
rotational dynamics.
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