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Direct numerical simulations are carried out to investigate the underlying mechanism
of the low-frequency unsteadiness of a transitional shock reflection with separation at
M =1.5. To clarify the nonlinear mechanisms, the incoming laminar boundary layer is
forced with two different arrangements of oblique unstable modes. Each wave arrangement
is given by a combination of two unstable waves such that their difference in frequency
falls in a low-frequency range corresponding to a Strouhal number (based on the length of
interaction) of 0.04. This deterministic forcing allows the introduction of nonlinearities,
and high-order statistical tools are used to identify the properties of quadratic couplings. It
is found that the low-frequency unsteadiness and the transition to turbulence are decoupled
problems. On the one hand, the unstable modes of the boundary layer interact nonlinearly
such that energy cascades to higher frequencies, initiating the turbulent cascade process,
and to lower frequencies. On the other hand, the low-frequency quadratic coupling of the
oblique modes is found to be responsible for low-frequency unsteadiness affecting the
separation point. The direction of the quadratic interactions is extracted and it is shown
that, in the presence of low-frequency unsteadiness, these interactions enter the separated
zone just before reattachment and travel both downstream and upstream, extending beyond
the separation point, hence feeding the low-frequency bubble response. In addition to the
two main arrangements of oblique modes, two other combinations are analysed, including
multiple oblique waves and streaks. Interestingly, their inclusion did not alter the low-
frequency unsteadiness phenomenon. Furthermore, the effect of the forcing difference
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frequency is examined and it is shown that the breathing phenomenon is sensitive to the
range of frequencies present in the system due to a low-pass filter effect.

Key words: boundary layer separation, compressible boundary layers, turbulent transition

1. Introduction

In high-speed flows the interaction between shock waves and the boundary layer
is a common phenomenon. This interaction, referred to in the literature as a
shock wave/boundary layer interaction (SBLI), can have significant effects on
aerothermodynamic loads and performance during high-speed flight and gas turbine
operation. In the case of transonic airfoils, the occurrence of self-sustained shock wave
oscillations, known as the buffet phenomenon (Lee 2001), adds further complexity.

For these reasons, SBLIs have been one of the most important topics of research
within the aeronautical scientific community over the past 70 years (Dolling 2001).
Among others, Délery et al. (1986), Smits & Dussauge (2006), Doerffer et al. (2010)
and Babinsky & Harvey (2011) represent the most notable reviews on this topic. Incident
normal shock, oblique shock reflection, compression ramps and transonic airfoils were,
and still are nowadays, typical geometries employed to explore this phenomenon.

Dolling (2001) reports that until the 1950s, SBLIs were commonly described as
relatively steady. Nowadays, it is now known that this description is incorrect, at least for
separated turbulent interactions. Quantitative measurements of turbulent SBLIs reported
a low-frequency unsteadiness of the separation shock (Dolling & Murphy 1983; Erengil
& Dolling 1991; Thomas, Putnam & Chu 1994). The two orders of magnitude separating
the characteristic frequency of the incoming boundary layer from the frequency of the
separation shock explain why the unsteadiness is classified as being low frequency, relative
to the higher characteristic frequency of the incoming turbulent boundary layer. The work
of Dupont, Haddad & Debieve (2006) noted that the rear part of the interaction for
an oblique reflected shock geometry also exhibits unsteadiness, which is in quasi-linear
dependence with the reflected shock motion. The low-frequency motion of the head shock,
coupled to the expansion and contraction of the separated flow, is referred to as a breathing
motion.

Whether discussing low-frequency unsteadiness or breathing motion, the necessity to
find a consensus on the magnitude of the low-frequency oscillations prompted a search
for temporal scaling. Erengil & Dolling (1991) used the interaction length L;,,, defined as
the distance between the average position of the reflected shock and the extrapolation to
the wall of the incident shock, and the upstream velocity U to scale the low-frequency
unsteadiness. Based on this scaling, it was found in different experiments (Dupont et al.
2006; Dussauge, Dupont & Debieve 2006; Ganapathisubramani, Clemens & Dolling
2009; Piponniau et al. 2009; Souverein et al. 2009) and numerical investigations (Pirozzoli
& Grasso 2006; Wu & Martin 2008; Touber & Sandham 2009; Priebe & Martin 2012)
that the low-frequency oscillations in turbulent SBLIs falls in the range of the Strouhal
number St = fL/Us =0.02—0.07, where f is the frequency associated with the low-
frequency motion and L and Uy, are as defined above. While the spatial and temporal
dynamics of the global organisation of the flow have been illustrated (Dupont et al. 2006),
and there is a clear comprehension of the qualitative mean flow organisation (Agostini
et al. 2012), several mechanisms, sometimes conflicting, have been proposed to describe
the mechanisms that govern the turbulent unsteady interaction.
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The unsteadiness of reflected shocks has been commonly linked to turbulent structures
within the incoming boundary layer (Erengil 1993). Early studies by Uenalmis &
Dolling (1994) identified a connection between small-scale shock motions and turbulence
fluctuations or velocity fluctuations in the boundary layer. Ganapathisubramani, Clemens
& Dolling (2007) later identified large-scale coherent structures, or superstructures, in
the upstream boundary layer as responsible for low-frequency shock motion. Numerical
simulations by Wu & Martin (2008) provided further insights, showing that the low-
momentum structures of the incoming boundary layer and the separation point have a
small correlation, indicating that the influence of the superstructures may be minimal.
Additionally, it was found that both the shock motion and the motion of the separation
point are correlated with the motion of the reattachment point, suggesting that the
downstream flow contributes to the low-frequency unsteadiness. Further research has
indicated a potential role for downstream mechanisms. Touber & Sandham (2009)
observed low-frequency unsteadiness even without upstream coherent structures, while
Priebe et al. (2016) linked shock motion to downstream Gortler-like vortices. Another
line of research has focused on the role of vortical structures emerging from the shear
layer. Dussauge et al. (2006) suggested that the source of excitation of the shock motion
can be attributed to eddies in the separated zone. Pirozzoli & Grasso (2006) found that
eddies in the separated zone interact with the shock, producing acoustic waves that
propagate upstream and induce a low-frequency oscillation in the shock, reminiscent
of acoustic resonance seen in cavity flows. Piponniau et al. (2009) proposed a model
that relates the mass recharge within the separated bubble to the flapping dynamics
occurring near the reattachment point. The main parameter controlling the low-frequency
shock motions is the spreading rate of the compressible mixing layer. Recent works,
such as Chandola & Estruch-Samper (2017) and Jenquin & Narayanaswamy (2023),
support the role of mass imbalance within the separated bubble, driven by shear layer
entrainment, as the driving mechanism for the pulsation of the separated bubble. A more
recent consensus suggests that both upstream and internal mechanisms contribute to low-
frequency unsteadiness. The work of Puckett & Narayanaswamy (2024) suggests that
the combined effects of the separation bubbles inherent unsteadiness and the shear layer
instabilities are key contributors to the dynamics of swept SBLIs. Thomas et al. (1994)
and Dupont et al. (2006) observed strong coherence in pressure fluctuations near the
separation bubble and reattachment point, indicative of a ‘breathing’ mode of the separated
region. Touber & Sandham (2011) extended this understanding by demonstrating that the
interaction between the shock and boundary layer could be modelled as a first-order low-
pass filter, implying that the low-frequency unsteadiness is an intrinsic property of the
system. Clemens & Narayanaswamy (2014) proposed that while both upstream and internal
mechanisms are always present, downstream effects dominate in strongly separated flows,
with a combined mechanism prevailing in weaker separations.

It is evident that the focus of researchers has largely centred on turbulent interactions,
with only recent efforts directed towards studying laminar and transitional SBLIs. Robinet
(2007) conducted one of the earliest studies examining the temporal dynamics of laminar
SBLIs. In his work, both three-dimensional (3-D) direct numerical simulations (DNS) and
linearised global stability analysis were carried out on an incident oblique shock impinging
onto a laminar boundary layer. Simulations highlighted that for an increasing angle of the
incident shock, the flow becomes three dimensional, and the stability analysis revealed
a bifurcation, generating the 3-D character of the flow. It was concluded that, beyond a
critical angle of the incident shock wave, the two-dimensional (2-D) and stationary flow
becomes linearly globally unstable to a 3-D stationary mode. However, Guiho, Alizard &
Robinet (2016) conducted a global stability analysis on a similar laminar interaction and
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found that the SBLI is globally stable for a wide range of flow parameters. They showed
that unsteadiness is instead associated with nonlinear mechanisms between convective
instabilities arising from the shear layer. The very recent study of Niessen et al. (2023)
confirmed that the laminar SBLI they investigated cannot support the temporal growth of
a disturbance in a fixed region of the space. Consequently, no 2-D global instabilities
exist and, thus, all 2-D instability mechanisms are convective. They determined the
most amplified perturbation content of a SBLI in terms of the most amplified spanwise
wavelength, which was found to be as large as 10 % of the separated region, and
frequency, about 9 kHz at the reattachment location. From these studies, it is clear that
the low-frequency unsteadiness cannot be related to any unstable global mode.

Between the years 2012 and 2016, the European TFAST (transitional location effect
on SBLI) project promoted several numerical simulations and experimental campaigns
focused on transitional SBLIs. This project permitted progress in understanding the role
of transition in the context of the mutual interaction between the shock system and
the laminar boundary layer. In particular, the DNS work of Sansica, Sandham & Hu
(2014) studied the global response of the separated region to white noise forcing both
upstream and inside the bubble. It was concluded that the internal forcing causes the low-
frequency response near the separation point. This result is in agreement with Guiho et al.
(2016), who showed that the low-frequency response at the separation is more effective
when the forcing comes from the recirculating region than when forcing the upstream
boundary layer. Bugeat et al. (2022) suggested that the low-frequency dynamics of the
SBLI corresponds to a forced damped stable mode, in which background perturbations
through the receptivity mechanism continuously excite the flow. The flow thus behaves
like a low-pass filter with respect to external disturbances.

To study the mechanism in more detail, Sansica, Sandham & Hu (2016) forced the
inlet of the interaction with a pair of monochromatic oblique unstable modes. Despite the
clean upstream condition, they observed low-frequency unsteadiness near the separation
point, with St = 0.04. They attributed the appearance of unsteadiness to the breakdown
of the deterministic turbulence, leading to broadband pressure disturbances travelling
upstream through the separated region (within the subsonic layer of the boundary layer)
at a phase velocity of —0.6U,. The acoustic nature of the backward travelling pressure
waves was challenged by Larchevéque (2016). In his study, fluidic backwards motion, with
a possible origin at reattachment, was observed and the corresponding phase velocity,
associated with low frequencies, was found to be —0.22U .. Bonne et al. (2019) conducted
Reynolds-averaged Navier—Stokes-based simulations coupled with a resolvent analysis
and confirmed the backward motion of waves through the recirculating region. However,
they suggested a density or acoustic nature of those waves. Moreover, the low-frequency
dynamics was described as a pseudo-resonance process that amplifies the instabilities
in the separated shear layer and excites the shock foot, leading to the backward motion
of density waves, with a phase velocity of —0.1Us. A similar scenario of density
disturbances propagating upstream through the recirculating region with a group velocity
of —0.18U was observed experimentally by Threadgill, Little & Wernz (2021). Their
detailed phase analysis of schlieren data permitted the identification of slow-moving
density disturbances within the bubble that convect toward the shock foot and lead to
the slow motion of the separation shock. Indeed, high-speed schlieren images showed that
the separation shock exhibits low-frequency unsteadiness at St = 0.025. To the current
authors’ knowledge, this Strouhal value associated with the slow dynamics is the only one,
in the context of the experiment, that is similar to those reported by numerical simulations.

Recent studies have suggested a nonlinear mechanism as a possible explanation for the
low-frequency unsteadiness. Sansica et al. (2014) noted that low-frequency unsteadiness
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occurs even without direct low-frequency forcing, and it is due to weak nonlinear
interactions with the shear layer instability modes. Mauriello, Larchevéque & Dupont
(2022) suggest that quadratic couplings between oblique modes are responsible for the
oscillation of the reflected shock. The low-frequency range in the separated region was
found to be significantly quadratically coupled to the oblique mixing layer modes of much
higher frequencies. They extended the analysis in the wavenumber space and showed that
the flow features beneath the reflected shock, sustaining the low-frequency motion, are
two dimensional. They also confirmed the existence of a slow upstream convective fluidic
motion originating from the vicinity of the reattachment point. In their work, broadband
and stochastic forcing was applied to stimulate the transition of the boundary layer to a
turbulent state. Despite the non-forced transitional SBLI studied by Saidi et al. (2025),
similar strong triadic interactions were observed in the downstream region of the shock
interaction playing a role in the low-frequency dynamics. However, in all these studies the
nature of the nonlinearities that drives the unsteadiness remains unclear.

Building upon this body of work, the present work aims to investigate the presence of
any unsteadiness and to address fundamental questions about the nature of nonlinearities
in the context of the transitional SBLI. Motivated by the distinct approaches employed in
prior research, wherein Mauriello et al.’s (2022) work incorporated broadband forcing
and Saidi et al’s (2025) study focused on a non-forced SBLI, the decision was to
construct a simplified and didactic model. This model was designed to include a modal
transition and enable precise control of the input parameters. Accordingly, one-period
DNS combined with high-order statistical analysis have been performed on a M =1.5
oblique shock reflection with separation. All details of the numerical set-up and the
flow conditions are given in § 2. Starting from the work of Sansica et al. (2016), which
suggests that the origin of the low-frequency unsteadiness is due to the breakdown into
turbulence, deterministic simulations have been performed. The deterministic approach
allows full control of the input conditions. We first reproduced the basic configuration
used in the work of Sansica et al. (2016), where the incoming laminar boundary layer is
stimulated with a pair of monochromatic oblique unstable modes. The result, presented
in § 3, showed that a pair of oblique unstable modes is not sufficient to produce the
low-frequency response of the head shock, although the breakdown to turbulence is
observed to persist. Consequently, we have combined two different (in frequency) and
opposite (in wavenumber) arrangements of unstable boundary layer modes. Our aim is
to see if the introduction of nonlinearities triggers both the low-frequency unsteadiness
and the transition to turbulence in the boundary layer. Results are presented in § 4. This
deterministic approach, while providing valuable insights into the fundamental nonlinear
interactions, inherently presents certain limitations. The use of specific monochromatic
forcing arrangements represents a simplification of the broadband disturbances present
in natural flows. Despite these limitations, this work addressed fundamental questions
regarding the nature of nonlinearities driving low-frequency unsteadiness. In § 5 we are
interested in studying potential triadic interactions between the structures responsible for
the boundary layer transition and those arising at the separation point. To achieve this, we
have used high-order statistical tools. High-order spectral analysis is also used to identify
the signature of low-frequency unsteadiness in wavenumber space. Two additional forcing
configurations and a case with a different frequency combination are presented in § 6. The
concluding § 7 summarises all the outcomes of this study.

It is essential to emphasise that this study focuses specifically on transitional SBLIs.
Relating the observed phenomena directly to turbulent SBLIs is challenging due to the
fundamental differences in their spectral content and nature of the flows. Moreover, the
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deterministic approach allows for precise control and analysis of nonlinear interactions,
but it also limits the direct extension to fully turbulent scenarios.

2. Flow conditions and numerical set-up
2.1. Numerical method and flow conditions

The 3-D compressible Navier—Stokes equations are solved in the conservative form, and
are presented in the Cartesian coordinate system as

0 opu ;
9P P, Q.
ot ij
a,oui apul’u]’ _ _a_p La‘L’l‘j’ (2.2)
ot 0x;j 0x;  Re ox;
0pE O0(pE+pu; 1 0 aT 1 0tiju;
o i (p p) J_ el T 2.3)
ot 0x; (y —1DRePrMg, 0x; 0x; Re 0x;

showing the non-dimensional form of the mass conservation equation, three momentum
conservation equations and the energy conservation equation, respectively. The indices i
and j run from 1 to 3. In the equations, p = p*/p%, is the non-dimensional density, u1 =
u=u*/UL, up=v=0v*/U% and uz =w =w*/UZ are the non-dimensional velocity
components respectively in the x, y and z directions scaled with free-stream velocity
Ul; E=e+ 1/2p(u? 4+ v> 4+ w?) is the total energy per unit mass, with e as specific
internal energy. The corresponding conservative variables are p, pu, pv, pw and pE.
The terms p, T are the non-dimensional pressure and temperature, respectively, while
Tjj = w[ou;/0x; + 0uj/dx; —2/3(dur/0xx)d;;] is the viscous stress tensor, where u is
the non-dimensional dynamic viscosity given by Sutherland’s law, with a Sutherland
temperature of 7 = 110.4 K, and §;; is the Kronecker delta function. The various physical
variables are normalised using the corresponding free-stream values. However, pressure
is normalised using the free-stream dynamic pressure term, p U2, i.e. p = p*/pl U2,
while the unit total energy E is normalised by U, :3 The dimensional quantities are denoted
by a superscript *, which is dropped for non-dimensional quantities unless mentioned
otherwise. Also, the subscript ‘s’ represents the free-stream conditions at the inflow. Here
x=x*/8},,,y=y"/8",, and z=_z"/8" are the non-dimensional coordinates scaled
with the displacement thickness &7, , = 0.075 (mm) at the inflow. The characteristic fluid
dynamic time scale is &7,/ U%.

The OpenSBLI solver (Lusher, Jammy & Sandham 2021), which is an open-source
finite-difference-based solver, is used on structured Cartesian coordinate systems for
the shock-reflection set-up. A local Lax—Friedrichs flux splitting approach is used for the
inviscid fluxes in characteristic space. Different variations of flux reconstruction schemes,
i.e. weighted essentially non-oscillatory (WENO) and targeted essentially non-oscillatory
(TENO), are available to compute the inviscid fluxes. As noted in earlier literature, the
TENO scheme is less dissipative than the WENO schemes and, hence, an adaptive version
of sixtth-order TENO is used to perform the present simulations (Lusher et al. 2021). The
viscous fluxes are computed using fourth-order central differences, while a third-order
Runge—Kutta scheme is used for time integration.

A 2-D schematic of the computational set-up is shown in figure 1. The computational
domain, marked with a red dashed line, has extents 0 <x <375, 0<y <140, 0<z¢
< 27.32, and the number of points (Ny, Ny, N;) = (2050, 325, 200). The origin is located
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Figure 1. Two-dimensional schematic of the numerical set-up, where the computational domain is
demarcated with a red dashed line.

Mso  Rey [m™']  6[deg]  Po [Pa] T [K]
1.5 1 x 107 2.5 2x 10 202.17

Table 1. Aerodynamic flow conditions.

at the beginning of the computational domain. The grids are stretched in the wall-normal
(y) direction using a tangent hyperbolic stretching function, while the grids are uniform
in both streamwise (x) and spanwise (z) directions. All the distances are scaled with the

displacement thickness &7, , = 0.075 (mm) at the inflow plane, which is initialised using a

similarity solution for a Mach 1.5 flow with a unit Reynolds number of 10’ (m~"). Hence,
the simulation Reynolds number based on this &7, is Re = 750.

The reference conditions are the same as Sansica et al. (2016), and table 1 summarises
the aerodynamic parameters. At the wall, no-slip and isothermal boundary conditions
(where the wall temperature is set to the laminar adiabatic wall temperature, i.e.
Twan =T,,,;/ T5 ~ 1.381) are used. Here, the reference free-stream temperature is 75, =
202.17 K. An extrapolation method is used at the inflow (for pressure) and outflow, while
the span is periodic. The top boundary has shock jump conditions for a wedge angle of 2.5°
at x = 20, resulting in a pressure rise of p3/p; = 1.28, where p3 indicates the pressure
state after the reflected shock. The Reynolds number at the location of inviscid shock
impingement from the leading edge of the flat plate is Reg,, =195 x 10°. These are
further depicted in the schematic of the domain in figure 1.

Disturbances are applied, upstream of the separation bubble, as a body-forcing term
in the continuity equation, and a sample oblique wave representation with a particular

frequency and spanwise wavenumber is given as
px, 2, 1) =Real [ Agexp [ —(x — 22 = (v =y | expli £z —wn)l |, 24)

where Ao represents the amplitude of the forcing, while (x., y.)=(20, 4) are the
coordinates where the forcing is centred, which is roughly located at the edge of the shear
layer. The forcing takes a maximum value at the central location and then tapers off in
both x and y directions due to the first exponential term in (2.4). The last exponential term
introduces variation in the spanwise and temporal dimensions, representing an oblique
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wave that travels at different angles with respect to the z direction depending upon the
+ or — sign. The values of the spanwise wavenumber and circular frequency (8 and w,
respectively) are obtained from the linear stability theory (Sansica et al. 2016).

Various combinations of the simple deterministic forcing represented by (2.4) are used
to trigger flow transition, the simplest of which is a pair of oblique waves with single
circular frequency as used in Sansica et al. (2016). As the modifications represent a key
point in this study, an entire section (see § 4) has been devoted to a comprehensive and
detailed treatment of them. At this point in the text it is important to emphasise that, when
two frequencies are forced, the combination is designed to be periodic over one cycle of the
difference frequency (i.e. T = 27/ Aw). This periodicity should be evident in the response
flow field under these forcings, and once this was ensured, the wall pressure data was
collected over one cycle of this difference frequency to evaluate the frequency spectrum.

2.2. High-order analysis

High-order spectra, corresponding to the Fourier transform of high-order correlation
functions, are the preferred tools to study nonlinear interactions since they allow the
analysis of the quadratic couplings present in the governing Navier—Stokes equations on a
scale-by-scale basis.

One relevant high-order spectrum is the bispectrum (Tynan et al. 2001). It is formally
defined as the Fourier transform of the triple correlation, given by

Bisrou(xF, X6, X1, f1, f2) = (F(xF, fi) G(xg. f) H*(xm, fi+ f2)),  (2.5)

where () denotes the averaging operation over time segments and possibly the
homogeneous direction. Here F, G and H are the temporal Fourier transforms at the
locations xf, xg and xg, and the superscript * indicates the complex conjugate. The
bispectrum reveals the energy content associated with the cross-interaction between F
and G (F x G) and a third signal H at the frequency f1 + f>. This tool has been used
extensively in the work of Mauriello (2024), where a broadband stochastic forcing was
used to stimulate the boundary layer transition in the case of a transition SBLI at Mach
1.7. It has been proven to be very powerful in highlighting the triadic interactions that
occur between the oblique modes, i.e. the coherent structures responsible for the transition
to the turbulent state of the boundary layer, and the structures of a 2-D nature that emerge
at the separation point. In the present work, the modal transition has been fostered and
a deterministic forcing has been applied (see §4), plus the periodicity of the present
simulations (one-period simulation) imposes that, for the lowest frequency f,in =1/T,
only a single segment, encompassing fully the period, can be considered. It therefore
excludes the possibility of averaging over segments leading to a meaningless value of the
normalised form of the bispectrum, i.e. the bicoherence (Bic = 1). With this in mind, the
bispectral analysis presented above is reformulated in terms of spanwise wavenumbers
taking advantage of the time/space duality found for both the oblique mode and the
low-frequency unsteadiness (Mauriello 2024). This version of the bispectrum is given by

Bispga((xF, yF), (xG, ¥G), (XH, YH), kz,, kz,)
= <F((-xF7 )’F)’ kZ]’ t)G((xG? yG)s kZZ’ t)ﬁ*((xH’ yH)7 kZ] +kZ29 t)>7 (26)

where () denotes a time average over one period. In this way, it is possible to
detect the wavenumbers responsible for nonlinear interactions among the fixed locations
(xF, ¥r), (xG, y6), (xH, yg). By time averaging in the wavenumber space, information
about the temporal behaviour is lost, but can be partially recovered by introducing a time
delay t. The time delay can be introduced for the two time series F' and G, consequently
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71 and 17 identify the time lag occurring with respect to the third time series H (f). The
formula can be written as

Bispou((xF, yF), (xG, YG), (XH, YH), k7,5 kzy, T1, T2)

= (F((xF, YF), kzpo t +T)G(XGs Y6)s ko t +12) H* (X, Yi), kzy + Ky 1)),
(2.7)

In addition to the standard bispectrum maps defined in (2.7), optimal bispectrum maps
can be extracted. These maps are optimal in the sense that, for all possible time-delay
pairs, the optimal time delay 7, is such that it maximises the bispectral energy content.

For the sake of simplicity, the Fourier transforms F, G and H will all be referred to by
the letter G in the remainder of the text, and will be distinguished by subscript numbers
running from 1 to 3.

3. Reference case of transitional SBLI

Sansica (2015) presented a detailed study using the local linear stability analysis, which
identified the most unstable modes for the shock-reflection problem. Sansica et al. (2016)
further performed DNS using these modes to perform the oblique mode transition using a
pair of oblique modes to trigger transition. Lusher et al. (2021) used the OpenSBLI solver
to repeat these oblique mode transition simulations, however, with different numerical
methods and forcing set-up. As we use the OpenSBLI solver in the present research,
we wanted to first cross-validate our results against Lusher et al. (2021), starting with
oblique mode transition, before performing more complicated forcing combinations that
are further explored in this study. We next explain the validation results in this section.

The modal forcing is applied as a prescribed time-dependent forcing, where the density
disturbances p’(x, y, z, t) are superimposed on the density laminar flow field at (x, y.) =
(20, 4). The values of the streamwise and spanwise wavenumbers (o and , respectively)
as well as the pulsation frequency w were extracted from the temporal stability map (see
figure 4.3 of Sansica 2015). The spanwise width of the domain is set as L, =27 /8 such
that it accommodates at least one wavelength of the most unstable oblique mode. Hence,
the decision to set L, =2n /8 = A, =27.32.

The first set of simulations, that are performed using the deterministic forcing approach,
use a pair of monochromatic oblique unstable modes, as used in Sansica et al. (2016) and
Lusher et al. (2021), and the resultant forcing expression is given as

o (x,v,z,t) =Real [Ao exp [—(x —x)—(y— yc)z] (ei(“LﬂZ_‘”’) + ei(_’gz_‘”’))] )
3.1
The oblique mode pair in the forcing expression uses Ag = 1.25 x 1073,  =0.23 and a
single frequency value of w = 0.101, similar to Sansica et al. (2016), to force the separated
boundary layer. The OpenSBLI solver is used to run these simulations and the set-up is
identical to Lusher et al. (2021), except that we used a uniform grid in the streamwise
direction. The aerodynamic conditions used in Lusher ef al. (2021), including the free-
stream and shock jump conditions and shock impingement location, are the same as
Sansica et al. (2016). However, the present simulation is different from Sansica et al. (2016)
due to the way the forcing is applied. In the current simulations, the forcing is applied as a
volumetric forcing in the density term centred at (x., y.) = (20, 4), i.e. downstream of the
inlet plane and upstream of the separation bubble, while in Sansica et al. (2016) the forcing
was applied at the inflow in terms of the eigenfunctions for all conservative variables.
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Figure 2. Streamwise evolution of the friction coefficient C ;s (a) and of the pressure at the wall normalised
with the reference pressure Pyqj1/ Poo (D).

10 5o
Z

Figure 3. Three-dimensional view showing slices of pu. The initial symmetry and its breakdown due to
transition at downstream locations is shown.

As we reran the set-up of Lusher e al. (2021) with a uniform grid in the streamwise
direction, we performed some initial verification of our results against the skin friction
results extracted from the reference. Figure 2(a) shows a comparison of skin friction from
the rerun of Lusher er al.’s (2021) set-up with two different schemes, i.e. WENO and
TENO. The 2-D laminar skin friction is also plotted for reference. It can be seen that
the TENO version shows a slightly better agreement with Lusher et al. (2021) compared
with the WENO version. Some minor deviations are noted towards the exit of the domain
perhaps due to streamwise stretching used in the reference simulation of Lusher et al.
(2021). Figure 2(b) shows minimal variations of non-dimensional wall pressure, which
is further non-dimensionalised with the reference pressure Py, =1/ )/Mgo between the
schemes. The 2-D laminar wall pressure is also shown as a reference.

A 3-D visualisation of the flow is shown in figure 3, which shows streamwise momentum
pu at equally spaced x—y plane slices, with the first slice placed close to the reattachment
point at x ~ 190. The second slice at x & 230 shows the first signs of spanwise non-
uniformity due to the production of streamwise vorticity. The spanwise symmetry starts to
break once further smaller scales are generated due to the transition to turbulence.
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Figure 4. Power spectrum of the wall pressure fluctuations for the case with a pair of monochromatic oblique
unstable modes.

Figure 4 shows the spectral content of the pressure fluctuations at the wall in an
x—f plane, where x is the non-dimensional streamwise distance, shown in a linear
scale, while f is the non-dimensional frequency, shown with a logarithmic scale. The
frequency is normalised using the reference frequency scale UJ /5, ,. In this way, the
y axis gives the Strouhal number based on the length scale §7, . It is worth mentioning

that, unless explicitly stated otherwise, the same normalisatli’glelts (for x and f) will be
applied to all the other spectra presented in this study. The spectrum clearly shows the
forcing f = w/2m 2 1.6 x 1072 introduced at x =20 . Its energy content extends over
the whole domain and, starting from x = 150, subsequent harmonics develop towards
increasingly higher frequencies. This indicates that in the reattachment zone the boundary
layer transitions to a turbulent state containing increasingly smaller structures (small
scales) and increasingly higher frequencies. However, the separation point around x = 110
is free of any energy content, indicating that no low-frequency unsteadiness arises with
this specific deterministic forcing.

The present power spectrum differs in one respect from Sansica et al. (2016), where
weak low-frequency unsteadiness was identified using a local (in x) normalisation. Besides
the difference in the normalisation, there are a few differences in methodology. In
the current simulations, the perturbations are introduced as a body-forcing source term
through the density equation downstream of the inflow plane, while in Sansica’s case the
forcing was applied at the inlet through the entire state vector. Also, the numerical method
used in Sansica’s case included a total variation diminishing scheme (Sansica 2015) for
shock capturing, while the present study uses a TENO scheme. On the hypothesis that the
low-frequency content of the baseline case is sensitive to the numerical noise level, we
prefer in the next section to introduce the nonlinearities in a deterministic way.

4. Deterministic forcing of low-frequency

The work of Mauriello et al. (2022) on a transitional SBLI similar to the present case
highlighted the occurrence of triadic interactions between the unstable boundary layer
modes and flow features of a 2-D nature emerging at the separation point. However, in
their work, broadband and stochastic fluctuations were used as forcing, which prohibited
the complete control of the inlet state of the flow. Nevertheless, according to their results,
quadratic interactions are expected to occur and are responsible for the low-frequency
unsteadiness phenomena. Considering the clean deterministic approach examined in the
previous section, a second family of oblique modes was selected allowing the emergence
of low-frequency content.
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Ao B o1(f1) @2(f2) Aw(Af)
1.25%x 1073 +0.23 0.1(0.0159) 0.104(0.0165) 0.004(0.0006)

Table 2. Unstable boundary layer waves characterisation.

The choice was made to ensure that the frequency difference between these two wave
families fell within the low-frequency range corresponding to the typical Strouhal number
of the breathing phenomenon. Therefore, the pulsation frequencies @ and wy were chosen
such that Aw = w» — w1, where w; was extracted from the stability analysis of Sansica
et al. (2016) corresponding to the most unstable boundary layer mode, and Aw =2w Af.
Af was derived from the low-frequency Strouhal number Stz r = 0.04 found in the work
of Sansica et al. (2016). Based on this, the two 3-D wave families were selected such that

Pl (x, y,z,t) =Real[Agexp [ — (x —x)> — (y — yeo)lexp [i (£Bz — wi)]],
P (x, ¥, z,t) =Real[Agexp [ — (x —x0)* — (y — yo) 1 exp [i (£Bz — wot)]]. (4.1)

The sole distinction between the two families lies in their frequencies, with their spatial
dimensions remaining unchanged as well as their initial level of energy Ag. Table 2 lists
the values of the parameters extracted from the stability analysis (Sansica et al. 2016) and
used to characterise the two 3-D unstable wave families.

Various combinations of the most unstable mode waves are possible, two of which will
be presented in this section, with more shown later (see § 6). It is useful to establish the
notation that will be used in the following sections before considering the first two wave
combinations that were selected.

The general mathematical description of a family of oblique waves is given by (2.4).
The formula shows that a family can include two waves of opposite spanwise wavenumber
sign (£6). In a more physical sense, the expression represents two identical waves with
the same magnitude of wavenumber vector k = ai + ,312, but travelling at opposite angles
concerning the streamwise flow progression. With this in mind, the superscript * denotes
a set of waves distinguished by a positive wavenumber 8, while the minus superscript ~
denotes the opposite waves. When waves of both families move in the same direction
(same sign of B), we refer to them as a parallel family, while we use the terms crossing
family when the spanwise wavenumbers are opposite. In addition, the subscript | indicates
that the wave propagates with a characteristic frequency equal to the most unstable
frequency determined by the stability analysis (f1 = w1/27). The subscript o means that
the characteristic frequency is set to f» = wy/2m. According to this notation, the two
combinations of 3-D waves are given by

Crossing waves: p/(x,z,1) = ,oi+(x, Z, 1)+ pé_(X, z,1), @2)
Parallel beating waves: p'(x, z,t) = ,0;+(x, z, 1)+ p;“(x, Z, 1). '

Figure 5 visualises the differences between the selected combinations for an illustrative
case with w1 =0.62, wp» =0.57 and Aw =0.05 given the period T =2n/Aw =111.
If we exclude waves with negative 8 from the first family and waves with positive
B from the second family, we generate what we called crossing modes, shown in
figure 5(a). Conversely, by eliminating waves with negative spanwise wavenumbers from
this combination, we obtain an arrangement known as the parallel beating waves family,
shown in figure 5(b).
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Figure 5. Modal forcing combinations. Panel (a) is representative of the crossing waves family and panel
(b) is representative of the parallel beating waves family.
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Figure 6. Three-dimensional views of the flow field. Panel (a) is for crossing waves and panel (b) is for
parallel waves.

The asymmetric combination of the two forcings is reflected in the organisation of the
flow, as can be seen in figure 6. The 3-D view of both flow fields is represented by five
equally spaced slices. The contours show the streamwise momentum. Both flow fields
show an incoming laminar boundary layer at the respective first slices. However, already
at the location of the second slice, positioned at x = 230, the scenario starts to differ. In the
case of crossing waves (panel a), the development of streamwise vortices is evident. They
evolve in the streamwise direction, eventually leading to the transition of the boundary
layer (see last slice). On the other hand, parallel beating waves develop smoothly and
reach an incipient chaotic state only at the end of the computational domain. The nature
of the boundary layer appears to be far from being fully turbulent.

Figure 7 plots the streamwise evolution of the friction coefficient for each family.
The 2-D laminar flow solution is also shown for ease of comparison. The black dashed
horizontal line indicates C s = 0, and helps to visualise the separated region. The extent of
the separated zone is thus equal to the interval between the reattachment point xp and the
separation point xg, such that

Lgep =xg — x5. 4.3)

Table 3 summarises information about the flow reversal of each combination. It can be
noted that both cases are injected with the same level of maximum perturbation amplitude,
i.e. Ag, and hence, are equivalent in terms of initial perturbation energy.

1016 A6-13


https://doi.org/10.1017/jfm.2025.10385

https://doi.org/10.1017/jfm.2025.10385 Published online by Cambridge University Press

M. Mauriello, P.K. Sharma, L. Larchevéque and N. Sandham

0.006
Crossing waves
00051 Parallel beating waves /__//M
0.004 | — 2D laminar
0.003 F /
¢ 7
0.002 F

0.001
0F

70001: L L L L L L
0 50 100 150 200 250 300 350

X

Figure 7. Streamwise evolution of the friction coefficient for each oblique waves combination. The black
dashed horizontal line indicates C ¢ = 0.

Crossing waves Parallel beating waves
Ao 2.5x 1073 2.5x 1073
Lyep 79 116

Table 3. Length (normalised by inlet displacement thickness) of the separated region for each combination of
oblique mode waves. The maximum perturbation amplitude Ag that is injected in each combination is shown.
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Figure 8. Power spectra of the wall pressure fluctuations for crossing waves (a) and parallel beating waves
(b) families. In each spectra, the white solid vertical lines indicate the separation points, while the white dashed
vertical lines indicate the reattachment points.

Both combinations reveal an incoming laminar boundary layer. As the shock system is
approached, C y departs from the laminar boundary layer branch. The boundary layer in the
case of parallel beating waves separates further upstream than the crossing combination
and reattaches further downstream, resulting in a longer separation bubble (see table 3).
The resulting boundary layer is far from turbulent indicating that this combination is much
less efficient than the oblique mode transition mechanism that is active for crossing modes.
This is in agreement with Mayer, Wernz & Fasel (2011), who already observed that two
oblique unstable waves with opposite wave angles can cause transition more rapidly than
secondary instability. This also explains why the length of the reverse flow zone is longer
for the parallel beating waves. In the case of crossing waves, although the energy level is
the same as in the case of parallel beating waves, C s keeps increasing and deviates from
the laminar boundary layer trend.
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Figure 9. Power spectra of the wall pressure fluctuations for the crossing wave (red line) and parallel beating
wave (blue line) families extracted at the respective separation points. The light blue line uses detrended data
for the parallel beating wave family.

Besides different lengths of the reversal region and the resulting downstream flow state,
the two combinations of unstable boundary layer modes show a very different spectral
response. Figure 8 shows the power spectrum of the pressure fluctuations field extracted at
the wall for each family. In each spectrum, the white vertical lines indicate the separation
(solid line) and reattachment (dashed line) points. All spectra clearly identify the forcing
frequencies used upstream of the interaction. Note that two forcing frequencies have been
applied, but from the spectra the distinction between them (a frequency difference of
0.0006) is barely visible and they appear as a single horizontal line.

A noticeable difference emerges when looking at the separation point. Parallel beating
waves show intense activity at low-frequency values, indicating that the head shock is
unsteady. This specific arrangement has hence allowed the breathing of the separated
region. Although the same level of maximum perturbation energy is continuously added
in both combinations, the crossing waves case lacks energy content at the separation point
in the low-frequency range.

If one looks at the region downstream of the reattachment point and frequencies higher
than the forcing frequencies, the energy content for the crossing waves case shows a
cascade towards its harmonics and begins to fill the spectrum up to high frequencies
representing the characteristics of turbulence. This cascading process is almost absent in
the parallel family case (see figure 8b) and is consistent with the result that we saw earlier
from the skin friction profile variation for the two cases.

Figure 9 shows the evolution of the amplitude of the power spectrum for pressure
fluctuations at the wall extracted at the respective separation points for both families.
Both the x and y axes are plotted on a logarithmic scale and show a power-law trend.
Note that the spectrum of the parallel case exhibits a —2 power law beyond the very
low-frequency range (dark blue line). This can be associated with the Fourier series of
a sawtooth wave. This means that the dynamics at the separation point deviates from a
strictly periodic behaviour due to a small linear drift. All the flows considered in this
study that are associated with a low-frequency dynamics in the vicinity of the separation
point are subject to such drifts. However, their amplitude is decreasing from period to
period (results not shown). All computations have therefore been extended in time up until
the extrapolation of the —2 power law down to the lowest frequency that is at least four
orders of magnitude lower than the natural energy content for that frequency. This ensures
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that the jump associated with the lack of periodicity is equal to at most 3 % of the peak-
to-peak amplitude of the low-frequency fluctuation. In order to unveil the high-frequency
behaviour of the flow in all subsequent analyses that involve in some way the time-Fourier
space, the drift is removed by detrending the data in such a way that the C° continuity of
the variable is ensured through the periodicity

t—1
Pl (x, 2, 1) = py (x, 2, 1) + P (4, 2 10) = pux 2 0+ 1)) (44)

where (), is the averaging operator in the spanwise direction. The rationale behind the
detrend scheme built from the spanwise average of the jump induced by periodicity is that
discontinuities identified in the separated region are mostly associated with flow features
of a 2-D nature (Mauriello 2024). They have in fact a Fourier series expansion in the
spanwise direction fully dominated by the k; = 0 coefficient. Because of the average, the
correction tends to zero in the non-deterministic region of the flow, where periodicity is
not expected, and therefore, should not be enforced.

It can be seen in figure 9 that this correction removes the —2 power law and that
the corrected spectrum (light blue line) shows no significant higher-order power law,
confirming the linear nature of the drift. Analyses described in the following sections,
which do not involve moving to the frequency space, were performed on both the raw
and detrended data. No significant differences were found between the two approaches,
even when considering early periodic datasets with 10 times greater drifts. Therefore,
for simplicity and consistency, it was decided to present the metrics obtained from the
detrended data only.

In the case of parallel waves (using the linear detrended data), the order of magnitude
at low frequency is approximately O(10~9). In the case of crossing waves, the order of
magnitude is approximately O(10~'2), for which the interaction is steady. The profiles
show a constant decrease and both peak at the forcing frequencies. Moreover, both cases
show an additional peak corresponding to the first harmonic. This result suggests that
nonlinear interactions are already at play at the separation point. From this analysis, we can
infer that the distinctive combination of oblique mode families, for the same magnitude of
the perturbation energy, is the predominant factor influencing the low-frequency behaviour
of the head shock.

In the framework of turbulent SBLIs, various numerical and experimental studies
have shown that there is a consistent collapse of the magnitude of the low-frequency
oscillations when the corresponding frequency is scaled with the interaction length L;,;,
defined as the distance between the average position of the reflected shock x;,; and the
extrapolation to the wall of the incident shock x;;,. The resulting Strouhal number is
thus Sty = fLin, where both f and L;,, are non-dimensional quantities normalised
using reference frequency UZ, /87 ,,, and 8}, respectively. On the basis of this scaling,
the literature indicates that the low-frequency oscillations in turbulent SBLIs fall in the
0.02—0.07 range of the Strouhal number. However, the length of the separation bubble
Lgep, defined as the distance between the separation point xs and the reattachment point
xR (see (4.3)), can also be used as a length scale and, hence, Sthep = fLygep (same as
Sansica et al. 2016). Although the correct length scale remains unclear, including whether
the same scaling can be applied in the case of a transitional SBLI, a compilation of the
different lengths and the corresponding Strouhal number are provided in table 4. Since
only the arrangement of parallel beating waves led to an unsteady interaction, the Strouhal
number is presented solely for this case.
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Crossing waves Parallel beating waves
Lins 46.5 58
Lep 79.0 116
St - 0.037
Str, - 0.074

Table 4. Interaction and separation lengths (normalised by inlet boundary layer thickness) and the
corresponding Strouhal number for both families of crossing and parallel beating waves.

Quadratic couplings Resulting quadratic couplings
(o1, +B) X (=2, —=B) [(—o1 — @), 0]
(w1, +B) X (—w2, —p)* [(—w1 + @), 28]
(o1, +B)* x (w2, =p) [(w1 — w2), —28]
(o1, +B)* X (=2, —B)* [(w1 + w2), 0]

Table 5. Frequency—wavenumber combinations of Fourier modes for the crossing wave case. The * symbol
indicates the complex conjugate. The first column shows the possible combinations in compact notation, the
second column shows the resulting combinations after multiplication.

5. Quadratic couplings

The spectral analysis of the pressure fluctuations at the wall in the previous section showed
an approximately steady interaction (lacking the low-frequency content) in the case of the
crossing family, while an unsteady interaction was found for the parallel arrangement. This
raises the question: How can the influence of specific arrangements of oblique modes on
the interaction be explained?

The analysis stems from mathematical considerations starting from the perturbation
field described by ansatz (2.4). It is a normal mode reduction and the Fourier transform
allows for the identification of frequencies within the original signal. For a single oblique
travelling wave in physical space with (—w, 4-8), the ansatz (2.4) in the Fourier space can
be expressed in a compact notation as

(—w,+B) and (+w, —B), 5.1)

where w =2xf is the circular frequency and 8 =2n /A, =2x/L,, as there is a single
wavelength in the spanwise domain length of L. Hence, the wave velocity is related to
the spanwise wavelength A, and frequency f as c; =w/f or A, f. Note that because the
Fourier transform is applied to real data, Hermitian symmetry holds and each signal in
spectral space is supported by its complex conjugate (c.c.), shown in the second bracket
in (5.1).

Fourier modes of different signals can be quadratically combined with each other,
resulting in new modes that are included in the new signal. Recalling that in the case of
crossing waves two families of oblique modes are included (see (4.2)), in the frequency—
wavenumber notation they read [(—w1, +8) 4+ c.c.] X [(—w2, —B) + c.c.]. Table 5 shows
all possible frequency—wavenumber quadratic combinations, specifically the first column
presents the product of various possible combinations for quadratic interactions of modes,
while the second column shows the corresponding resulting quadratic combinations after
multiplication.
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Low frequency High frequency
(w2 — 1) krr (w2 + 1) kup
Crossing waves:
(-1, f) x (—w2, —p) B+B=28 2 B—p=0 0
Parallel beating waves:
(-1, f) X (—w2, B) B—B=0 0 —-B—B=-28 -2

Table 6. Summary of the quadratic couplings for the modal forcing combinations. The subscripts ‘7r’ and
‘g’ in k indicate the low-frequency dynamics (@ — w;) and the high-frequency dynamics (w; + w1) ,
respectively.

At this point, it is important to emphasise that our main focus is on the low-
frequency unsteadiness that affects the separation point. Consequently, when examining
the interactions between crossing waves, we limit our attention to combinations that result
in a positive difference between the frequencies, i.e. (w2 — w1). For crossing waves, the
only combination that respects this condition gives [(w; — w1), 28], i.e.

wLF=w) — w1 — B+ B =28 (5.2)

Note also that the combination resulting in (w; — w2) is present. This is the Hermitian
symmetric counterpart of (w2 — w1) that is required to reconstruct the real-valued function
that mathematically describes the oblique modes (see ansatz (2.4)). However, it yields
negative frequencies, and in this context, we only consider resulting frequencies that are
positive, hence (w> — wy). Therefore, in the graphical representation of the forthcoming
results, only the positive frequency space (i.e. half-plane) is presented.

One can note that this low-frequency combination for the crossing waves case results
in a non-zero resultant spanwise wavenumber (kzr 7 0), implying that the associated flow
features are three dimensional in nature. The work of Mauriello (2024) on a transitional
SBLI showed that the low-frequency unsteadiness is driven by structures populating the
foot of the head shock, whose nature is two dimensional in wavenumber space and they
result from quadratic interactions. Based on this result, it can be explained why crossing
waves only lead to a steady interaction.

By following the same mathematical approach for the parallel beating waves, we
obtain

wir=w) —w; — B —B=0. (5.3)

The resultant spanwise wavenumber in the low-frequency range is therefore k7 =0, and
low-frequency unsteadiness is observed for such a case.

Table 6 summarises all possible combinations at both low frequency (w; — w;) and
high frequency (w> + w1) for each family of oblique modes. The resultant spanwise
wavenumber corresponding to the low-frequency (high-frequency) quadratic coupling is
also presented as k;r (kg F), which highlights the 2-D or 3-D nature of the flow features.
Note that, for each family, its definition in the frequency—wavenumber space is presented,
omitting its complex conjugate part. When the parallel combination is active in the
low-frequency range, the topology of the flow is two dimensional in the wavenumber
space, with krr=0. Conversely, when dealing with high frequency (w; 4+ w1), a
different scenario emerges, with crossing waves responsible for a 2-D periodicity of the
flow.
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Figure 10. Streamwise distribution of the power spectra for each normalised wavenumber at selected
frequencies: the left column indicates low frequency (f> — f1) and the right column indicates high frequency
(f2+ f1). The white vertical lines indicate the position of the separation point (solid pattern) and the
reattachment point (dashed pattern). (a,b) Crossing waves, (c,d) parallel beating waves.

5.1. Frequency, wavenumber and location

More information about the interactions can be obtained from a spectral analysis of the
resulting flow. Figure 10 displays the power spectrum of wall pressure fluctuations in the
spanwise wavenumber domain, at fixed frequencies and for each combination of oblique
waves. The wavenumber is presented as a multiple of the imposed wavenumber 8 in
the form k =k;/B. This approach enables a direct comparison of the results with the
theoretical ones presented in table 6. The white vertical lines indicate the position of the
separation point (solid line) and the reattachment point (dashed line). For simplicity, we
use frequency f instead of circular frequency w. Consequently, the left column plots the
flow organisation in the low-frequency dynamics (f> — f1), while the right column shows
the space arrangement for (f> + f1). Furthermore, the first row illustrates the results for
the crossing family (a,b), while the second row shows the parallel beating family (c,d).

In the high-frequency dynamics (right column), the crossing combination of waves
gives rise to 2-D waves k =0, originating around the reattachment point and extending
downstream. However, a similar downstream contribution at k = 0 is absent for the parallel
beating family at high frequency (f> + f1) (see panel d). This region is populated by 3-D
structures whose value of k is equal to —2.

A detailed examination of the slow dynamics (left column) reveals that only the parallel
combination (see panel c) leads to 2-D structures, originating before the separation point.
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Conversely, in the case of crossing waves, the spectral content for 2-D structures does
not emerge at this same location, thereby confirming their absence in the slow dynamics
at the separation point. These observations are consistent with the findings of the
previous section, i.e. that the appearance of low-frequency unsteadiness only occurs for
wavenumber combinations that are two dimensional.

5.2. Nonlinear analysis in terms of wavenumber

The previous subsection showed that oblique mode families interact in such a way as to
produce 2-D and 3-D flow features at specific locations in both slow and fast dynamics.
Exploiting the periodicity of the present simulation (one period of the difference mode
Aw), the extended version of the higher-order spectral analysis, as presented in §2.2,
is applied in order to detect any possible triadic interactions. In addition, a further
simplification has been introduced. In the study of Mauriello et al. (2022) it was observed
from bicorrelation maps that the quadratic interactions between oblique modes are
maximal for null time delay between the modes (see figure 8 of their paper, high bispectral
content is observed along the diagonal shown in the bispectrum map). In short, for a time
7] = 7» = 7, the nonlinear interaction between oblique modes is at its maximum energy
activity. Consequently, the same time delay 7; = 13 is set for the source sensors used to
extract possible quadratic couplings between oblique modes with respect to the target
sensor. Using these assumptions, (2.7) is reduced to

BiSFGH((xFa YF), (XG, )’G), (va }’H), kZlv kZza T)

= (F((xp, yr), kzys t + TG(XG, ¥G)» keyr t + TV H* (X1, yE), kzy + kg, 1))
5.4

Optimal bispectral maps are presented in this section. The optimality results from the
time delay 7,,,, which maximises Bisr G g (k;,, k-,, T). For the sake of simplicity, we drop
the subscript ‘;” in the wavenumber k, and the three signals will all be denoted by the sole
letter G. Subscripts from 1 to 3 are used to distinguish the signals. The first two signals G
and G, have been chosen as source signals and are located between the forcing location
and the separation point at x = 45. At this location the spectral decomposition of the wall
pressure fluctuations has the same power content in each of the cases (see figure 8) and
the flow field in this region is described solely by the dynamics of the oblique modes. This
implies full knowledge of the power contribution of the source sensors G and G;, which
is the same for both families. Consequently, it is natural that the target sensor G3 (located
either at the separation or at the reattachment points) will have a power contribution that
depends only on the power due to the quadratic couplings, which varies according to the
case under consideration. An alternative approach would be to use the bicoherence to
quantify the level of nonlinear coupling. However, in the latter case, the normalisation
used to define the bicoherence yields a measure of the strength of the quadratic coupling
regardless of the level of quadratic power involved, thus highlighting a set of quadratic
couplings that have no dynamical impact due to negligible energy content. In contrast, the
norm of the bispectrum directly reveals the energy content associated with the nonlinear
couplings. The location of the three sensors is the same for all further analyses, unless
clearly stated.

Figure 11 shows maps of the norm of the optimal bispectrum for each oblique mode
combination. In all maps, the two source sensors G| and G, are located at x =45 for
the reason previously explained, whereas the destination sensor G3 is located either at the
separation point (left column) or at the reattachment point (right column). This approach
allows the 2-D and/or 3-D nature of the flow features responsible for the nonlinear
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Figure 11. Modal forcing: maps of the norm of the optimal wavenumber bispectrum, with pairs resulting in
a bicoherence value higher than 0.25 encircled in black. Left column: the target sensor G3 is located at the
separation point; right column: the target sensor G3 is located at the reattachment point. (a,b) Crossing waves;
(c,d) parallel beating waves. All maps show quadratic interactions with the two source sensors G| = G located
at x =45.

coupling between the upstream region and the separation and reattachment locations
to be highlighted. Note that the spanwise wavenumbers are presented with subscripts
1 and » to indicate that the quadratic couplings result from all possible wavenumbers
detected by sensor G (i.e. k1) and Gy (i.e. k2). Also note that (ki, k2) pairs resulting
in squared bicoherence values higher than 0.25 are encircled by a black thick line in order
to demarcate couplings effectively resulting in a high level of relative quadratic power.
When considering the crossing waves combination at the separation point (see
figure 11a), the set of wavenumbers resulting from quadratic nonlinearities of the oblique
modes are dominated by couplings involving at least one oblique mode, i.e. k1 » = +£1, all
with a similar amount of quadratic power (orange circles). In contrast, for the parallel wave
case, the bispectral map is dominated by the combination (k1, k») = (—1, 1), for which the
level of bispectral content is higher (see figure 11¢). This means that quadratic couplings at
the separation point lead to 2-D flow features with k3 = k1 + k2 = 0. However, it is evident
that 2-D quadratic combinations also appear for the subsequent k» = —k; couplings visible
along the diagonal, despite the decrease in the bispectral power content. Nevertheless, at
this stage of the analysis, it is still not possible to infer whether the quadratic interactions
arise from the interaction of the oblique modes after they have passed through the shock
interaction system and, thus, have the possibility of flowing back through the separated
region, or whether they are the beginning of pure triadic interactions that are about to
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Figure 12. Norm of the optimal wavenumber bispectrum for both crossing (x) and parallel beating (//) waves
extracted for the resulting 2-D (k3 = 0) and 3-D (k3 = 2) flow characteristics. The vertical black lines indicate
the separation (solid) and reattachment (dashed) points.

develop and will continue to develop along the shear layer. Another important difference
between crossing waves and parallel beating waves, when observed at the separation point,
is the resulting nonlinear contribution introduced to the mean field (k1, k) = (0, 0) that
occurs in the case of the combination of parallel waves. This nonlinear modulation of
the mean field is also present for this particular combination when the target sensor is
positioned at the reattachment point (see figure 11d). However, the corresponding level of
the bicoherence is low, indicating that the power issued from this coupling only contributed
to a small amount of the total power at k3 = 0.

On the other hand, strong quadratic couplings for all integer multiples of the
fundamental wavenumber k1 » = 1 appear for the crossing wave family at the reattachment
point (see figure 11b). The oblique modes at the reattachment region interact nonlinearly,
initiating the cascade process towards higher wavenumbers (smaller scales) typical of the
turbulent kinetic energy cascade. For small k; >, the same organisation of the quadratic
power is observed as for the separation point. The combination of kj 2 =1 is largest,
indicating a direct quadratic interaction between oblique modes resulting in a 3-D
organisation of the flow.

When restricted to the reattachment point, the parallel waves show a cascade process
towards higher k> that is at its early stages, as only a few cascading combinations of
the fundamental harmonic are visible (see figure 11d). These results support the previous
finding that the crossing arrangement is more prone to turbulence breakdown than the
parallel wave arrangement.

Limiting attention to combinations of 2-D ((k1, k2) = (—1, +1)) and 3-D ((k1, k2) =
(41, 4+1)) wavenumbers from the previous maps, information on the streamwise evolution
of the norm of the optimal bispectrum is extracted and presented in figure 12. Note that
in this figure, the target sensor G3 is no longer limited to the two locations of separation
and reattachment, but extracts information for each point in the x direction. For the clarity
of the figure, the crossing waves are indicated in the legend by the symbol x, while the
parallel beating family is indicated by //. The vertical black lines indicate the separation
(solid line) and reattachment (dashed line) locations for each wave family. A high value
of the optimal bispectral content is observed in the separated flow region for the oblique
mode coupling resulting in 2-D spanwise organisation of the flow in the case of parallel
beating waves, confirming that most of the quadratic couplings result in k3 = 0 (see green
line) for such an arrangement. In the same region, nonlinear couplings between the oblique
modes resulting in 3-D (parallel beating waves) and 2-D and 3-D (crossing waves) flow
characteristics begin to develop within the separation bubble. After the shock interaction,
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Figure 13. Norm of the time-filtered wavenumber bispectrum. The filter is applied to the target sensor G3,
which spans all x locations. It retains either the frequencies associated with the low-frequency dynamics
(f2 — f1) (indicated in the legend with G3(f> — f1)) or those associated with the high-frequency dynamics
(f2 + f1) (indicated in the legend with G3(f2 + f1)). Symbols are used when the lines overlap perfectly. The
green diamond symbols indicate the presence of self-quadratic couplings, i.e. fi + f1 =2f1 and fo + fo =
2 f>. The vertical black lines indicate the separation (solid) and reattachment (dashed) locations.

quadratic couplings saturate, with significantly higher plateau levels in the case of the
crossing waves, especially if 3-D interactions (k3 = 2) are considered. Those associated
with the occurrence of the turbulent energy cascade dominate, confirming the occurrence
of the turbulent energy cascade, which is observed to be less pronounced in the case of
parallel beating waves for k3 = 2.

The norm of the optimal bispectrum does not directly indicate the frequency range in
which the quadratic couplings occur. In this context, the time-filtered optimal bispectral
maps are computed. They are obtained by bandpass filtering in time the target signal
G3(k1 + ko, t — t). The filter retains either the frequencies associated with the low-
frequency dynamics (f> — f1) or those associated with the high-frequency dynamics
(f> + f1). This enables the whole frequency spectrum to distinguish whether the
predominant contribution comes from quadratic interactions occurring at low or high
frequencies. In each plot of figure 13, the separation (solid line) and reattachment (dashed
line) locations are shown to ease visualisation of the separated region. In addition, the
colour code uses black for the unfiltered target signal G3, red for low-pass filtering and blue
for all signals that retain only the high-frequency range. The total frequency spectrum for
the 2-D periodicity in the case of the crossing arrangement (see panel a) is fully dominated
by quadratic couplings occurring at high frequency (f2 + f1), and the contribution of
nonlinear couplings at low frequency is marginal. The opposite situation is observed for
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the same 2-D organisation of the flow in the case of parallel beating waves (see panel
¢). Most of the nonlinear interaction is detected in the low-frequency range (see the red
diamonds overlapping the black line). The high value of the optimal bispectral content
through the separated region again supports the observation that nonlinear coupling due
to oblique modes in the specific case of parallel arrangement is responsible for the
appearance of 2-D flow features at the separation point. These flow features are in turn
sustaining the low-frequency motion of the head shock. In short, in the wavenumber
space, the trace of the low-frequency unsteadiness is two dimensional. Indeed, for the
crossing waves with periodicity k3 = 0, only quadratic couplings acting at high frequency
are observed, and in § 4 we have observed that in such a case the interaction is steady.
The 3-D periodicity requires careful analysis, as the quadratic couplings also take into
account beatings of a different nature. Although most of the contribution to the total
bispectral content comes from the low-frequency (crossing waves) and high-frequency
(parallel beating waves) range, a complete overlap of the plots is not observed. The full
bispectral power is only recovered when the self-quadratic coupling of each single oblique
mode is taken into account, i.e. f1 4+ f1 =2f1 and f> + f> =2 f> in the frequency range
that best maximises the total quadratic power. This is shown in panels (b) and (d) with the
green diamond symbols.

5.3. The direction of quadratic couplings

Information on the directionality of the quadratic motion can be extracted by mapping
the norm of the bispectrum into the time-delay space domain, as shown in figure 14.
The contours represent the norm of the bispectral power, and information on the time
periodicity and direction of the motion is available from its pattern and the slope associated
with it. Note that the contours are saturated such that low amplitude activity can be
highlighted. The inverse of the ratio of t to x directly gives the value of a propagation
velocity associated with the quadratic coupling under consideration, normalised with
the external velocity, i.e. Up/Ux. In each map, the location of the separation and
reattachment points is indicated by black vertical lines, solid for the former and dashed
for the latter. Propagation velocities deduced from the map in various regions of the flow
thus delineated are listed in table 7. Note that the streamwise evolution has been divided
into three regions: from the forcing location (xfycing = 20) to the separation point, within
the recirculating region and downstream of the reattachment point.

Downstream motion is observed for crossing waves, regardless of the 2-D (see
figure 14a) or 3-D (see figure 14b) nature of the flow structures. However, the fundamental
periodicity is different. A short period corresponding to T = 1/(f1 + f>) is observed for
k3 = 0. This result is consistent with the previous observations, for which most of the
quadratic activity concerns the high-frequency range of the total spectrum (see figure 13a).

Indeed, the upstream region of the flow is dominated by slow periodic dynamics
corresponding to T = 1/(f> — f1), in agreement with the results presented in the previous
section (see figure 13b). But, as seen in this plot, there are also quadratic couplings of
lower amplitude associated with self-interactions of oblique modes towards frequencies
2f1 and 2 f5. In the time-delay domain of figure 14, the sum of these two waves of
similar frequencies is visualised, through beating, as a wave at frequency (f1 4+ f2) being
modulated in amplitude by a wave at frequency (f] — f>). It hence results in spots of high-
frequency ripples with a width equal to 7/2 as seen, for instance, in the first half of the
separated region or downstream of the reattachment point. In the Fourier space, however,
the only contribution to the ( f, — f1) range comes from the quadratic interaction between
modes 1 and 2.
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Figure 14. Time-delay map extracted from the real part of the wavenumber bispectrum. The first row shows
the crossing waves and the second row shows the parallel beating waves. The vertical black lines indicate the
separation (solid) and reattachment (dashed) points.

Although barely visible, the same observations apply to the parallel beating waves in the
case of k3 = 2 organisation of the flow (see figure 14d). Both crossing and parallel beating
wave cases for k3 = 0 are free of this self-quadratic interaction, since the self-coupling of a
single mode towards zero wavenumber corresponds to zero frequency. Consequently, there
is no secondary modulation in time in figures 14(a) and 14(c).

In all these cases, the quadratic power couplings move from upstream to downstream,
with the exception of the 2-D parallel beating waves. In this case, figure 14(c) clearly
shows that there is an upstream motion of period 7 = 1/(f2 — f1) within the separated
region. The corresponding value of the propagation velocity is Up/Us, = —0.17. Such
a value is in agreement with the values suggested by Larchevéque (2016), Bonne et al.
(2019), and Threadgill e al. (2021). Moreover it falls in the range of values observed in
Mauriello et al. (2022), who studied transitional SBLI in a similar flow configuration and
observed an upstream motion from the reattachment point towards the separation point.
The value they found is Up/Ux = —0.09 for the features sustaining the low-frequency
dynamics and Up /U = —0.25 for the frequencies falling in the medium range. In our
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Xforcing < X < Xsep Xsep < X < Xreatt X > Xreatt
2-D crossing waves 0.98 0.53 0.76
3-D crossing waves 0.57 0.52 0.52
2-D parallel beating waves —-0.17 —-0.17 0.12
2-D parallel beating waves 0.52 0.52 0.53

Table 7. Value of the propagation velocity of the bispectral content normalised by the external velocity, i.e.
Up/Uxo, for each region of the flow: from the forcing location to the separation point, within the recirculating
region and downstream of the reattachment point.

case, after x = 197, the direction of the motion changes to downstream, with a speed of
Up =0.12U .

5.4. Phenomenology of the nonlinear interactions

The basic phenomenology can now be proposed as follows. As the oblique modes convect
downstream in the separated shear layer, they grow in amplitude, developing a high
amplitude towards the end of the separation bubble, achieving a maximum quadratic power
transfer. After this power input, structures having zero spanwise wavenumber and period
T =1/(f2 — f1) split into two parts just upstream of the reattachment point. A part is
convected downstream with the reattaching flow, and is possibly reinforced by further
quadratic interactions between the oblique modes still persisting in that region. The other
part enters the lower region of the separated zone and is subject to an upstream propagation
up towards (and beyond) the separation point. This upstream propagation occurs without
further quadratic power supply because of the low oblique mode amplitude in that region.
The separation point and the reattaching boundary layer therefore undergo motion similar
in amplitude but opposite in sign. In this context, the work of Dupont et al. (2006) noted
that the rear part of the interaction for an oblique reflected shock geometry also exhibits
some degree of unsteadiness that is in quasi-linear dependence with the reflected shock
motion, reinforcing the idea that the separation bubble is in a breathing motion. In addition,
the work of Touber & Sandham (2009) on a turbulent shock-induced separation bubble
interaction had already observed a jump in the velocity phase associated with the wall
pressure perturbations. However, in their work, this jump is observed to occur at one-third
of the length of the separation zone. In the present work, the shift in the velocity direction
occurs near the point of minimum Cy at x =200 (see figure 7), after which the skin
friction begins to increase. The same observation applies to the other time-delay maps,
although instead of a net change in direction, an increase in bispectral activity is observed.

We observed in § 5.2 that, at the separation point, both crossing waves and parallel
beating waves experienced quadratic couplings towards a wavenumber equal to zero (see
figures 1la and 1lc¢). It is now possible to add that the nonlinearities observed at the
separation point in the case of parallel beating waves result from quadratic interactions
of the oblique modes that, after passing through the shock interaction, succeed in entering
the separation bubble via the reattachment point and travelling up to the separation point.
These triadic interactions result in 2-D structures. In contrast, the 2-D structures that
populate the separation point in the case of crossing waves are the result of quadratic
interactions in the incoming boundary layer. They begin to develop between the oblique
modes and among families of them.

Irrespective of the 2-D or 3-D spanwise structure of the flow and the specific
arrangement of the oblique modes in the two families, an upstream motion is observed
for x < 20. This point corresponds to the location of the forcing Xfycing, and since the
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Figure 15. Streamwise-frequency distribution of the norm of the frequency-transformed wavenumber
bispectrum for selected wavenumber pairs. (a,b) Crossing waves; (c,d) parallel beating waves. The white
vertical lines indicate the separation (solid) and reattachment (dashed) points.

perturbations are introduced as density perturbations (leading to pressure perturbations),
they are free to move in all directions, including upstream within the subsonic layer of the
compressible boundary layer.

5.5. The frequency-space organisation of the quadratic coupling
The time delay 7 introduced in (5.4) can be exploited to expand the wavenumber
bispectrum Bis1 2,3 (kz;, kz,, T) into a Fourier series in time . This results in the frequency-

transformed wavenumber bispectrum Bis, 2.3(ks,, kzy, fu) for discrete frequencies
Jfn =n/T such that

+ 247
Bisi23(kz . kzy )= ) Bisi (ke oy, fa) €77 (5.5)
T
N==17a7

The space transform provides information about the nature of the structures, while the
time transform allows the amount of nonlinear content associated with each frequency
and each streamwise location to be determined. Overall, the frequency-transformed
wavenumber bispectrum directly highlights the relevant frequency content of the nonlinear
coupling involved between selected wavenumbers. For simplicity, the subscript ; is
dropped in the following discussion.

Figure 15 shows the norm of the space—frequency-transformed bispectrum for each
combination of oblique waves. The streamwise organisation of the quadratic interactions
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is plotted for each frequency. Only results for selected wavenumbers k; + ky = k3 =0
(left column) and k; + ko = k3 =2 (right column) are presented. Note that, for k3 =0,
the wavenumber bispectrum is real, resulting in a time-Fourier series that is even, i.e.
symmetric with respect to the origin f = 0. On the other hand, for k3 = 2, the bispectrum
is inherently complex and the positive and negative frequency regions are no longer
symmetric, even in the Hermitian sense. If we take into account the asymmetries inherent
in the different arrangements of the waves, the present bispectra are therefore able to reflect
these spanwise asymmetries.

In the case of the crossing wave family, figure 15(a) shows that from the reattachment
point onwards, the quadratic coupling, associated with the transition mechanism, takes
place. The cascade process starts from the forcing frequencies and fills the spectrum
with exact nonlinear harmonics of the fundamental frequency, becoming increasingly
difficult to visualise in the plot because of their sharp frequency distribution and the use
of the logarithmic scale. Evidence of quadratic interactions is clearly detected in the low-
frequency range for k3 =2 (see figure 15b), and confirm the results presented in table 6.
Specifically, this confirms that 2-D flow features k3 = 0 lack the low-frequency dynamics.

Figure 15(c) shows that high values of bispectral content are observed for parallel
beating waves when k3 = 0. Nevertheless, at the separation point as well as upstream and
downstream of it, the range of frequency associated with quadratic couplings spreads up
to f ~0.005. On the contrary, this combination of waves, when quadratically interacting
to give k3 =2, does not support the low-frequency dynamics, and only the frequency
corresponding to the sum of the forcing contribution emerges (see figure 15d). Note
that this frequency is negative because the wavenumber k3 =2 under consideration is
positive. For the parallel family, k&3 =2 can be obtained from oblique modes only by
considering an additive quadratic coupling, i.e. the one involving k; =+ and k; = +8.
It translates, through the ansatz (2.4), into an (—w;, —w;) coupling into the frequency
space. As a consequence of the Hermitian symmetry of the space-time transform, the
quadratic interaction resulting in the positive (w1 + w») frequency is found for the negative
wavenumber k3 = —2.

6. Additional considerations

So far we have focused on two cases with a difference-mode nonlinear interaction, in
addition to the baseline case where the difference-mode was absent. In this section we
expand the discussion to include two additional forcing configurations as well as a case
with a different frequency combination.

6.1. A beating crossing combination

The spectral analysis of the pressure fluctuations at the wall showed that an approximately
steady interaction (lacking 2-D low-frequency content) is observed in the case of the
crossing waves family, while an unsteady interaction was found for the parallel beating
arrangement. A third combination of waves that combines both parallel waves and crossing
waves is considered next. The aim is to explore whether this new arrangement of waves
still retains the properties of parallel waves to stimulate unsteadiness as well as the ability
of crossing waves to facilitate the breakdown to turbulence. The arrangement is called
beating crossing waves and it is expressed through the notation of (4.2) as

Beating crossing waves: p'(x, z, ) = p|" (x, 2, 1) + p| (x, 2, 1) + p5 (x, 2, 1)
oGz, 6.
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Figure 16. Panel (a) shows the streamwise evolution of the skin friction coefficient C s for all combinations
of waves. The black dashed horizontal lines indicates C ¢ = 0. Panel () plots the spectral decomposition of
the wall pressure fluctuation for the sole beating crossing waves case. The white vertical lines indicate the
separation (solid) and reattachment (dashed) points.

Figure 16(a) plots the streamwise evolution of the skin friction coefficient, comparing
the different cases. The beating crossing waves have the shortest separation zone
with Ly /8%, =44 (Lsep/87,,, =73.4) and result in a transitioning boundary layer
downstream of the interaction. This result is consistent with the observation that this family
possesses a double crossing wave combination and, as observed from the previous results,
the breakdown to turbulence is facilitated.

Since double parallel beating waves are also included, low-frequency unsteadiness is
expected to develop. Figure 16(b) shows the spectral decomposition of the wall pressure
fluctuations for the beating crossing waves. The same normalisation and structure of the
spectra shown in figure 8 is followed here. Downstream of the reattachment point and
starting from the forcing frequencies, the energy content cascades over all their harmonics
and fills the spectrum up to high frequencies consistent with the results extracted from
the C plot that indicates transition to turbulence. When looking at the separation point,
beating crossing waves show high energy activity that results in an unsteady interaction. As
observed, the parallel combination induces slow motion at St;,, = 0.037. For the beating
crossing family, the head shock moves at St;,, =0.028. This difference is due to the
change of L;,;. Hence, the inclusion of the parallel combination of the two wave families
proves once again to be responsible for the slow 2-D motion of the head shock, but this
time combined with transition to turbulence. Note that all the quadratic metrics used in
§ 5 to analyse the crossing and parallel cases have been applied to the beating crossing
combination. The results, not presented here for the sake of conciseness, confirm that this
more complex family combines the individual quadratic features of the two simpler cases.

6.2. A streaky crossing combination

Low-speed velocity streaks are often present in laminar boundary layers, for example,
when free-stream turbulence or roughness modifies the laminar base flow. They are steady
in time (w = 0), but have a non-zero spanwise wavenumber (Schmid & Henningson 2001).
Hence, it is of interest to take advantage of them to modify the simple crossing case to
achieve a 2-D spanwise organisation of the flow at the separation point without altering
the incoming frequency content and verify whether the slow bubble breathing motion
occurs. The targeted nonlinear coupling involving the streaks and the oblique modes
will inherently result in the same frequency as the corresponding nonlinear coupling
between the sole oblique modes, but it must result in k&, =0 in the separated flow
region. Consequently, the spanwise dimension of the streaks must be carefully chosen.
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Figure 17. Streaky wave family: power spectra of the wall pressure fluctuations (a) and wavenumber
bispectrum (b) for sensor G3 located at the separation point, denoted by the white solid vertical lines
on plot (a).

For this purpose, half of the spanwise dimension of the 3-D unstable waves was chosen
(Bstreak = 2Bom)- The mathematical representation of the streaks is therefore given by
Prrear X5 2, 0) =Real[Ag p(y)e! ?P]. By adding the streak to the crossing waves family,
the new combination we are considering is called streaky crossing waves, and it is
mathematically described by

Streaky crossing waves: p'(x, z, 1) = p{+(x, z,1) + pé_(x, z,1)+ p;trmk(x, z, 0).
(6.2)

By following the same mathematical approach presented in § 5, for the streaky crossing
family, we find that the only nonlinear combination involving the oblique modes with
frequency (f> — f1) is given by the same relation of (5.2). Nevertheless, if the contribution
of the streak is included, many possible nonlinear combinations of the triad of modes
can result in the (f; — f1) frequency. The simplest ones are two consecutive quadratic
coupling or a single cubic coupling. The five simplest possible nonlinear couplings towards
the low-frequency range therefore read

B+ B =28 (quadratic coupling),
(B+ B)+28=4B (consecutive quadratic couplings),
fir=f—fi<—{ (B+B)—28=0 (consecutive quadratic couplings), (6.3)
B+ B+28=48 (cubic coupling),
B+ B8 —28=0 (cubic coupling).

The first line corresponds to interactions between oblique modes only, whereas the four
subsequent lines are related to couplings involving both the oblique modes and streaks.
Thus, the streaky family potentially results at low frequency in both 2-D and 3-D flow
features, once either quadratic or cubic couplings involving streaks are taken into account.

Figure 17(a) shows the spectral content of the pressure fluctuations field extracted at the
wall for the streaky crossing case. In contrast with the simple crossing arrangement, a low-
frequency activity of mostly constant level is found in the separated flow region. It results
in a low-frequency power at the separation point being 1.5 orders of magnitude larger for
the streaky case compared with the original crossing case. Although such a value is more
than four orders of magnitude lower than the one found for the parallel arrangement, it is a
clear indication that streaks nonlinearly promote flow structures at low frequency that are
sustained in the separated flow region.
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Recalling the results from Mauriello (2024) and from § 5, it is tempting to postulate
that such a sustainability is related to two-dimensionality. Candidate nonlinear couplings
having such a property correspond to lines 3 and 5 of (6.3). The former, being quadratic
in nature, can be tested using the bicoherence defined in (5.4). Its imprint on the k; — k3
bispectral map at separation plotted in figure 17(b) would include the primary interaction
between oblique modes at (k1, k2) = (1, 1), already present in the simple crossing case,
as well as the secondary interaction between the structures resulting from the primary
interaction and the streaks at (2, —2).

No such extra quadratic coupling is found when comparing figures 11(a) and 17(b) and,
in fact, the norms of the bispectra at separation are similar for the pure crossing and
streaky crossing cases for all wavenumber pairs under consideration. This demonstrates
that, at least in the separated region of the flow, streaks do not contribute to quadratic
coupling. Moreover, bicoherence levels are generally lower for the streaky crossing case.
This, coupled with similar norms for the bispectra, is a clear indication that the extra power
found in the separated region for the streaky case in figure 17(a) does not originate from
any additional quadratic coupling.

The cubic coupling hypothesis appears therefore as the most probable explanation. Note
that it could be formally tested by computing the wavenumber trispectrum. However
its definition involves four distinct time series, three time delays and only limited
obvious hypotheses to reduce the dimension of the input space they span. This makes its
computation quite cumbersome, even if restricted to a small number of wavenumber triads.
As a consequence, a formal demonstration of the actual occurrence of cubic couplings
involving streaks at the separation point has not been carried out.

Table 8 integrates table 6 with all possible combinations at both low frequency (w> —
1) and high frequency (w; + w1) for the new families of oblique mode, i.e. the beating
crossing waves and streaky crossing waves. The couplings provided in table 8 supports
the results presented in §§ 6.1 and 6.2. Low-frequency spectral content emerges at the
separation point when oblique modes are arranged in parallel or include structures that
result in a spanwise wavenumber (k;) of zero, similar to what we have observed with the
streak. These 2-D structures are responsible for the phenomenon of the low-frequency
unsteadiness.

6.3. Effect of the frequency

At this point it is important to make a few more comments. First, both parallel beating
waves and simple crossing wave configurations had the same injected energy level (see
table 3). Despite that, they exhibited very differing characteristics in terms of their
influence on the unsteady dynamics and transition process. Secondly, regardless of the
specific configuration, the system was forced with two high frequencies, such that their
difference fell in the low range of the frequency spectrum, i.e. ASt;, 2~ 0.04. Although
the forcing is set in the high-frequency range, thanks to quadratic coupling we observed
low frequencies emerging in the spectrum. Nevertheless, it would be interesting to observe
the possible consequences for both the low-frequency dynamics and the transition process
when the resulting, quadratically induced, Strouhal number falls within a higher range of
the frequency spectrum. To this end, we decided to investigate the arrangement of parallel
beating waves since they resulted in a strong response at the quadratic couplings in the low-
frequency dynamics. The forcing frequency was chosen so that the frequency separating
the motion of the two parallel wave families is ten times larger than for the original one,
with AS?#;,, ~0.4. This (similar) value was observed in the work of Mauriello (2024),
in which the interaction between an incoming laminar boundary layer and an impinging
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Low frequency High frequency
(w2 — w1) krr (w2 + w1) kur
Crossing waves:
(-1, B) x (—w2, —P) B+B=28 2 B—B=0 0
Parallel beating waves:
(-1, f) X (w2, B) B—B=0 0 —B-B=-28 -2
Beating crossing waves:
(w1, ) X (—w2, £6) B—B=0 0 B+pB=2p 2
B+pB=2p 2 B—p=0 0
—-B—B=-28 -2 -B+pB=0 0
—B+p=0 0 —B—p=-28 -2

Streaky crossing waves:

(—o1, B) x (—w2, —B) x (0, 28) B+p=2p 2 B—B=0 0
B+B+28=48 4 B—B+28=28 2
B+B—-26=0 0 B—B—-26=-28 -2

Table 8. Summary of the couplings for all modal forcing combinations. The subscript ‘7 r’ and ‘gyp’
in k indicate the low-frequency dynamics (w; —w;) and the high-frequency dynamics (w2 + wp),
respectively.
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Figure 18. Power spectrum of the wall pressure fluctuations for the parallel beating waves family with forcing
frequency difference ASy, =~ 0.4. The white vertical lines indicate the separation (solid) and reattachment
(dashed) points.

int

reflected shock system at M = 1.7 was studied, and the nonlinear coupling between
the multiple boundary layer modes and the flow features at the separation point were
examined. In that work, it was found that the resulting nonlinearities occurring between
oblique modes of different frequencies were progressively damped when the frequency
difference exceeded ASt;,, = 0.35.

Figure 18 shows the power spectrum of the wall pressure fluctuations for the
parallel beating waves with a medium forcing frequency difference of ASt;,, >~ 0.4. For
simplicity, in the following discussion we refer to this case as M F forcing, whereas the
original parallel beating case with the low forcing frequency difference of ASt;, >~ 0.04,
whose corresponding power spectrum is plotted in figure 8(b), will be referred to as LF
forcing.

When comparing figures 8(b) and 18, it appears that the region downstream of the
reattachment point experiences a different transition state, with a slightly more developed
energy cascade in the case of M F forcing. Such a difference is consistent with the slightly
reduced size of the separated region in that case. One can postulate that the alteration
of the early transition is due to the nonlinear process that broadens the frequency ranges
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Figure 19. Wavenumber bispectra of the parallel beating waves family with forcing frequency difference
ASy,, = 0.4 for the 2-D (k;; = 0) coupling: time-delay map of the real part (a) and norm of the time-Fourier
transform (b) for the streamwise coordinate. The vertical lines indicate the separation (solid) and reattachment
(dashed) points. The horizontal dashed lines in panel () denote the time boundary of a single period since data
have been duplicated through time periodicity for better visualisation.

" associated with the nth nonlinear harmonics of the oblique modes. The broadening
is progressively achieved through a succession of forward and backward interactions
involving the two kinds of oblique modes: (0") X (Xw;) — (0" £ w;) followed by
(0" £ w1) X (Fan) = (0" £ w1 Fw2). The frequency extent of the process therefore
scales with the (wy — wq) difference, making the M F-forcing case result more rapidly
in the overlapping of the broadened frequency ranges, thus leading to a fuller spectrum at
earlier stations.

Besides the transition mechanism, the larger frequency difference also affects the
low-frequency dynamics. Note that the lack of energy content for frequencies below
f =0.0035 for the M F-forcing case is a direct consequence of the medium frequency-
difference forcing that results in a periodicity in time being inversely proportional to
ASty,,. The power contents of the lowest frequency ranges, being equal to Aw/(27) for
both cases, is rather similar alongside the last third of the separated region (180 < x < 220)
and downstream of the reattachment. In the first two thirds of the bubble, however, a
significantly lower power is found for the M F-forcing case compared with the L F'-forcing
case.

The power content of the low-frequency range in the separated region having been
associated in § 5, for the parallel case, with 2-D quadratic coupling, the various bispectral
metrics described in that section have also been applied to the M F-forcing case. Overall,
these analyses yielded similar results to those of the L F-forcing case, but two noticeable
differences were found in the separated region. The first is related to the upstream
propagation velocity of the 2-D bispectral content, which is found to be about 2.5 times
larger than for the L F-forcing case, as deduced from the time-delay map of the norm of
the bispectrum for the k,; = 0 coupling, plotted in figure 19(a). It is worth noting that a
similar velocity ratio was found in Mauriello et al. (2022) between the lower and upper
frequency ranges of the low-frequency, upstream propagating structures resulting from
quadratic interactions between multiples oblique modes.

Beyond a velocity change, the quadratically induced structures of the M F-forcing case
are also subject to an extra damping when moving upstream in the separated region. The
norm of the time-Fourier-transformed wavenumber bispectrum associated with the 2-D
(k3 = 0) coupling experiences a 1.5 order of magnitude drop between x = 180 and x = 155,
as seen in figure 19(b). In the first half of the bubble this yields a difference of more than
one order of magnitude between the bispectral powers at the lowest frequency found in
the L F-forcing and M F-forcing cases. This fully explains the similar differences seen on
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the power spectrum in figures 8(b) and 18. It therefore seems that the downstream part of
the separated region acts as a low-pass filter (in the wavenumber space) with respect to the
2-D structures originating in the quadratic coupling of oblique modes. This is reminiscent
of the low-pass filter nature of the shock/bubble system suggested by Touber & Sandham
(2011) for a turbulent interaction, even if the upstream part of the separated region was
considered in this work. Moreover, this is compatible with the mechanism suggested by
Bugeat et al. (2022).

7. Conclusions

The present work has provided a comprehensive investigation into the unsteady dynamics
of transitional SBLIs at Mach 1.5, employing DNS, deterministic forcing and high-order
spectral analysis. The study has successfully elucidated the distinct roles of different
oblique mode configurations in triggering low-frequency unsteadiness and transition
to turbulence. The results unequivocally demonstrate that these two phenomena are
decoupled, with the transition to turbulence primarily driven by nonlinear interactions of
high-frequency unstable modes (oblique breakdown), while low-frequency unsteadiness
arises from the quadratic coupling of low-frequency components. The study further
underscores the critical role of the specific arrangement of oblique modes in influencing
the flow dynamics. The presence of crossing oblique modes, characterised by opposite
orientation of spanwise wavenumbers, was found to facilitate the transition to turbulence.
In contrast, parallel oblique modes, with the same orientation of spanwise wavenumber,
were more effective in triggering low-frequency unsteadiness. The research also confirmed
that the trace of low-frequency unsteadiness in wavenumber space is distinctly two
dimensional, originating from nonlinear interactions of oblique modes downstream of the
shock interaction that subsequently propagate upstream within the separated flow region.

Additional mode configurations were explored. The beating crossing waves
configuration, which combines aspects of both parallel and crossing waves, was shown
to exhibit both low-frequency unsteadiness and transition to turbulence, confirming that
these phenomena can coexist under certain conditions. Then the streaky crossing waves
configuration was investigated, where low-speed streaks are added to the crossing waves.
This configuration leads to low-frequency unsteadiness involving cubic interactions,
further highlighting the role of 2-D flow structures in this phenomenon.

Finally, the impact of forcing frequency was examined by considering a case where
the difference between the forcing frequencies is increased. It is observed that, when
the difference between the forcing frequencies falls within a specific range, identified as
ASty,, < 0.4, it facilitates the generation of low-frequency unsteadiness, suggesting that
the bubble acts as a low-pass filter for nonlinear interactions.

The insights gleaned from this study contribute significantly to our understanding
of the intricate dynamics of transitional SBLIs. The findings not only enhance our
comprehension of the underlying mechanisms but also offer potential avenues for future
research and the development of control strategies. For instance, the identification of
specific oblique mode arrangements that favour or suppress low-frequency unsteadiness
and turbulence transition could pave the way for flow control techniques aimed at
mitigating the detrimental effects of SBLIs in high-speed flows. The observed 2-D nature
of low-frequency unsteadiness in wavenumber space could also be leveraged to develop
simplified models for predicting and controlling such fluctuations.
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