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Abstract

This study utilizes U.S. Patent Office data to explore potential improvements in the patent
examination process through machine learning. It shows that integrating machine learning
with human expertise can increase patent citations by up to 26%. Using machine learning
predictions as benchmarks, I find that the early expiration rate of granted patents positively
correlates with examiners’ false acceptance rates. These errors negatively impact public
companies’ operational performance and reduce successful IPO or M&A exits for private
firms. Overall, this study highlights significant social and economic benefits of incorporating
machine learning as a robo-advisor in patent screening.

I. Introduction

The strength and vitality of the U.S. economy depends directly on effective
mechanisms that protect new ideas and investments in innovation and creativity.
(U.S. Patent and Trademark Office)

The patent system grants firms temporary monopoly rights over their inventions,
providing crucial incentives for innovation and contributing to technological growth in
the economy (see, e.g., Nordhaus (1969), Arrow (1972), and Mansfield (1986)).
However, there has been considerable criticism of the U.S. patent system, alleging that
it grants many low-quality patents through an inefficient screening process (see, e.g.,
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Heller and Eisenberg (1998), Jaffe and Lerner (2011), Feng and Jaravel (2020), and
Schankerman and Schuett (2022)). Critics argue that inefficient screening of patent
applications reduces, instead of increasing, firms’ incentives to innovate (see, e.g.,
Cornelli and Schankerman (1999), Lemley and Shapiro (2005), and Bessen and
Maskin (2009)).

Several factors contribute to this problem. First, patent examiners at the U.S.
Patent and Trademark Office (USPTO) face increasing time pressure. Patent appli-
cations surged from 345,732 in 2001 to 643,303 in 2018, as shown in Figure 1, but
examiner numbers did not increase proportionally.1 As a result, although examiners
spend only about 19 hours per application, the average processing time is around
25months (Frakes andWasserman (2017)). Second, the USPTO struggles to recruit
and retain top talent due to competition from the private sector (Jaffe and Lerner
(2011)). Third, internal incentives at the USPTO tend to favor approvals over
rejections; examiners are often evaluated based on the volume of applications
processed, and approving an application typically requires less effort than rejecting
it (Merges (1999), Frakes and Wasserman (2015)).

Motivated by these issues, this article explores whether combining human
expertise with machine learning algorithms can improve the patent screening
process. Machine learning’s ability to quickly analyze large data sets could poten-
tially alleviate time and resource constraints faced by examiners. Moreover, algo-
rithms are not subject to human biases or agency problems like career or
compensation concerns. Reflecting this potential, the USPTO has begun seeking
help from artificial intelligence to enhance examination efficiency.2

FIGURE 1

The Number of Patent Applications and Patent Examiners at the USPTO From 2001 to 2018

Figure 1 shows the number of patent applications and patent examiners at the USPTO from 2001 to 2018. Each blue bin
represents the number of patent applications and the yellow line represents the number of patent examiners. Data source:
Patent Statistics Chart and Patent Examination Data from the USPTO website.
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1Data source: U.S. Patent Statistics Chart and Patent Examination Data from the USPTO website.
2USPTO director Andrei Iancu told the Wall Street Journal, “Our need is high and technology has

advanced, so this is a good time to take advantage of these new tools to help our examiners.” For the full
news story, please see https://www.wsj.com/articles/patent-office-seeks-help-from-ai-11572297295.
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Using detailed data on granted and rejected patent applications from the
USPTO, I train a supervisedmachine learning algorithm (referred to asMLQuality)
to predict patent quality based on application characteristics. These characteristics
include textual features of patent claims, similarity measures to prior patents,
backward citations, application originality, technological classes, and others. Patent
quality is measured by forward citation counts, a standard measure in the literature
(see, e.g., Trajtenberg, Henderson, and Jaffe (1997), Hall, Jaffe, and Trajtenberg
(2005)). Out-of-sample predictions reveal that the current examination system
grants many low-quality patents and rejects many high-quality ones within each
art unit.3

Next, I test whether human examiners can do a better job with the help of
Algorithm MLQuality. The main challenge here is the missing counterfactual: I do
not observe actual quality information for applications rejected by humans but
accepted by the algorithm. To address this selection issue, I exploit the quasi-
random assignment of applications to examiners with different leniency levels
within each art unit.4 Following Kleinberg, Lakkaraju, Leskovec, Ludwig, and
Mullainathan (2017), I divide examiners into two groups based on the median grant
rate within each art unit, treating these two groups as two independent patent
screening systems. Figure 2 illustrates this identification strategy using a hypothet-
ical Art Unit XYZ, where lenient examiners approve 700 applications, and strict

FIGURE 2

An Illustrative Example of Using Examiner Leniency to Evaluate the Screening Performance of
a Machine Learning Algorithm

Figure 2 provides an illustrative example of using examiner leniency to compare the performance of actual examiners and a
machine learning algorithm.
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3There are nine patent examining group centers, with each consisting of several art units examining
patents in the relevant field.

4Because of this quasi-random assignment, I argue that the average quality of patent applications
reviewed by examiners with different levels of leniency is similar. Several recent studies exploit this
feature to make causal inferences (see, e.g., Maestas, Mullen, and Strand (2013), Sampat and Williams
(2019), and Farre-Mensa, Hegde, and Ljungqvist (2020)).
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examiners approve 500. In this example, I rank the 700 patents granted by lenient
examiners based on predicted quality and use the algorithm to keep the 500 highest-
quality patents. Then, I compare observable quality measures (e.g., forward cita-
tions) between these 500 patents granted by lenient examiners with the help of an
algorithm and the 500 patents granted by strict examiners.

Intuitively, we would expect strict examiners to be the better examiners,
given that they set a higher bar for approving patent applications. Nevertheless,
lenient examiners, with the help of MLQuality, significantly outperform strict
examiners, achieving a 26% increase in patent citations. This suggests that lenient
(underperforming) examiners, when helped by the algorithm, can outperform strict
(better-performing) examiners. Additionally, the analysis provides suggestive evi-
dence on why human examiners may struggle with screening. Key predictors of
patent citations include backward citations, text-based numerical vectors, similarity
measures, and the originality of the application—factors that require considerable
time and attention to assess properly.

Algorithm MLQuality assumes that the examiners’ objective is to assess and
grant higher-quality patent applications as measured by forward citation counts. To
relax this assumption, I use examiners’ past screening decisions as proxies for their
objectives. Given the increasing time constraints on examiners, it is important to
assess whether their screening decisions have deteriorated over time. To study this, I
train another machine learning model, MLDecision, which maps patent application
characteristics to examiners’ past screening. I then apply MLDecision to predict
screening decisions for more recent applications.

Evaluating MLDecision’s performance faces the same missing counterfactual
problem as MLQuality: the actual quality information for applications rejected by
humans but accepted by the algorithm is not observable. To address this problem, I
employ the same identification strategy as before. Starting with patents granted by
lenient examiners in each art unit, I reject those with the highest predicted proba-
bility of rejection until the grant ratematches that of strict examiners. I then compare
the quality of patents granted by lenient examiners assisted by MLDecision with
those granted by strict examiners, both having observable citation counts and the
same acceptance rate. This comparison reveals significant improvements in patent
quality among recent applications in the out-of-sample test set: decisions made by
lenient examiners assisted by MLDecision result in approximately a 17% increase
in patent citations compared to those made by strict examiners.

Using the discrepancies between machine learning predictions and actual
examiners’ decisions, I further explorewhether examiner-level characteristics, such
as gender and workload, affect their screening performance. For each art unit and
year, I calculate the number of applications accepted by examiners and rank all
applications based on predicted citations (Algorithm MLQuality) or acceptance
probabilities (AlgorithmMLDecision). I then hypothetically accept the same num-
ber of applications as the examiners did, according to this ranking. Each application
thus has two decisions: the examiner’s actual decision and the algorithm’s hypo-
thetical decision. I define a “false accept”when the examiner accepts an application
that the algorithm rejects and a “false reject” when the examiner rejects an appli-
cation that the algorithm accepts. I find that busy examiners make more mistakes of
both types, suggesting time constraints may reduce screening performance. More
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experienced examiners make fewer false rejections but more false acceptances,
possibly due to compensation incentives favoring acceptance. Lastly, I find no
evidence that male examiners make more mistakes.

The findings so far suggest that human + machine could potentially outper-
form humans alone in granting higher-quality patents. Could human + machine
also improve economic outcomes for firms applying for patents? To investigate this,
I calculate the false acceptance rate of each patent examiner by making use of the
disagreement in screening decisions between human examiners and Algorithm
MLQuality (or MLDecision) among earlier applications. The empirical findings
are summarized as follows: First, falsely accepted patents are more likely to expire
early. Second, public firms holding patents granted by such examiners are more
likely to have worse operating performance than other patent grantees. Third,
affected private firms are less likely to exit successfully through initial public
offerings (IPOs) or mergers and acquisitions (M&As). The above effects are
economically significant. For example, if either AlgorithmMLQuality or MLDeci-
sion were used to help examiners screen patent applications, public firms’ annual
return on assets (ROA) would increase by 35 to 48 basis points (bps), and private
firms’ probability of going public or being acquired in 3 years would increase by 0.9
to 1.6 percentage points. The above results are likely to be causal since patent
applications are randomly assigned to patent examiners whose characteristics are
unlikely to be correlated with firm characteristics.

The rest of the article is organized as follows: Section II discusses the relation
of my article to the existing literature. Section III discusses the institutional back-
ground of the patent examination process. Section IV describes the patent appli-
cation data and sample statistics. Section V discusses the empirical design and
results of the machine learning analysis. Section VI describes the firm-level data
and discusses the empirical analysis of firm performance. Section VII concludes.

II. Relation to the Existing Literature

Myarticle is related to several different strands of the literature. The first strand
is the theoretical and legal literature that explores the question of how to improve the
patent screening process by reforming the patent system itself. For example,
Dreyfuss (2008) argues that the patent system systematically creates type II errors
(i.e., erroneous grants) due to the resource constraints faced by patent examiners
and the incentive structure at the USPTO. Dreyfuss (2008) proposes to increase the
nonobviousness threshold in order to reduce the incidence of type II error (see also,
e.g., Duffy (2008), Eisenberg (2008), and Mandel (2008)). In a similar vein,
Schankerman and Schuett (2022) theoretically show that almost half of all inno-
vations granted patents would be produced even without patent incentives and
argue that the social value of the patent system would be larger if antitrust limits
on licensing were implemented. On the other hand, Scherer (1972), and several
other theoretical papers focus on reforming the optimal patent right (i.e., patent
length and breadth) to improve innovation incentives and quality (see, e.g., Gilbert
and Shapiro (1990), Matutes, Regibeau, and Rockett (1996)). Finally, a set of
related papers studies the cost and benefit of the patent litigation system in affecting
patent validity and scope (see, e.g., Meurer (1989), Choi (1998), Lanjouw and

Zheng 5

https://doi.org/10.1017/S0022109025000213
D

ow
nloaded from

 https://w
w

w
.cam

bridge.org/core . IP address: 216.73.216.162 , on 02 D
ec 2025 at 20:56:50 , subject to the Cam

bridge Core term
s of use, available at https://w

w
w

.cam
bridge.org/core/term

s .

https://doi.org/10.1017/S0022109025000213
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Schankerman (2001), and Bessen andMeurer (2006)). This article presents another
exercise in usingmachine learning to evaluate the performance of the current patent
screening system and provides further discussions on improving the current system
under resource constraints.

The second strand of related literature applies machine learning techniques to
economics and finance research. For example, Athey and Imbens (2017) argue that
although it has not yet been widely utilized in social science research, supervised
machine learning has great potential for prediction problems. Several studies apply
machine learning to issues in finance: for example,measuring asset risk premia (Gu,
Kelly, and Xiu (2020)), predicting stock returns (Rossi (2018)), classifying fund
types (Abis (2017)), and selecting boards of directors (Erel, Stern, Tan, and Weis-
bach (2021)). However, there are also challenges in applying machine learning in
social science research. Kleinberg et al. (2017) use New York judges’ decisions
over bail cases as a setting to discuss unique potential endogeneity problems in
applications of machine learning in social science and provide methodologies to
address these problems using econometric identification schemes.5 Several recent
papers also discuss the potential benefits and challenges of using machine learning
in patent examinations. Krishna, Feldman, Wolf, Gabel, Beliveau, and Beach
(2016) developed an automated prior art search system and found that it reduces
patent examiners’ search effort. On the other hand, Choudhury, Starr, and Agarwal
(2020) find that algorithms such as automated prior art searching systems may be
biased from input incompleteness and argue that human expertise is complementary
to machine learning in mitigating bias. Overall, my article complements the above
literature by showing the potential efficiency gains from combining human exper-
tise with machine predictions.6

Finally, my article also contributes to the empirical literature that studies the
relationship between innovation, firm operating performance, and stock market
performance. For example, Chemmanur, Gupta, and Simonyan (2022) show that
private firmswith a large number of patents and citations per patent have higher IPO
valuations and future operating performance (see, e.g., Bowen III, Frésard, and
Hoberg (2023)). In terms of stock market performance, Hall et al. (2005) empiri-
cally document that a larger number of citations per patent leads to higher market
values for the firms holding the patents (see also, e.g., Zucker, Darby, and Arm-
strong (2002), Eberhart, Maxwell, and Siddique (2004)). Kogan, Papanikolaou,
Seru, and Stoffman (2017) measure the economic value of a patent with the stock
price announcement effect of the patent grant and study its relationship with
aggregate economic growth and total factor productivity (TFP). Alternatively,
Cohen, Diether, andMalloy (2013) show that the stock market does not take firms’
past successes in innovation into consideration when valuing their future innova-
tion. Fitzgerald, Balsmeier, Fleming, and Manso (2021) show that firms with
exploitation innovation strategies are undervalued relative to firmswith exploration

5See also Kleinberg, Ludwig, Mullainathan, and Obermeyer (2015), and Mullainathan and Spiess
(2017) for detailed discussions on how to use machine learning as an applied econometrics tool.

6In addition,my paper discusses and addresses the forward-looking issue existing in both the training
data and the training algorithm itself. For example, when the algorithm is trainedwith future information,
it will result in unfair comparisons between humans and machines in the test set since humans in the test
set are not able to access this future information.
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innovation strategies. Some recent papers also study the effect of examiner char-
acteristics and decisions on firm performance. For example, Kline, Petkova, Wil-
liams, and Zidar (2019) estimate the ex ante value of accepted and rejected patent
applications and study the relationship between patent-induced shocks and labor
productivity. Shu, Tian, and Zhan (2022) test whether the workload of each patent
examiner can predict firms’ future stock market returns and show that investors
underreact to the negative effect of examiner workload on patent quality. My article
complements the above literature by showing the potential economic gains in firm
performance from combining human with machine intelligence in patent exami-
nations.

III. Patent Examination Process and Patentability

A. Patent Examination Process

The patent examination process starts with the filing of a patent application
with the USPTO; theUSPTO then forwards the newly filed application to a relevant
art unit for examination. Next, that patent application is assigned to a patent
examiner, a specialized technology employee with training and experience perti-
nent to the invention, for examination. Though there are no explicit policies
regarding how patent applications are assigned, many recent studies show that
patent applications are randomly assigned to examiners within each art unit: appli-
cations filed first are assigned to the first available examiners (see, e.g., Maestas
et al. (2013), Farre-Mensa et al. (2020), and Sampat and Williams (2019)).

After receiving a patent application, examiners first evaluate the claimed
invention against the existing state of knowledge in the “prior art,” consisting of
patent documents and scientific and commercial literature, to determinewhether the
invention satisfies legal requirements for patentability. If an invention fails the
patentability requirement, the examiner issues an office action rejecting that appli-
cation for unpatentability and explains the reasons for the rejection. Following such
a rejection, the inventor may revise the application and submit it again or withdraw
it. My article focuses only on the first round of all regular nonprovisional utility
patent applications to mitigate the concern that subsequent applications may not be
randomly assigned (Righi and Simcoe (2019)).

B. Legal Requirements for Patentability

The Patent and Copyright Clause of the Constitution (Article I, Section 8,
Clause 8) grants Congress the power “to promote the progress of science and useful
arts, by securing for limited times to authors and inventors the exclusive right to
their respective writings and discoveries.” To fulfill this mandate, the U.S. Patent
Act (35 U.S. Code §101) sets the requirements for patent protection as follows:

Whoever invents or discovers any new and useful process, machine, manu-
facture, or composition ofmatter, or any new and useful improvements thereof,
may obtain a patent, subject to the conditions and requirements of this title.

Under the U.S. Patent Act, an invention is patentable if it satisfies the follow-
ing three criteria: novelty, usefulness, and nonobviousness. Specifically, the novelty
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requirement (35 U.S. Code §102) states that an invention cannot be patented if the
invention has been publicly disclosed before the applicant filed for patent protec-
tion, and the usefulness requirement states that the subject matter must be useful.
Usually, a patent application can easily pass both the novelty and usefulness
requirements. However, the nonobviousness requirement (35 U.S. Code §103),
according to which the invention must represent a nonobvious improvement over
the prior art, is an ambiguous threshold that has attracted much criticism from the
law literature alleging that it leads to the approval of many low-quality patents (see,
e.g., Duffy (2008), Dreyfuss (2008), Eisenberg (2008), and Mandel (2008)).

Since the goal of the U.S. Patent Act is to reward patent applicants for
providing the public with new discoveries with a limited exclusive right to their
invention, I argue that, at the very minimum, the system should not discard high-
quality applications in favor of low-quality applications. For example, the USPTO
itself states in its 2018–2022 strategic plan that the most important goal for the
office is to continue optimizing patent quality.7 To capture this goal, I first trained a
machine learning algorithm by assuming the objective of examiners is to screen
against patent quality. Nevertheless, the above assumption may fail to capture other
aspects of the examiners’ objective. To relax this assumption, I also trained a
machine learning algorithm based on the screening decisions made by examiners
for earlier patent applications.

C. Measuring Patent Quality

The existing literature measures patent quality using either the scientific or the
economic value of a patent. A patent’s scientific value is usually constructed based
on the number of citations that a patent receives after it is granted (see, e.g.,
Trajtenberg (1990), Trajtenberg et al. (1997), and Hall et al. (2005)), while its
economic value is constructed based on the announcement return from the patent
grant news to the patent owner (see, e.g., Kogan et al. (2017)). Since the economic
value of a patent can be measured only if the patent is owned by a public firm, I use
citation-based measures as my measures of patent quality. More specifically, I use
patent forward citation as my primary quality measure: the number of citations of a
patent in the 4 years after the patent is granted.

IV. Patent Application Data and Sample Selection

A. Patent Application Data

I collect data on patent applications from the USPTOwebsite, which provides
various research data sets.8 In particular, I collect patent application examination
data from the Patent Examination Research Dataset (Graham, Marco, and Miller
(2018), Marco, Toole, Miller, and Frumkin (2017)), the patent application claims
data from the Patent Claims Research Dataset (Marco, Sarnoff, and Charles (2019))

7For the full USPTO 2018–2022 strategic plan, please see https://www.uspto.gov/sites/default/files/
documents/USPTO_2018-2022_Strategic_Plan.pdf.

8For a complete list of research data sets provided by the USPTO, please see https://www.uspto.gov/
ip-policy/economic-research/research-datasets.
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and PatentsView, patent application citation data from the Office Action Research
Dataset for Patents (Lu, Myers, and Beliveau (2017)) and PatentsView, and patent
assignment data from the Patent Assignment Dataset (Marco, Myers, Graham,
D’Agostino, and Apple (2015b)).9

1. Turning Patent Claims Text into Numerical Variables

The claim section in each patent application defines the extent of the protection
sought. A typical patent contains several claims, each representing an original
contribution, which can be considered a good measure of the actual invention
(Tong and Frame (1994)). If the claims in a patent application are very similar or
are close to the claims in earlier patents, I would expect this patent application’s
quality (innovativeness) to be low. To capture the similarity of each patent appli-
cation filed in a given technological class to all prior patents in that technological
class, I convert claim texts into a vector of 50 dimensions through word embedding
and create similarity-based novelty measures based on application claims in a
similar spirit of Arts, Cassiman, and Gomez (2018).

First, I compiled the claims texts from each patent application in the training
sample, as well as from all patents granted before 2001 within the same techno-
logical class, to create one corpus for each technological class. Using the given
corpus in each technological class, I produced a 50-dimensional vector from the
claims text with the Word2vec algorithm.10 Regarding technological classes, the
USPTO has developed its own U.S. Patent Classification (USPC) system, which
includes over 450 unique classes and 150,000 subclasses. However, the USPC
classes do not directly correspond to established product and industry classifica-
tions (Marco, Carley, Jackson, and Myers (2015a)). Hall, Jaffe, and Trajtenberg
(2001) developed a hierarchical classification (the NBER classification) by aggre-
gating USPC classes into 37 (2-digit) subcategories.11

Next, I calculated the pairwise cosine similarity between patent application i
and patent j, where the patent jwas granted before the filing date of application i but

within the same technological class: Sim Pi,Pj

� �¼ PiPj

∣PikPj∣.Pi andPj are the vectors of

50 dimensions of patent application i and patent j. For each new application i in the
training data, I computed the pairwise cosine similarity between it and each prior
patent granted within the same technological class.

Finally, I constructed three sets of similarity measures based on pairwise
cosine similarities between each focal application and prior patents within the same

9Public PAIR (Patent Application Information Retrieval) data were available from the USPTO
website until recently. Though not all patent applications received by the USPTO were included in
Public PAIR, the database included more than 83% of all patent applications granted after the imple-
mentation of the American Inventors Protection Act (AIPA) in late 2000. For the regular utility patent
applications on which this paper focuses, the coverage in Public PAIR from 2001 increases to 95% as a
consequence of the AIPA, according to Graham et al. (2018).

10The Word2vec algorithm learns vector representations of words from the input text corpus and
places words that share a similar context in the corpus in close proximity to one another in the vector
space, where the vector space is set to 50 dimensions (see, e.g., Mikolov, Chen, Corrado, and Dean
(2013a), Mikolov, Le, and Sutskever (2013b), and Mikolov, Yih, and Zweig (2013c) for details).

11The NBER classification comes from the NBER Patent Data Project: https://sites.google.com/site/
patentdataproject.
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technological class. Specifically, for each focal application, I calculated the aver-
age, maximum, and minimum cosine similarities with patents in four groups: the
10 most recent patents, the 100 most recent patents, the 1,000 most recent patents,
and all available prior patents. This resulted in a total of twelve similarity measures
—four average similarities, four maximum similarities, and four minimum simi-
larities—each corresponding to one of the four groups of prior patents.

I used the 50-dimensional vector, twelve similarity measures, and numerical
statistics of claims as input variables, along with other patent application char-
acteristics discussed in a later section, to train the Algorithm MLQuality or
MLDecision.

To construct the 50-dimensional vector and its derived similarity measures for
applications in the test sample, I used all claims text in each patent application in the
test sample and all patents granted prior to 2010 as a new corpus and repeated the
above steps. This ensures that the trained algorithm never uses any information
from the test sample, avoiding potential temporal leakage.

B. Summary Statistics

Table 1 reports summary statistics for all patent applications of the numerical
variables used in my machine-learning prediction. Out of 638,159 applications,
434,960 (68.2%) are approved: the average number of 4-year forward citations is
1.886. In terms of numerical statistics of claims, each patent application, on aver-
age, has 2.791 independent claims and 15.527 dependent claims, where the average
length of an independent claim (around 138 words) tends to be longer than that of a
dependent claim (around 42 words). I also compute the originality index for each
patent application:Originalityi ¼ 1�Pni

j s
2
ij, where sij denotes the fraction of back-

ward citations made by application i in patent class j from the total number of patent
classes ni and

Pni
j s

2
ij is the Herfindahl–Hirschman index (Hirschman (1980)). By

definition, the originality index captures the technological dispersion of prior
patents utilized in patent application i. The average number of backward patent
citations and originality index are 8.505 and 0.165, respectively. In addition to
citing prior patents, a patent application may cite previous applications, scientific
literature, and foreign patents. The average numbers of backward citations of patent
applications, citations of scientific literature, and citations of foreign patents are
2.752, 3.835, and 2.903, respectively.12 In addition to patent application charac-
teristics, 26.9% of patent applications are submitted by small entities, and 43.9% of
primary inventors are from the U.S.

V. Machine Learning Prediction Design and Results

The empirical design to analyze the efficiency of the patent screening process
follows 3 steps (Kleinberg et al. (2017)). First, I partitionmy sample into training and
test sets, as described in Section V.A. Second, I separately train the two algorithms
using the training set by mapping a patent application’s characteristics to its quality
(Algorithm MLQuality) and its screening outcome (Algorithm MLDecision).

12I exclude citationsmade by examiners when I count backward citations for each patent application.
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I present the results in Section V.B. Third, I evaluate the prediction accuracy of
these two algorithms using patent applications in the out-of-sample test set and
present the results in Section V.C. Last, I test whether these two algorithms can
improve the screening decisions of actual patent examiners by comparing the
predicted decisions to those of patent examiners and presenting relevant results
in Section V.D.

A. Sample Partition

I use the unique application number to merge across different data sets and
obtain an initial sample of 3,473,251 patent applications that have screening

TABLE 1

Summary Statistics (Patent Applications)

Table 1 shows descriptive statistics for the sample of patent applications from 2001 to 2013 used in my machine learning
analysis. ForwardCitations counts the number of future citations that each patent has received over a 4-year period after it
is granted. NumberIndepClaims and NumberDepClaims count the number of independent claims and dependent claims for
each patent application. NumberWordsIndepClaims and NumberWordsDepClaims count the total number of words
in independent claims and dependent claims for each patent application. MinNumberWordsIndepClaims and
MinNumberWordsDepClaims count the minimum number of words in independent claims and dependent claims for each
patent application. AvgNumberWordsIndepClaims and AvgNumberWordsDepClaims count the average number of words
per independent claim and per dependent claim for each patent application.NumberCitedForeignPatents counts the number
of foreign patents that each patent application has cited.NumberCitedLiterature counts the number of scientific literature that
each patent application has cited. NumberCitedApplications counts the number of patent applications that each patent
application has cited.OriginalityApplication captures the industry dispersion of backward cited patent applications that each
patent application has made, which equals to 1 minus the Herfindahl–Hirschman index of industries that cited patent
applications belong to. NumberCitedPatents counts the number of patents that each patent application has cited.
OriginalityPatent captures the industry dispersion of backward cited patents that each patent application has made, which
equals to 1 minus the Herfindahl–Hirschman index of industries that cited patents belong to. USInventorDummy is a dummy
variable indicating whether an investor is from the U.S. or not. SmallEntityDummy is a dummy variable indicating whether a
patent application is from a small entity or not.

N Mean Median p10 p90 Std. Dev.

Panel A. Patent Application Quality Variables

ForwardCitations 434,960 1.886 1 0 4 5.242

Panel B. Patent Application Characteristics

SmallEntityDummy 638,159 0.269 0 0 1 0.444
NumberClaims 638,159 2.791 2 1 5 2.545
NumberWordsInClaims 638,159 361.526 258 85 695 499.204
MinNumberWordsInClaims 638,159 115.744 92 32 210 130.599
NumberDepClaims 638,159 15.527 14 4 27 13.436
NumberWordsInDepClaims 638,159 601.319 475 135 1135 879.589
MinNumberWordsInDepClaims 638,159 21.841 17 11 30 64.494
AvgNumberWordsInClaims 638,159 138.196 114 51.500 235.333 136.412
AvgNumberWordsInDepClaims 638,159 42.356 34.125 20.875 64.500 69.755
NumberCitedForeignPatents 638,159 2.903 0 0 7 10.674
NumberCitedLiterature 638,159 3.835 0 0 6 22.242
NumberCitedApplications 638,159 2.752 0 0 5 15.437
OriginalityApplication 638,159 0.155 0 0 0.769 0.309
NumberCitedPatents 638,159 8.505 0 0 18 35.568
OriginalityPatent 638,159 0.165 0 0 0.618 0.259
USInventorDummy 638,159 0.439 0 0 1 0.496
AvgSimilarity (All prior patents) 638,159 0.629 0.647 0.478 0.756 0.113
MaxSimilarity (All prior patents) 638,159 0.959 0.964 0.934 0.981 0.025
MinSimilarity (All prior patents) 638,159 0.048 0.054 �0.080 0.167 0.099
AvgSimilarity (Prior 10 patents) 638,159 0.613 0.632 0.435 0.767 0.132
MaxSimilarity (Prior 10 patents) 638,159 0.797 0.825 0.640 0.914 0.118
MinSimilarity (Prior 10 patents) 638,159 0.403 0.409 0.179 0.619 0.167
AvgSimilarity (Prior 100 patents) 638,159 0.626 0.644 0.475 0.751 0.112
MaxSimilarity (Prior 100 patents) 638,159 0.895 0.907 0.826 0.951 0.058
MinSimilarity (Prior 100 patents) 638,159 0.269 0.273 0.088 0.444 0.139
AvgSimilarity (Prior 1,000 patents) 638,159 0.629 0.647 0.478 0.753 0.110
MaxSimilarity (Prior 1,000 patents) 638,159 0.932 0.939 0.891 0.967 0.035
MinSimilarity (Prior 1,000 patents) 638,159 0.174 0.178 0.017 0.328 0.122
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outcomes available (i.e., the patent was either granted or rejected) and that were
filed at theUSPTO from 2001 to 2014.When I train amachine learning algorithm to
compare its predictions with human decisions, I have to make sure the data used to
train the algorithm is ex ante available for actual examiners in the test set in order to
make fair comparisons. In my setting, I use patent application characteristics and
patent outcomes of earlier applications in the training set. Since my outcome
variable for training the algorithm, the 4-year forward citations, and available only
4 years after each application is granted, I set a 4-year gap between the training and
test sample periods. Specifically, I use applications filed from 2001 to 2005 whose
screening status is available before 2006 for the training sample to train themachine
learning algorithm and applications filed from 2010 to 2013 whose status is
available before 2014 for the test sample to evaluate the algorithm.13

When I partition my sample in this way, both my trained machine learning
algorithm and the patent application quality measure in the training sample are
available for the period from the beginning of 2010. In other words, the information
needed to train the algorithm is also available for patent examiners in the test
sample. This sample partition approach allows me to make a fair comparison of
the decisions of the algorithm and the actual examiners in terms of screening any
patent application in the test set. Figure 3 presents the sample partition along the
timeline. The final sample in my machine learning prediction consists of 280,690
patent applications in the training set and 357,471 patent applications in the test set.

B. Training Machine Learning Algorithms

To train Algorithm MLQuality, I need both input variables of patent applica-
tion characteristics and an output variable of patent application quality from appli-
cations in the training data: the output variable y is the 4-year forward citations of

FIGURE 3

Training and Testing Data Used for My Machine Learning Prediction

Figure 3 shows the partition for the training and test data used for my machine-learning prediction. I select applications filed
from2001 to 2005with screening status available before the beginning of 2006 into the training set, and applications filed from
2010 to 2013 with screening status available before the beginning of 2014 into the test set. The training set is used to form the
algorithm for my prediction and the test set is used to evaluate all of my results. The final sample used in mymachine learning
prediction consists of 280,243 patent applications in the training set and 357,101 patent applications in the test set.

Training Data (Out-of-sample) Test Data

2010 2013 Year2001

Filing Year Decision Year Filing Year Decision Year

2005

13I also partition my sample in alternative ways: by partitioning the whole sample randomly into a
training sample and a test sample and by partitioning the whole sample over time but without the 4-year
gap. Though these alternatively partitioned samples are subject to the concerns raised in this section, the
results based on these alternative partitioning methods are similar to the main findings in this article.
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each patent described in Section III.C, and the input variables X include the
numerical statistics of the claims texts described in Section IV.B; the text-based
numerical vector of claims; backward citations of prior patents, patent applications,
foreign patents, and scientific literature; filing year dummies; an inventor nation-
ality dummy; a small entity dummy; 37 NBER classes dummies; and 597 art unit
dummies. As Imentioned earlier in SectionV.A,my training set consists of 280,690
patent applications, including 81,428 rejected applications and 199,262 accepted
applications. Since the rejected applications do not have information on forward
citations, the 199,262 accepted applications with an available forward citation are
used for training Algorithm MLQuality.

I train the prediction function called extreme gradient boosting, an ensemble
method of decision trees based on tree boosting.14 A decision tree is a tree-like
prediction function that can be trained by splitting the data set into subsets based
on particular values of input variables, where the process is repeated until
splitting no longer adds value to the predictions (see, e.g., Rokach and Maimon
(2008)). Since a single decision tree may produce a weak learning function
subject to noise, gradient boosting algorithms optimize a cost function by iter-
atively choosing a weak learning function that follows the negative gradient
direction to produce a strong learning function (see, e.g., Friedman (2001), Chen
and Guestrin (2016)). The strength of an extreme gradient boosting algorithm is
finding the best feature across different subsamples. In addition, I implement
5-fold cross-validation when training the algorithm to alleviate the in-sample
over-fitting problem.

Figure 4 presents the important features identified by AlgorithmMLQuality
in predicting patent citation. Feature importance is determined by calculating
the relative contribution of each feature to the model’s predictive power: whether
that feature was selected to split on during the tree-building process, and
how much the overall squared error decreased. The most important feature,
backward citations made by patent applications, accounts for 28.6% of the total
predictive power of the algorithm. Additionally, a set of 50-dimensional vectors
collectively explain 22.2% of the model’s predictive power. Several art units also
play a significant role in citation forecasting. For example, Art Unit 3672, which
focuses on mining and earth engineering, is responsible for 3.1% of the algo-
rithm’s predictive power. This is followed by Art Unit 2829, which focuses
on semiconductors and memory, contributing 1.0%. Furthermore, various tech-
nological classes significantly contribute to prediction accuracy: Information
Storage (NBER Classification 24) accounts for 1.9% of the total predictive
power. This is complemented by contributions from Organic Compounds
(NBER Classification 14), Drugs (NBER Classification 31), and Semiconductor
Devices (NBER Classification 46), each contributing over 1%. Two similarity
measures derived from the 50-dimensional vectors—Maximum similarity
(with respect to the prior 1,000 patents) and Minimum similarity (with respect
to the prior 100 patents)—each contribute 0.8% to the predictive power. Other
important features include patent application originality and the number of

14Section IA.1 of the Supplementary Material provides a detailed discussion of the supervised
machine learning problem and the extreme gradient boosting algorithm.
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cited scientific literature, cited foreign patents, cited patent applications, claims,
and words in claims. Interestingly, whether an inventor is based in the U.S. also
explains 1.8% of the predictive power, possibly reflecting a language advantage
for U.S. inventors.15

To train the Algorithm MLDecision, I followed the same procedure as above
and replaced the output variable y with the screening decision made by the actual
examiner. Since both accepted and rejected applications have information on their
screening outcomes, all 280,690 patent applications in the training sample are used
for the training Algorithm MLDecision.

C. Evaluating the Out-of-Sample Prediction Performance of Machine
Learning Algorithms

In this section, I present the out-of-sample prediction performance of the
machine learning model. The out-of-sample root mean square error (RMSE) of
Algorithm MLQuality is 3.3. Since RMSE correlates with the magnitude of the
outcome variable, it is challenging to assess whether an RMSE of 3.3 is small or
large. To provide context, predicting the mean citations for all patents in the out-of-
sample test set yields an RMSE of 6.4, while predicting the mean citations for all
patents within each art unit results in an RMSE of 6.2. Additionally, to visualize the
predictive accuracy, Figure IA.1 in the Supplementary Material plots the predicted
citations from AlgorithmMLQuality against the actual citations of granted patents.
The majority of data points cluster around the 45-degree line, indicating high
accuracy in the out-of-sample predictions.

Evaluating the out-of-sample prediction performance for Algorithm MLDe-
cision is less straightforward. If Algorithm MLDecision predicts examiner deci-
sions perfectly in the out-of-sample test set, it has no use in terms of improving
examiner decisions since it agrees perfectly with examiners. To that extent, I
report the differences between the predicted decisions and the actual decisions for
applications in the out-of-sample test set. The out-of-sample RMSE of Algo-
rithm MLDecision is 0.29. For comparison, predicting the mean grant rates for
all applications in the out-of-sample test set yields an RMSE of 0.47, while
predicting the mean grant rates for all applications within each art unit results in
an RMSE of 0.45. Two possibilities may explain the discrepancies between
predicted and actual decisions: i) Algorithm MLDecision performs poorly in
out-of-sample prediction. If this is the case, we would expect the quality of the
predicted accepted applications to be worse than that of the actual accepted
applications. ii) Examiners are performing worse over time, possibly due to the
time and resource constraints discussed earlier. If this is the case, we would
expect the quality of the predicted accepted applications to be better than that of
the actual accepted applications. Section V.D.2 provides tests for these two
possibilities.

15Figures IA.2 and IA.3 in the Supplementary Material plot the top 10 important features based on
the mean absolute Shapley (SHAP) values and the distribution of SHAP values for these 10 features
(Shapley (1953)). The top important features based on the mean absolute SHAP value highly overlap
with those identified in Figure 4.
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D. Improving Screening Decisions with the Help of a
Machine Learning Algorithm

1. Do Examiners Accept Low-Quality Patents?

To answer the question of how often low-quality patents pass examinations, I
examine the grant rates of actual examiners across patent applications of different
predicted citations. To visualize the results, I divide the patent applications in the
test set equally into 1,000 bins based on the patents’ predicted citation and compute
the grant rates of patent applications for actual examiners in each of these 1,000
bins. Figure 5 plots the correlation between the grant rates of actual examiners and
the average predicted citation of patent applications in each bin. I find that while
examiners do indeed reject more applications in bins with lower quality, they still
accept around 50% of the patents in the bins with the lowest quality. These patents,
on average, receive 0 citations going forward and have very limited social values in
terms of promoting science and useful arts.

2. Using Variation in Examiner Leniency toQuantify the Improvement to Screening
Decisions from Machine Learning Algorithms

One way to quantify the potential quality gain achieved by algorithms is to
rank all patent applications within the same art unit based on my predicted citation/

FIGURE 4

Important Features Identified by Algorithm MLQuality

Figure 4 lists the 20most important features identified byAlgorithmMLQuality. The predictive power of each featuremeasured
as the percentage of total predictive power is on the x-axis. The name of each of the features is on the y-axis.
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grant probability and then set the grant rate of an algorithm to be the same as that of
examiners. I can then compare the average citation of all patent applications granted
by an algorithm to the average citation of the granted patents. However, measuring
the improvement in this way may be misleading since I do not have information on
the actual citations of the patent applications rejected by examiners but approved by
an algorithm. To address this issue, I make use of the fact that patent applications are
randomly assigned to examiners with different grant rates within the same art unit:
lenient examiners (i.e., those with an above-median grant rate) accept approxi-
mately 77.6% of patent applications and strict examiners accept 49.5% of patent
applications. Thus, given all patents granted by lenient examiners in a given art unit,
I can reject additional applications based on predicted citation/grant probability to
match the grant rate of strict examiners within that art unit (i.e., those with a below-
median grant rate). Then, I can compare the average actual citation of patents
granted by the algorithm to those granted by strict examiners.

More importantly, comparing the decisions of examiners with different levels
of leniency allowsme to track the quality (citation) of marginal applications that are
rejected. Figure 6 shows the results of these comparisons based on Algorithm
MLQuality. I sort patent applications by predicted citation and divide them into
20 bins. At the bottom of a given bin, the black bar shows the fraction of patent
applications rejected by lenient examiners. The red bar on top of the black bar in a
given bin shows the fraction of additional applications rejected by strict examiners,
while the blue bar on top of the black bar in a given bin shows the share of additional
applications that were rejected by Algorithm MLQuality. Graph A of Figure 6
shows that strict examiners would reject additional applications from patent

FIGURE 5

The Relation Between Predicted Citation by Algorithm MLQuality
and Actual Examiner Grant Decisions

Figure 5 shows the relation betweenpredictedcitations byAlgorithmMLQuality andactual examiner grant decisions. The rank
of the average predicted citation of all patent applications in each pin is on the x-axis. The grant rate is on the y-axis.
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applications in both the low- and high-quality bins. However, Graph B of Figure 6
shows that AlgorithmMLQuality would reject additional applications starting from
the lowest quality of predicted citation.

Next, I quantify the quality gain under the above exercise by comparing the
actual outcome of strict examiner decisions to the decisions made by lenient
examiners + Algorithm MLQuality. On average, patents approved by strict exam-
iners receive 1.79 citations over 4 years, whereas those approved by lenient

FIGURE 6

Comparison Between Applications Rejected by Strict Examiners
and Applications Rejected by Algorithm MLQuality

Figure 6 compares applications rejected by strict examiners and those rejected by Algorithm MLQuality within each art unit.
Strict (lenient) examiners are defined as those with an above (below) median reject rate in each art unit. I divide patent
applications in the test set into 20bins by thepredicted number of forward citations (x-axis). In both graphs, theblackbar at the
bottom of each bin shows the fraction of patent applications rejected by lenient examiners. The red bar in Graph A shows
which applications strict examiners actually reject. The blue bar in Graph B shows which applications Algorithm MLQuality
would reject to match the grant rate of strict examiners.
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examiners + Algorithm MLQuality average 2.55 citations. Excluding patents that
received no citations, the average for patents reviewed by strict examiners increases
to 3.53 but still trails behind the 4.47 average for patents granted by lenient
examiners with Algorithm MLQuality. These comparisons indicate a citation
increase ranging from 26% to 42%.

I also employ the same identification strategy to quantify the potential
quality gain achieved by Algorithm MLDecision. Figure 7 compares the deci-
sions of strict examiners to those made by lenient examines and Algorithm
MLDecision, which shows similar results as above. Quantitatively, the combi-
nation of lenient examiner decisions and Algorithm MLDecision results in an
average of 2.24 citations per patent – or 4.15 for patents excluding those with 0
citations. This represents an increase of 25% in overall citations and 17% among
patents receiving citations, compared to those evaluated by strict examiners
alone.

3. Do Examiners’ Characteristics Affect Their Performance?

To explore whether examiner characteristics are related to their screening
performance, I measure examiners’ screening performance based on whether
there is disagreement between machine learning predictions and actual patent
examiners’ decisions. Specifically, I first calculate the number of applications
accepted by examiners within each art unit for a given year. Next, I rank all patent
applications (both accepted and rejected applications) within each art unit filed in
that same year based on the predicted citation by Algorithm MLQuality
(or predicted acceptance probability by Algorithm MLDecision). I then hypo-
thetically accepted the same number of applications as the examiners did in that
year. At this point, each patent application has two decisions: the actual decision
made by the examiner and a hypothetical decision made by the machine learning
algorithm. I define a “false accept” (FalseAccept) as a case where the patent is
accepted by the examiner but rejected by the algorithm. Conversely, a “false
reject” (FalseReject) occurs when the examiner rejects the patent application
but the algorithm would have accepted it.

Using these definitions, I construct four metrics to evaluate examiner screen-
ing performance for each year: i) the number of false reject cases, ii) the false
rejection rate, iii) the number of false accept cases, and iv) the false acceptance rate.
I also construct the following three measures of examiner characteristics: work
experience in a given year, workload in a given year, and gender. To identify the
gender of each examiner, I make use of a Social Security Administration data set,
namely, national data on the relative frequency of given names in the population of
U.S. births where the individual has a Social Security number.16 This data set
contains all given names and their associated genders with a population >5. I match
examiners’ first nameswith the names in this data set to obtain examiners’ gender.17

16To access this data set, please see https://www.ssa.gov/oact/babynames/limits.html.
17When a given name is associated with both genders, I first calculate its probability of being specific

to a certain gender based on the gender-specific population and assign the name to the gender with the
probability >90%.
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I test the relationship between examiner characteristics and screening perfor-
mance with the following regression:

yi,t ¼ α+ β1WorkLoadi,t + β2WorkExperiencei,t + β3MaleExamineri
+ArtUnita + StatusYeart + ϵi,t,

(1)

where i indexes the patent examiner, a the art unit, and t the issue year of a patent. y
includes # False Rejection, False Rejection Rate, # False Acceptance, and False

FIGURE 7

Comparison Between Applications Rejected by Strict Examiners and Applications Rejected by
Algorithm MLDecision

Figure 7 compares applications rejected by strict examiners and those rejected by AlgorithmMLDecision within each art unit.
Strict (lenient) examiners are defined as those with an above (below) median reject rate in each art unit. I divide patent
applications in the test set into 20 bins by predicted acceptance probability (x-axis). In both graphs, the black bar at the
bottom of a given bin shows the fraction of patent applications being rejected by lenient examiners. The pink bar in Graph A
shows which applications strict examiners actually reject. The green bar in Graph B shows which applications Algorithm
MLDecision would reject to match the grant rate of strict examiners.
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Acceptance Rate.WorkLoadi,t measures the workload of examiner i in year t and is
calculated as the natural logarithm of the number of patent applications reviewed by
that examiner. WorkExperiencei,t measures the work experience of a given exam-
iner in year t and is calculated as the natural logarithm of the number of years
worked in the patent office by examiner i.MaleExamineri is a dummy variable that
equals 1 if the gender of examiner i is male, and 0 otherwise. ArtUnita and
StatusYeart indicate the art unit fixed effect and status year fixed effect.

Panel A of Table 2 presents the results of the above regression usingAlgorithm
MLQuality as the benchmark. First, busy examiners tend to make more mistakes of
both types, as suggested by the positive coefficient of WorkLoad in columns 1, 3,
and 4 of Table 2. These findings are consistent with increasing time constraints
faced by patent examiners, reducing their screening performance. Second, the
negative coefficients of WorkExperience in columns 1 and 2 of Table 2 suggest
that patent examiners with more experience tend to make fewer false rejection
mistakes. However, they tend tomakemore false acceptancemistakes, as suggested
by the positive coefficient ofWorkExperience in columns 3 and 4 of Table 2. These

TABLE 2

Relationship Between Patent Examiner Characteristics and Screening Performance

The sample shown in Table 2 consists of patent examiners in the out-of-sample test set. # False Rejections (# False
Acceptances) counts the number of false rejections (false acceptances) made by a given examiner in each year, where
False Rejection (False Acceptance) equals to 1 if a patent application is rejected (accepted) by that examiner but accepted
(rejected) by the algorithm, and 0 otherwise. False Rejection Rate (False Acceptance Rate) measures the percentage of false
rejections (acceptances) over reviewed applications by a given examiner in each year.WorkExperiencemeasures the work
experience of a given examiner in a given year and is calculated as the natural logarithm of the number of years worked in the
patent office for that examiner.WorkLoadmeasures the workload of a given patent examiner in a given year and is calculated
as the natural logarithm of the number of patent applications reviewed by that examiner. MaleExaminer is a dummy variable
that equals 1 if the gender of a given examiner is male, and 0 otherwise. Art Unit fixed effects and issue year fixed effects are
included in all regressions. t -statistics are in parentheses. *** indicates significance at the 1% level.

Dependent Variable

# False Rejections False Rejection Rate # False Acceptances False Acceptance Rate

1 2 3 4

Panel A. False Acceptance/Rejection Based on Algorithm MLQuality

WorkLoad 1.014*** �0.034*** 1.719*** 0.016***
(32.52) (�12.50) (41.31) (7.01)

WorkExperience �0.122*** �0.008*** 0.136*** 0.003***
(�19.90) (�15.67) (16.72) (7.13)

MaleExaminer 0.038 �0.000 0.224*** 0.001
(0.91) (�0.02) (4.02) (0.26)

Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.432 0.104 0.395 0.073
No. of obs. 18,013 18,013 18,013 18,013

Panel B. False Acceptance/Rejection Based on Algorithm MLDecision

WorkLoad 0.644*** �0.024*** 1.122*** 0.009***
(28.57) (�10.38) (40.10) (4.93)

WorkExperience �0.080*** �0.005*** 0.091*** 0.002***
(�18.19) (�11.91) (16.58) (5.80)

MaleExaminer 0.025 �0.001 0.124*** 0.000
(0.84) (�0.30) (3.32) (0.20)

Art Unit FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
R2 0.379 0.079 0.387 0.060
No. of obs. 18,013 18,013 18,013 18,013
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results confirm the findings in the existing literature that more experienced exam-
iners have a greater grant rate (see, e.g., Lemley (2009), deGrazia, Pairolero, and
Teodorescu (2021)), suggesting potential agency problems induced by the com-
pensation structure in the patent office: examiners obtain higher compensation by
accepting more patent applications. Lastly, I find no evidence of more mistakes
made by male examiners. Panel B of Table 2 reports similar results with Algorithm
MLDecision as the benchmark.

4. Do Disagreements Between Humans and Machine Algorithms Predict Early
Patent Expiration?

In this section, I test whether granted patents from the out-of-sample test set
that the algorithm would have rejected would expire early. To measure disagree-
ments between the machine learning predictions and actual screening decisions of
patent examiners, I label a patent falsely accepted if it is accepted by an examiner
but rejected by the algorithm.

Section 154 of the U.S. Patent Law (35 U.S. Code §154 (a)) sets the term of a
utility patent filed on or after June 8, 1995, in the U.S. to 20 years from the earliest
filing date of the application for the granted patent. Section 41 of the U.S. Patent
Law (35 U.S. Code §41 (b) & (c)) states that maintenance fees must be paid at
regular intervals to keep utility patents active.18 If these falsely accepted patents
should not have been granted in the first place, we would expect them to be more
likely to expire early as a result of delays or defaults in the payment of maintenance
fees. Specifically, I test whether falsely accepted patents are properly maintained
with the following regression:

yi ¼ α+ βFalseAccepti +ArtUnita + IssueYeart
+ Small&MicroEntitys +USPCj + ϵi,

(2)

where i indexes the patent, a the art unit, t the issue year of a patent, s the size of the
patentee, and j the USPC class. y represents patent maintenance-related dummies
indicating the following four aspects: payment of the 4th-year maintenance fee,
payment of the 8th-year maintenance fee, mailing of a maintenance fee reminder,
and patent expiry for unpaid maintenance fees. FalseAccepti is a dummy variable
equal to 1 if a patent is accepted by actual examiners but would be rejected by the
algorithm. ArtUnita, IssueYeart, SmallEntitys, and USPCj represent art unit fixed
effects, issue year fixed effects, the small entity dummy, and USPC class fixed
effects.19

Panel A (B) of Table 3 presents the results of regressing equation (2) based on
the disagreement between examiners and Algorithm MLQuality (MLDecision).
The negative coefficients of FalseAccept in columns 1 and 2 suggest that falsely
accepted patents are less likely to be maintained by their holders 4 years and 8 years
after being granted. The positive coefficient of FalseAccept in column 3 suggests

18The patentee must pay maintenance fees before the 4th, 8th, and 12th years to keep the patent active.
19A patentee that is a small or micro entity needs to pay only 1/2 or 1/4 of the maintenance fees paid

by a large entity.
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that patentees holding falsely accepted patents are more likely to receive mainte-
nance fee reminders. Further, the positive coefficient of FalseAccept in column 4
indicates that falsely accepted patents are more likely to expire due to unpaid
maintenance fees. These results collectively show that falsely accepted patents turn
out to be not very useful to their holders.

VI. Innovation Screening and Firm Performance

This section extends my empirical analysis to study the (potential) economic
consequences of the current patent screening procedure for firm performance. First,
I describe firm data and an ex antemeasure of the innovation screening performance
of patent examiners in Section VI.A. Second, I discuss empirical results on the
effect of innovation screening on the subsequent operating performance of public
firms in Section VI.B. Lastly, I examine the effect of innovation screening on
subsequent exits of private firms in Section VI.C.

A. Firm Data and Sample Selection

I use all patent applications filed since 2010with screening results available by
2018 in my analysis. In addition to the data on patent applications and patent
examiners used in the previous section, I collect data on patent assignees from
the USPTO website, accounting, and financial data for public firms from Compu-
stat, firm characteristics, and VC financing data for private firms from Venture-
Xpert. I match each data set with firm names standardized by the NBER patent data

TABLE 3

Relationship Between Weak Patent Screening and Subsequent Patent Maintenance

The sample shown in Table 3 consists of granted patents in the out-of-sample test set. FalseAccept equals 1 if a patent is
accepted by an actual examiner but rejected by the algorithm, and 0 otherwise, as described in Section V.D.4. Small & Micro
Entity Dummies, Art Unit fixed effects, issue year fixed effects, and patent USPC class fixed effects are included in all
regressions. t-statistics are in parentheses. *** indicates significance at the 1% level.

Dependent Variable

Payment of
Maintenance Fee
in the 4th Year

Payment of
Maintenance Fee
in the 8th Year

Maintenance Fee
Reminder Mailed

Patent Expired for
Failure to Pay

Maintenance Fees

1 2 3 4

Panel A. False Acceptance Based on Algorithm MLQuality

FalseAccept �0.048*** �0.018*** 0.046*** 0.050***
(�26.87) (�12.04) (21.88) (26.60)

Small & Micro Entity Dummies Yes Yes Yes Yes
Art Unit, Patent USPC Class,

& Year FE
Yes Yes Yes Yes

R2 0.094 0.458 0.083 0.058
No. of obs. 235,597 235,597 235,597 235,597

Panel B. False Acceptance Based on Algorithm MLDecision

FalseAccept �0.052*** �0.015*** 0.062*** 0.053***
(�24.44) (�8.44) (25.36) (23.97)

Small & Micro Entity Dummies Yes Yes Yes Yes
Art Unit, Patent USPC Class,

& Year FE
Yes Yes Yes Yes

R2 0.093 0.458 0.083 0.058
No. of obs. 235,597 235,597 235,597 235,597
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name standardization routine.20 By construction, both public and private firms
analyzed in this section should have at least one patent application filed since 2010.

1. Measure of Innovation Screening Performance

I calculate the false acceptance rate of each patent examiner based on the cases
of disagreement between the machine learning predictions and screening decisions
of a given examiner. Specifically, I calculate the false acceptance rate of examiner e
in art unit a who reviews patent applications p at date t as follows:

ExaminerFalseAcceptRatep,e,t,a ¼
#FalseAccepte,t,a
#Reviewede,t,a

,(3)

where #Reviewede,t,a is the number of patent applications reviewed by examiner j
prior to the date t; #FalseAccepte,t,a is the number of patent applications and falsely
accepted by examiner j prior to date t as defined in Section V.D.3.21

To match the time horizon of financial and accounting data on firm perfor-
mance, I further measure the patent screening performance of the examiners asso-
ciatedwith each firm in each quarter by averaging the false acceptance rates over the
past 3 years of examiners who have examined that firm’s patent applications using a
3-year rollingwindow.22 For example, the false acceptance rate of firm i in quarter q
is calculated as follows:

AvgExaminerFalseAcceptRatei,q

¼ 1

N

XN
a¼1

Xq�1

t¼q�13

ExaminerFalseAcceptRatep,e,t,a

 !
,

(4)

where ExaminerFalseAcceptRatep,e,t,a is the false acceptance rate over the past
3 years of examiner e reviewing firm i‘s patent application p and N is the total
number of patent applications filed by firm i with screening results that became
available in the past 3 years.

By construction, the false acceptance rate of an individual examiner is avail-
able ex ante for any newly filed patent application in my sample. More importantly,
these measures are unlikely to be correlated with firm characteristics due to the
quasi-random assignment of patent applications to patent examiners within each
art unit.

2. Summary Statistics

Table 4 reports summary statistics for my measures of innovation screening
performance and firm characteristics. Panel A presents the summary statistics of

20The name standardization routine comes from the NBER Patent Data Project: https://sites.google.
com/site/patentdataproject.

21I exclude the patent application p from both the numerator and the denominator. I also exclude
firms whose patent applications are assigned to patent examiners who reviewed fewer than 10 patent
applications prior to patent application p. All results in this section are robust to removing the above
exclusions.

22I use different timewindows tomeasure firm-level innovation screening performance (i.e., 1-quarter,
1-year, and 2-year windows), and all empirical results in this section remain qualitatively similar.
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firm performance and firm characteristics for public firms at the firm-quarter
level. The average false acceptance rate for public firms based on algorithms
MLQuality and MLDecision are 14.1% and 8.3%. The median number of patent
applications filed by public firms in a given 3-year window is 14; the median
quarterly ROA, defined as net income divided by total assets, is 0.6%. Public
firms, on average, have log book assets of 6.9, a leverage ratio of 0.2, a log
market-to-book ratio of 1.1, and R&D expenditures of 3.3%.23

Panel B of Table 4 presents the summary statistics of firm performance and
firm characteristics for private firms at the firm-quarter level. The average false
acceptance rate for private firms based on algorithms MLQuality and MLDeci-
sion are 13.6% and 8.0%. The median number of patent applications filed by
private firms in a given 3-year window is 5, much lower than the figures for public
firms. In terms of firm characteristics, the average age of private firms is 10.7;
private firms have a log quarterly VC financing amount of 0.2 and a quarter

TABLE 4

Summary Statistics (Firms)

Table 4 shows descriptive statistics for the sample of both public and private firms that have at least one patent application
filed since 2010 and with status available before (and including) 2018. Panel A reports summary statistics for the sample of
public firms; Panel B reports summary statistics for the sample of private firms. AvgExaminerFalseAcceptRate is defined as
the average false acceptance rates of examiners that are related to all granted and rejected applications for each firm in a
given past 3-year rolling window as described in Section VI.A.1, where the false acceptance rate of an examiner associated
with each patent application is defined as the ratio of falsely accepted applications over all applications he/she has made
decisions prior to that patent application. A patent application is falsely accepted if it is accepted by the actual examiner but
rejected by themachine learning algorithm. #ApplicationsReviewed counts the number of patent applications being reviewed
for each firm in a given past 3-year rolling window. ROA is the ratio of quarterly net income over book assets.Cash Flow is the
quarterly cash flow over book assets.R&DExpenditures are the quarterly R&D expenditures over book assets. FirmSize is the
natural logarithm of book assets. Leverage is the total debt (both current liability and long-term debt) over book assets. Ln
(M/B) is the natural logarithm of the market-to-book ratio. SuccessfulExit is a dummy, which equals 1 if a given private firm has
exited throughan IPOorM&Aby the endofmysample period, and0otherwise. LnVCFinancingAmount is the natural logarithm
of the quarterly investment amount for each firm. LnNumberFundInvested is the natural logarithm of the quarterly number of
invested funds for each firm. LnFirmAge is the natural logarithm of firm age, which equals the current year minus the firm
founding year plus 1. All accounting variables (i.e.,ROA,Cash Flow,R&DExpenditures, Leverage, Ln(M/B)) arewinsorized at
1% and 99%.

N Mean Median p10 p90 Std. Dev.

Panel A. Public Firm Sample (firm-quarter level)

AvgExaminerFalseAcceptRate (MLQuality) 19,573 0.132 0.129 0 0.222 0.084
AvgExaminerFalseAcceptRate (MLDecision) 19,573 0.083 0.080 0 0.148 0.064
#ApplicationsReviewed 19,573 2.577 2.197 0.693 4.796 1.606
ROA 19,437 �0.023 0.006 �0.126 0.033 0.084
FirmSize 19,464 6.931 6.656 3.969 10.335 2.449
Leverage 18,704 0.195 0.159 0 0.461 0.205
Ln(M/B) 18,570 1.092 1.022 0.055 2.200 0.858
R&D Expenditures 19,464 0.033 0.018 0 0.088 0.044

Panel B. Private Firm Sample (firm-quarter level)

AvgExaminerFalseAcceptRate (MLQuality) 5,896 0.132 0.124 0 0.231 0.096
AvgExaminerFalseAcceptRate (MLDecision) 5,896 0.080 0.074 0 0.154 0.068
#ApplicationsReviewed 5,896 1.840 1.792 0.693 3.091 0.919
SuccessExit 5,896 0.259 0 0 1 0.438
FirmAge 5,896 10.731 10 6 16 4.610
LnVCFinancingAmount 5,896 0.217 0 0 0 0.767
NumberFundInvested 5,896 0.371 0 0 1 1.295

23All accounting variables (i.e., ROA, R&DExpenditures, Leverage, and Ln(M/B)) are winsorized at
1% and 99%. All regression results are robust to winsorizing with different thresholds.
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number of VC funds of 0.4. Finally, the average rate of successful exits through
IPOs or M&As is 25.9%.

B. Innovation Screening and the Subsequent Operating Performance of
Public Firms

In this section, I empirically examine whether the false acceptance rates of
patent examiners have any effect on the subsequent operating performance of
public firms using the following regression:

ROAi,q+ n ¼ α+ βAvgExaminerFalseAcceptRatei,q + γX i,q +Firmi

+ YearQuarterq + ϵi,q,

(5)

where i indexes the firm, j the industry, and q the quarter and n equals 1, 4, 8, or 12. y
is the operating performance of each public firm, measured using either ROA or
Cash Flow. For example, ROAi,q+ 4 measures the subsequent 4-quarter (or 1-year)
operating performance of each public firm. AvgExaminerFalseAcceptRatei,q is
the average false acceptance rate in the past 3 years (or 12 quarters) of the
examiners who have examined firm i’s patent applications as described in
Section VI.A.1. X is a vector of control variables, including the number of
patents reviewed in the past 3 years, firm size in quarter t, leverage in quarter
t, market-to-book ratio in quarter t, and R&D expenditures in quarter t as
described in Section VI.A.2. Firmi and YearQuarterq represent firm fixed effects
and year-quarter fixed effects. All standard errors are double-clustered at the firm
and quarter levels.

The regression results using ROA as the dependent variable are reported in
Table 5. Panel A uses the false acceptance rate based on Algorithm MLQuality
and shows that the coefficient of AvgExaminerFalseAcceptRate is negative in all
4 columns and becomes statistically significant in column 4. These results
suggest that public firms whose patent applications are reviewed by examiners
with higher past false acceptance rates perform worse starting 2 years or more.
Panel B uses the false acceptance rate based on Algorithm MLDecision and
shows similar results. These results are also economically significant. For exam-
ple, a 1-standard-deviation increase in AvgExaminerFalseAcceptRate decreases
annual ROA by 22 bps to 37 bps. In other words, if all patent applications were
screened by Algorithm MLQuality (MLDecision) (i.e., if AvgExaminerFalseAc-
ceptRate reduces to 0), annual ROA would increase by 35 bps (48 bps). More-
over, the effect of the current patent screening system on firm performance
is likely to be causal due to the quasi-random assignment of patent applications
to patent examiners.24 Regarding potential channels, these results are consistent
with the finding in Section V.D.4 that firms are more likely to allow falsely

24I focus on the impact of false acceptances on firm performance for several reasons. First, false
acceptance is the main problem facing the USPTO, with an average acceptance rate of more than 68%.
Second, analyzing the impact of false rejections on firm performance poses empirical challenges: i) we
do not observe actual quality information for applications rejected by humans but accepted by the
algorithm, and ii) it is difficult to isolate the negative impact of correct rejections on firm performance.
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granted patents to expire early, possibly due to the failed commercialization of
these patents.25

C. Innovation Screening and the Subsequent Performance of
Private Firms

In this section, I study the relationship between innovation screening and the
subsequent performance of private firms with the following specifications:

yi,q+ n ¼ α+ βAvgExaminerFalseAcceptRatei,q + γZi,q + States

+ Industryj + YearQuarterq + ϵi,q,

(6)

TABLE 5

Relationship Between Screening Performance of Patent Examiners and Subsequent
Operating Performance of Public Firms

The sample in Table 5 consists of firms that have at least one patent application filed since 2010 andwith application outcome
available by 2018. ROA is the ratio of quarterly net income over book assets. AvgExaminerFalseAcceptRate is defined as the
average false acceptance rates of examiners that are related to all granted and rejected applications for each firm in a given
past 3-year rolling window as described in Section VI.A.1, where the false acceptance rate of an examiner associated with
each patent application is defined as the ratio of falsely accepted applications over all applications he/she has made
decisions prior to that patent application. A patent application is falsely accepted if it is accepted by the actual examiner
but rejected by the machine learning algorithm. #ApplicationsReviewed counts the number of patent applications being
reviewed for each firm in a given past 3-year rolling window. All regressions include FirmSize, Leverage, Ln(M/B), and R&D
Expenditures as control variables. All accounting variables (i.e., ROA,Cash Flow,R&D Expenditures, Leverage, Ln(M/B)) are
winsorized at 1% and 99%. Firm and year-quarter fixed effects are included in all regressions. t-statistics are in parentheses.
*** and ** indicate significance at the 1% and 5% levels, respectively.

Dependent Variable: Subsequent ROA

1 Quarter 1 Year 2 Years 3 Years

1 2 3 4

Panel A. False Acceptance Rate of Patent Examiners Based on Algorithm MLQuality

AvgExaminerFalseAcceptRate �0.004 �0.014 �0.034 �0.080**
(�0.53) (�0.71) (�1.18) (�2.37)

#ApplicationsReviewed 0.000 0.003 0.012*** 0.014***
(0.16) (1.41) (3.85) (3.76)

Controls Yes Yes Yes Yes
Firm & YearQuarter FE Yes Yes Yes Yes
R2 0.719 0.880 0.940 0.970
No. of obs. 17,417 14,958 11,714 8,711

Panel B. False Acceptance Rate of Patent Examiners Based on Algorithm MLDecision

AvgExaminerFalseAcceptRate 0.000 �0.023 �0.103** �0.175***
(0.01) (�0.83) (�2.44) (�3.50)

#ApplicationsReviewed 0.000 0.003 0.012*** 0.014***
(0.18) (1.42) (3.84) (3.79)

Controls Yes Yes Yes Yes
Firm & YearQuarter FE Yes Yes Yes Yes
R2 0.719 0.880 0.940 0.970
No. of obs. 17,417 14,958 11,714 8,711

25I also find that firms are more likely to be sued in patent litigation cases if their patent applications
are screened by examiners with higher false acceptance rates based onAlgorithmMLQuality as shown in
Table IA.1 in the Supplementary Material. However, the results on patent litigation are not significant
based on Algorithm MLDecision.
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where y is the performance of each private firm, measured using either subsequent
LnVCFinancingAmountorSuccessfulExit.For example,LnVCFinancingAmounti,q+ 4
is the natural logarithm of the VC investment amount received by each firm in the
following 1-year (4-quarter) period; SuccessfulExiti,q+ 4 is a dummy variable that
equals 1 if a firm successfully exits by either an IPO or M&A in the following 1-year
(4-quarter) period, and 0 otherwise. AvgExaminerFalseAcceptRatei,q is my screening
performancemeasure for the examinerswhohave examined firm i’s patent applications
in the past 3 years (12 quarters) as described in Section VI.A.1. Z is a vector of control
variables, including the number of patents reviewed andgranted in the past 3 years, firm
age in quarter t, VC funding received in quarter t, and the number of funds invested in
quarter t as described in SectionVI.A.2. States, Industryj, and YearQuarterq represent
state-of-incorporation, 2-digit SIC industry, and year-quarter fixed effects. Standard
errors are clustered at the state level.

Table 6 reports the regression results using SuccessfulExit as the dependent
variable. Panel A of Table 6 uses the false acceptance rate based on Algorithm
MLQuality and shows that the coefficient of AvgExaminerFalseAcceptRate is
negative and statistically significant in all 4 columns, suggesting that private firms
whose patent applications are reviewed by examiners with higher past false

TABLE 6

Relationship Between Screening Performance of Patent Examiners
and Subsequent Exits of Private Firms

The sample in Table 6 consists of firms that have at least one patent application filed since 2010 andwith application outcome
available by 2018. SuccessfulExit is a dummy, which equals 1 if a given private firm has exited through an IPO or M&A by the
end ofmy sample period, and 0 otherwise.AvgExaminerFalseAcceptRate is defined as the average false acceptance rates of
examiners that are related to all granted and rejected applications for each firm in a given past 3-year rolling window as
described in Section VI.A.1. #ApplicationsReviewed counts the number of patent applications being reviewed for each firm in
a given past 3-year rolling window. The following control variables are included in all regressions: LnVCFinancingAmount,
TotalFundingToDate, LnNumberFundInvested, and LnFirmAge. Year-quarter fixed effects, industry (2-digit SIC code) fixed
effects, and state fixed effects are included in all regressions. t -statistics are in parentheses. All regressions are OLS
regressions with standard errors clustered at the state level. ***, **, and * indicate significance at the 1%, 5%, and 10%
levels, respectively.

Dependent Variable: Subsequent SuccessfulExit

1 Quarter 1 Year 2 Years 3 Years

1 2 3 4

Panel A. False Acceptance Rate of Patent Examiners Based on Algorithm MLQuality

AvgExaminerFalseAcceptRate �0.005 �0.056** �0.126*** �0.173***
(�0.45) (�2.51) (�3.27) (�3.37)

#ApplicationsReviewed 0.008*** 0.017*** 0.024*** 0.024*
(3.89) (3.84) (2.78) (1.93)

Controls Yes Yes Yes Yes
Industry, YearQuarter, & State FE Yes Yes Yes Yes
R2 0.016 0.038 0.059 0.070
No. of obs. 5,888 5,888 5,888 5,242

Panel B. False Acceptance Rate of Patent Examiners Based on Algorithm MLDecision

AvgExaminerFalseAcceptRate 0.003 �0.052* �0.107** �0.129
(0.22) (�1.95) (�2.17) (�1.68)

#ApplicationsReviewed 0.008*** 0.017*** 0.025*** 0.025**
(3.87) (3.92) (2.84) (2.03)

Controls Yes Yes Yes Yes
Industry, YearQuarter, & State FE Yes Yes Yes Yes
R2 0.016 0.037 0.058 0.069
No. of obs. 5,888 5,888 5,888 5,242
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acceptance rates are less likely to exit successfully by either an IPO or M&A in
subsequent quarters. Panel B of Table 6 uses the false acceptance rate based on
Algorithm MLDecision and shows similar but slightly weaker results. Both results
are also economically significant: a 1-standard-deviation increase in AvgExaminer-
FalseAcceptRate decreases the following 2-year probabilities of exiting success-
fully by an IPO or M&A by 1.2% (0.7%). In other words, if all patent applications
were screened by Algorithm MLQuality (MLDecision) (i.e., if AvgExaminerFal-
seAcceptRate reduces to 0), the probability of exiting successfully by an IPO or
M&A over the following 2-year period would increase by 1.6% (0.9%). Overall,
these results suggest that weak innovation screenings could negatively affect the
probability of subsequent exits through IPOs or M&As for private firms.

VII. Conclusion

In this article, I examine whether the patent screening process can be improved
under the current patent system in terms of granting higher-quality patents. I argue
that examiners may not process relevant information efficiently enough to screen out
low-quality applications, possibly due to the examiners’ increasing time constraints
and conflicting incentives. However, machine learning algorithms have much larger
capacities than humans to process information efficiently and can potentially reduce
human-specific agency issues. Using utility patent applications filed at the
USPTO from 2001 to 2018, I trained two separate machine learning algorithms
to learn application quality and examiner decision using earlier patent applications
and predict the quality and examiner decision of more recent patent applications out
of sample. I show that the current patent system accepts many low-quality patents.
To compare the performance of a human-only system and a human + machine
system, I make use of the quasi-random assignment of patent applications to
examiners with different levels of leniency within each art unit. I find that a human
+ machine system could significantly improve the quality of the granted patents.

The analysis reveals that busy and more experienced examiners are more
prone to improperly grant patents, pointing to the influence of both resource
constraints and agency problems. Regression analysis suggests that such inappro-
priately granted patents often expire prematurely, indicating their limited benefit to
the owners. To examine the potential economic gains that could be achieved under
the current patent screening system, I construct an innovation screening perfor-
mance measure by calculating the false acceptance rate of each patent examiner. I
find that the worse innovation screening performance of examiners negatively
impacts firm performance. For example, public firms whose patent applications
are reviewed by examiners with higher false acceptance rates are likely to have
lower operating performance (measured by ROA). Similarly, private firms under
such examiners have a reduced likelihood of successful exits via IPOs or M&As.
Economically, implementing a hypothetical human-plus-machine screening pro-
cess could increase public firms’ annual ROA by 35 to 48 bps and enhance private
firms’ 3-year probability of successful exits by 0.9 to 1.6 percentage points.

It is important to acknowledge the potential limitations of my analyses. First,
the missing counterfactual issue pervades machine learning applications in screen-
ing decisions: I do not observe actual outcomes for applications rejected by human
examiners but accepted by the algorithm. Recognizing this, I show that this issue
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can be addressed using quasi-random assignment of patent applications to patent
examiners. Second, using forward citations as the sole measure of patent quality
may capture only parts of what examiners value. To mitigate this, I use examiners’
past screening decisions as proxies for their screening objectives to train a second
algorithm. Nevertheless, a key benefit of machine learning algorithms is that they
are not subject to the agency conflicts and resource constraints currently faced by
human examiners at USPTO.

To summarize, despite the great promise of augmenting human expertise with
machine learning in patent screenings, replacing human examiners entirely might
lead to unforeseen consequences, such as strategic patent filings (Choudhury et al.
(2020)). Instead, machine learning could serve as a complementary tool, aiding
examiners in refining their decision-making process—perhaps as an audit mecha-
nism to reevaluate their assessments.26 Based on the findings in this article, com-
bining the expertise of human examiners and the strength of machine learning may
potentially yield better screening outcomes.

Supplementary Material

To view supplementary material for this article, please visit http://doi.org/
10.1017/S0022109025000213.
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