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Abstract

We study backward stochastic difference equations (BS�Es) driven by a d-dimensional
stochastic process on a lattice, whose increments take only d + 1 possible values that
generate the lattice. Interpreting the driving process as a d-dimensional asset price
process, we provide applications to an optimal investment problem and to a market
equilibrium analysis, where utility functionals are defined via BS�Es.

Keywords: g-expectation; dynamic risk measure; general equilibrium

2020 Mathematics Subject Classification: Primary 91G80
Secondary 60G42

1. Introduction

The theory of backward stochastic differential equations (BSDEs), initiated by Bismut [7]
and Pardoux and Peng [32], has been extensively studied over the past three decades, partic-
ularly in relation to stochastic control, finance, and insurance (see e.g. [17, 39]). Important
applications include dynamic risk measures [4] and g-expectations [16, 33], which generalize
classical expectations and martingales to nonlinear settings. Recent applications to financial
economics include [6], [8], [20], [24], [28], and [30].

While BSDEs are powerful theoretical tools, their solutions are typically implicit and
require discretization for numerical implementation. As discrete analogs, backward stochas-
tic difference equations (BS�Es) have been widely studied, falling into two main categories.
The first focuses on BS�Es as weak approximations of BSDEs [9, 10, 11, 12, 29, 31, 35, 37].
The second explores the structure of BS�Es themselves. A general framework is provided
in [15], while specific cases involving driving martingales with the predictable representation
property are studied in [14] and [19].

This paper falls into the second category and studies a class of BS�Es including the one
introduced in [31] and [37], where a d-dimensional scaled random walk – whose increments
take only d + 1 values – is used to approximate Brownian motion in BSDEs. Such a ran-
dom walk is minimal among discrete-time processes that converge to d-dimensional Brownian
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2 M. FUKASAWA ET AL.

motions. The weak convergence of this BS�E to the BSDE was proved in [31], and the con-
vergence rate in a Markovian setting was given in [37], generalizing the one-dimensional case
in [11].

This minimal BS�E is computationally efficient, as it involves only a (d + 1)-dimensional
problem, in contrast to a 2d-dimensional problem required when using d-dimensional Bernoulli
random walks [12]. Although Cohen and Elliott [15] have developed a general BS�E the-
ory, we focus on the specific structure of this minimal BS�E, which exhibits properties not
covered in their general framework. In the one-dimensional case, it reduces to a BS�E on a
binomial tree, studied in [19] in the context of dynamic risk measures. We treat the general
multi-dimensional setting here.

Our key contribution is to identify a gradient constraint on the BS�E driver, which endows
the solution with certain properties as a generalized conditional expectation. This allows us to
link the driver to a measure change for the driving random walk, and apply these insights to
market equilibrium analysis.

The g-expectation is part of the solution of a BSDE or BS�E, and generalizes the expecta-
tion and the certainty equivalent of an expected utility. A subclass of them with concavity and
translation invariance has been employed as the utility functional for market equilibrium anal-
yses in [3], [13], [25], and [28]. In this paper, we also apply our BS�E to a market equilibrium
analysis. In contrast to the preceding studies, which place an emphasis on incomplete markets,
we are interested in explicit computations in a dynamically complete market.

Anderson and Raimondo [2] proved the existence of equilibrium in a continuous-time
dynamically complete market by means of non-standard analysis, where an approximation
to a Brownian motion by a minimal random walk played a key role. We consider a simpler
dynamically complete market to derive explicit conditions for market equilibrium.

Under a unique equivalent martingale measure, our asset price model is a multi-dimensional
extension of the recombining binomial tree. In our approach, an asset price process is given as
a stochastic process taking values on a lattice. We do not argue the existence of an equilibrium
price but characterize the agents’ utilities under which the given discrete (in both time and
space) price process is to be in general equilibrium. This feature is in contrast to the preceding
studies [3], [13], and [25] and similar to [8], [23], [28], and [34] in continuous time.

Our framework includes heterogeneous agents with exponential utilities under heteroge-
neous beliefs. Their risk-aversion coefficients may be stochastic and time-varying. We observe
in particular that under equilibrium with heterogeneous beliefs, agents trade with each other,
even in the absence of random endowments to hedge, complementing earlier studies of
heterogeneous beliefs [5, 21, 22, 26, 30, 38].

In Section 2.1 we describe a lattice in Rd where a stochastic process {Xn} takes values, and
give some elementary linear algebraic lemmas as a preliminary. In Section 2.2 we introduce
the process {Xn} that is the source of randomness in this paper and generates a filtration. It is
minimal in the sense that the increment �Xn takes values in a set {v0, . . . , vd} of d + 1 points
in Rd. Some elementary measure change formulas are also given as a preliminary.

In Section 2.3 our BS�E

�Yn = −gn(Zn) + Z�
n �Xn, YN = Y,

is formulated. Due to the minimality of {Xn}, there exists a unique solution {(Yn, Zn)} to the
above equation, without orthogonal martingale terms needed in [10] and [12]. The process
{Xn} itself takes more than d + 1 points, so this BS�E is different from the one studied in [14].
The g-expectation Eg

n for g = {gn} is defined by Eg
n (Y) = Yn. Proposition 2.1 concerns the case
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BS�Es on lattices with application 3

gn(z) = fn(Xn−1, z) and YN = h(XN) for deterministic functions fn and h to provide a nonlinear
Feynman–Kac-type formula, which is a computationally efficient recurrence equation on the
lattice for a deterministic function un such that Yn = un(Xn).

Section 2.4 is about the aforementioned gradient constraint. First we observe that the g-
expectation is a conditional expectation when gn are linear with slope coefficients included in
the convex hull � of the set {v0, . . . , vd}. The importance of this constraint on the slope is a
special feature of our BS�E, and to the best of our knowledge has not been recognized in the
preceding studies of multi-dimensional BS�Es. A balance condition introduced by Cohen and
Elliot [15] for a comparison theorem to hold is translated in terms of � for our BS�E. We
also prove a robust representation when gn are concave, where the set � again plays an impor-
tant role. In Section 2.5 we show that a translation-invariant filtration-consistent nonlinear
expectation is a g-expectation.

In Section 3 we regard {Xn} as a d-dimensional asset price process. In Section 3.1 we con-
sider an optimal investment strategy which maximizes the g-expectation of terminal wealth.
By the minimality, the market is complete, extending the well-known binomial tree model for
a one-dimensional asset. Our asset price model can be seen as a discrete approximation of the
multi-dimensional Bachelier model with constant covariance and general stochastic drift. An
advantage of our use of the minimal process as an approximation is that the completeness of
the Bachelier model is preserved. Further, the minimality property naturally arises in a vari-
ance swap pricing model as illustrated in Example 3.2. In Sections 3.2–3.4 we give a market
equilibrium analysis. We consider agents whose utility functionals are g expectations and seek
conditions on those g expectations under which {Xn} is an equilibrium price process.

Throughout our financial application, we have short maturity problems in mind, and so, for
brevity, assume interest rates, dividend rates, and consumption rates to be zero as in [3], [13],
[25], and [28].

We use the convention that
n∑

i=m

ai = 0

for any sequence {ai} if m > n.

2. BS�E on a lattice

2.1. Lattice

We start by describing a lattice. Let {v1, . . . , vd} be a basis of Rd. The subset

L =
{

d∑
i=1

zivi, ; zi ∈Z, i = 1, . . . , d

}

of Rd is a d-dimensional lattice generated by the basis. Notice that L admits an alternative
expression

L =
{

d∑
i=0

nivi, ; ni ∈N, i = 0, 1, . . . , d

}
, (2.1)

where v0 = −v1 − · · · − vd and N is the set of the non-negative integers. Let

v = [v0, v1, . . . , vd]
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4 M. FUKASAWA ET AL.

be the d × (d + 1) matrix with vi, i = 0, . . . , d as its column vectors. Put

1 = (1, . . . , 1)� ∈Rd+1.

The following lemmas will be of repeated use in this paper.

Lemma 2.1. The (d + 1) × (d + 1) matrix (1, v�) is invertible.

Proof. We show that the row vectors of (1, v�) are linearly independent. Suppose

(α0, . . . , αd)(1, v�) = 0,

or equivalently
d∑

j=0

αj = 0,

d∑
j=0

αjvj = 0

for scalars αj. By the second equation and the definition of v0, we have

d∑
j=1

(αj − α0)vj = 0,

from which we can conclude αj = α0 for all j because {v1, . . . , vd} is a basis. Together with
the first equation, we then conclude αj = 0 for all j. �

Lemma 2.2. Let y ∈Rd+1. The unique solution to the equation

y = (1, v�)z, z = (z0, z1, . . . , zd)� ∈Rd+1 (2.2)

is given by

z0 = a(y) := 1

d + 1
1�y, (z1, . . . , zd)� = b(y) := (vv�)−1vy. (2.3)

Proof. By Lemma 2.1, there exists a unique z ∈Rd+1 such that (2.2) holds. Since v1 = 0,
multiplying both sides of (2.2) by 1�, we obtain the first equation of (2.3). Also, multiply-
ing both sides of (2.2) by v and again using v1 = 0, we have vy = vv�(z1, . . . , zd)�. Since
{v1, . . . , vd} is a basis, v has rank d. Therefore v� has rank d and so, for any x ∈Rd \ {0},
x�vv�x = |v�x|2 �= 0. This implies that the d × d matrix vv� is invertible and, in turn, the
second equation of (2.3) is valid. �

2.2. Probability space

Let (�, F, P) be a probability space. For a stochastic process {Xn}n∈N, we put �Xn =
Xn − Xn−1. Let {Xn} be a d-dimensional stochastic process with �Xn taking values in
{v0, v1, . . . , vd} for all n ≥ 1 and X0 = 0. By (2.1), Xn takes values in L for all n ∈N.
Let Fn = σ (X0, . . . , Xn), n ∈N, be the natural filtration generated by {Xn}, and put Pn =
(Pn,0, . . . , Pn,d)� for n ≥ 1, where

Pn,j = P(�Xn = vj | Fn−1), j = 0, . . . , d.
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BS�Es on lattices with application 5

Note that {Pn} is a �d-valued predictable process, where

�d = {
p ∈Rd+1 ; 1�p = 1, p ≥ 0

}
.

We assume Pn,j is positive for all n ≥ 1 and j = 0, . . . , d. Let N ∈N \ {0}. The following lemma
will be of repeated use in this paper.

Lemma 2.3. For any �d-valued predictable process {P̂n}, there exists a probability measure P̂
on (�, FN) such that P̂n = (P̂n,0, . . . , P̂n,d)�, where

P̂n,j = P̂(�Xn = vj | Fn−1), j = 0, . . . , d, n = 1, . . . , N. (2.4)

Proof. Define P̂ by

P̂(A) =E[LN1A], Ln =
n∏

k=1

(
d∑

j=0

P̂k,j

Pk,j
1{�Xk=vj}

)
(2.5)

for A ∈ FN . The measure P̂ is a probability measure because

E

[
d∑

j=0

P̂n,j

Pn,j
1{�Xn=vj}

∣∣∣∣Fn−1

]
=

d∑
j=0

P̂n,j

Pn,j
Pn,j = 1

and so Ln is a martingale with L0 = 1. Using Bayes’ formula, we derive

P̂(�Xn = vj | Fn−1) = E[LN1{�Xn=vj} | Fn−1]

E[LN | Fn−1]
=E

[
P̂n,j

Pn,j
1{�Xn=vj}

∣∣∣∣Fn−1

]
= P̂n,j,

by the martingale property of Ln. �

Define a measure Q on FN by

Q(A) =E[LN1A], LN =
N∏

n=1

(
1

d + 1

d∑
j=0

1

Pn,j
1{�Xn=vj}

)
.

Let EQ denote the integration under Q.

Lemma 2.4. The measure Q is the unique probability measure on FN under which {Xn} is a
martingale. Under Q, {�Xn} is i.i.d. with

Q(�Xn = vj) =Q(�Xn = vj | Fn−1) = 1

d + 1

for all n = 1, . . . , N and j = 0, . . . , d. We also have

EQ[�Xn | Fn−1] = 0, EQ[�Xn(�Xn)� | Fn−1] = 1

d + 1
vv�. (2.6)

Proof. By Lemma 2.3, Q is a probability measure with Q(�Xn = vj | Fn−1) = 1/(d + 1),
which implies

EQ[�Xn | Fn−1] = 1

d + 1
v1 = 0.
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6 M. FUKASAWA ET AL.

Therefore {Xn} is a martingale with (2.6). There is no other such measure because

d∑
j=0

αj = 1,

d∑
j=0

αjvj = 0

implies αj = 1/(d + 1) as in the proof of Lemma 2.1. Since the conditional law of �Xn given
Fn−1 is deterministic for every n, {�Xn} is i.i.d. �

Remark 2.1. For any positive definite d × d matrix �, we can construct such a lattice L that
vv� = �. Indeed, starting with an arbitrary basis, say, v̄j = ej (the standard basis of Rd) with
v̄0 = −v̄1 − · · · − v̄d and v̄ = [v̄0, . . . , v̄d], using the Cholesky decomposition � = CC� and
v̄v̄� = C̄C̄�, if we take vj = CC̄−1v̄j, j = 0, . . . , d, then v = CC̄−1v̄ and so we get vv� =
CC̄−1v̄v̄�(C̄�)−1C� = �. In particular, we can construct such vj that vv� is the identity
matrix. In this case a scaling limit of {Xn} under Q is the d-dimensional standard Brownian
motion. Such a set of vectors played an essential role in proving the existence of continuous-
time market equilibrium in Anderson and Raimondo [2] by means of non-standard analysis,
where the existence of the vectors was proved in a recursive manner. It is also the building
block of a d-dimensional diamond in topological crystallography [36].

2.3. Existence, uniqueness and representation

Here we introduce our BS�E. Let A denote the set of the sequences g = {gn}N
n=1 of Fn−1 ⊗

B(Rd) measurable functions gn : � ×Rd →R. Now we state an elementary but fundamental
result.

Theorem 2.1. Let YN be an FN-measurable random variable, and let g = {gn} ∈A. Then
there exist uniquely an adapted process {Yn}n=0,...,N−1 and an Rd-valued predictable process
{Zn}n=1,...,N such that

�Yn = −gn(Zn) + Z�
n �Xn, n = 1, . . . , N. (2.7)

Further, they admit the following representation:

Yn−1 =EQ[Yn | Fn−1] + gn(Zn),

Zn = (d + 1)(vv�)−1EQ[Yn�Xn | Fn−1] = (vv�)−1vȲn,

where Ȳn = (Ȳn,0, . . . , Ȳn,d)� and

Ȳn,j =EQ[Yn | Fn−1, �Xn = vj] = (d + 1)EQ[Yn1{�Xn=vj} | Fn−1].

Proof. Since YN is FN-measurable, there exists a function f : LN →R such that YN =
f (X1, . . . , XN). Since PN,j are positive by the assumption, (2.7) for n = N is equivalent to the
system of equations for FN−1-measurable random variables

Y :=
⎡
⎢⎣

f (X1, . . . , XN−1, XN−1 + v0)
...

f (X1, . . . , XN−1, XN−1 + vd)

⎤
⎥⎦= (1, v�)

[
YN−1 − gN(ZN)

ZN

]
.

Applying Lemma 2.2, we obtain (2.7) for n = N with

ZN = b(Y), YN−1 = a(Y) + gN(ZN),
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BS�Es on lattices with application 7

where a(y) and b(y) are defined by (2.3). It is clear that both ZN and YN−1 are FN−1-
measurable. By backward induction, we obtain {Yn} and {Zn}. The representation follows from
(2.7) and (2.6) by taking the conditional expectation under Q. �

For g = {gn} ∈A fixed, the Fn-measurable random variable Yn given by Theorem 2.1 is
uniquely determined by the FN-measurable random variable YN . We write this mapping as
Yn = Eg

n (YN) and call it the g-expectation of YN (with respect to Fn). The stochastic process
{(Yn, Zn)} given by Theorem 2.1 is called the solution of the BS�E (2.7).

Remark 2.2. In the literature, say, in [15], BS�E is formulated by decomposing �Yn into a
predictable part and a martingale difference part. In our formulation (2.7), �Xn is not neces-
sarily a martingale difference. It is a minor reparametrization because (2.7) can be rewritten as

�Yn = −ĝn(Zn) + Z�
n (�Xn − An)

with ĝn(z) = gn(z) − z�An, An =E[�Xn | Fn−1].

Example 2.1. Let γ > 0, {(P̂n,0, . . . , P̂n,d)�} be a �d-valued predictable process, and

gn(z) = − 1

γ
log

(
d∑

j=0

e−γ z�vj P̂n,j

)
. (2.8)

Then

Eg
n (Y) = − 1

γ
log Ê

[
e−γ Y | Fn

]
, n = 0, 1, . . . , N, (2.9)

for any FN-measurable random variable Y , where Ê is the expectation under the measure P̂ on
FN defined by (2.5). To see this, note that by Lemma 2.3,

gn(z) = − 1

γ
log Ê

[
e−γ z��Xn | Fn−1

]
.

Substituting Yn = Yn−1 − gn(Zn) + Z�
n �Xn, we have

− 1

γ
log Ê

[
e−γ Yn | Fn−1

]= Yn−1 − gn(Zn) − 1

γ
log Ê

[
e−γ Z�

n �Xn | Fn−1
]= Yn−1

which implies (2.9) for n = N − 1. The general case follows by backward induction.

Next we give a discrete analog of the nonlinear Feynman–Kac formula, which is computa-
tionally efficient when dealing with large N.

Proposition 2.1. Let fn : L ×Rd →R, n = 1, . . . , N and h : L →R. Define un : L →R,
n = 0, 1, . . . , N backward inductively by

un−1(x) = un(x) +Lun(x) + fn(x, (vv�)−1vNun(x))

with uN = h, where

Lun(x) = 1

d + 1

d∑
j=0

(un(x + vj) − un(x)),

Nun(x) = (un(x + v0) − un(x), . . . , un(x + vd) − un(x))�.

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2025.10045
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 09 Nov 2025 at 05:34:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2025.10045
https://www.cambridge.org/core


8 M. FUKASAWA ET AL.

Then the unique solution to (2.7) with gn = fn(Xn−1, ·) and YN = h(XN) is given by

Yn−1 = un−1(Xn−1), Zn = (vv�)−1vNun(Xn−1), n = 1, . . . , N.

Proof. By definition, YN = h(XN) = uN(XN). Suppose Yn = un(Xn). Then, by Theorem 2.1,
Zn = (vv�)−1vȲn, where

Ȳn,j =EQ[Yn | Fn−1, �Xn = vj] = un(Xn−1 + vj).

Using v1 = 0, we conclude Zn = (vv�)−1vNun(Xn−1). Further, again by Theorem 2.1,

Yn−1 =EQ[Yn | Fn−1] + gn(Zn) = un(Xn−1) +Lun(Xn−1) + gn(Zn) = un−1(Xn−1),

which concludes the proof. �

2.4. A gradient constraint

Let � be the closed convex hull spanned by {v0, v1, . . . , vd}, or equivalently

� = {vp ; p ∈ �d}.
In this section we study BS�Es with the gradient of g being constrained in �.

Example 2.2. The triangular lattice of R2 is generated by

v1 = 1√
6

(
0

−2

)
, v2 = 1√

6

(√
3

1

)
.

In this case, vv� = I and � is an equilateral triangle.

Proposition 2.2. Let gn(z) = A�
n z + Bn for a �-valued predictable process {An} and a pre-

dictable process {Bn}, n = 1, . . . , N. Then

Eg
n (Y) = Ê

[
Y +

N∑
i=n+1

Bi

∣∣∣∣Fn

]
, n = 0, 1, . . . , N,

for any FN-measurable random variable Y, where Ê is the expectation under the measure P̂ on
FN defined by (2.5) with P̂n = (P̂n,0, . . . , P̂n,d)� such that An = vP̂n.

Proof. By Lemma 2.3,

Ê[�Xn |Fn−1] = E[LN�Xn |Fn−1]

E[LN |Fn−1]
=

d∑
j=0

vjP̂n,j = vP̂n = An

for all n. On the other hand, from (2.7), we have

Y = YN = Yn +
N∑

i=n+1

(−gi(Zi) + Z�
i �Xi

)= Yn +
N∑

i=n+1

(−Bi + Z�
i (�Xi − Ai)

)
.

Taking the conditional expectation under P̂, we get the conclusion. �
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Example 2.3. Let N = 1, d = 1, � = {+, −}, v0 = −1, v1 = 1, and �X1( ± ) = ±1. Then
L =Z, v = (−1, 1), � = [ − 1, 1] and vv� = 2. Following the proof of Theorem 2.1, the
solution of the linear BS�E �Y1 = −AZ1 + Z1�X1 can be constructed as

Y0 = Y1( + ) + Y1(−)

2
+ A

Y1( + ) − Y1(−)

2
= 1 + A

2
Y1( + ) + 1 − A

2
Y1(−)

for any A ∈R. The expression given by Proposition 2.2 is Y0 = Ê[Y1], which can be directly
seen with P̂1 = ((1 − A)/2, (1 + A)/2)� for A ∈ � = [ − 1, 1]. For A /∈ �, we observe that Y0
is not increasing in either Y1( + ) or Y1(−). In particular, Y0 cannot be represented as an
expectation in this case.

The set � plays a key role also for a comparison theorem. Let B denote the set of the
sequence g = {gn}N

n=1 ∈A with

gn(z2) − gn(z1) ≥ min
θ∈�

θ�(z2 − z1) (2.10)

for all z1, z2 ∈Rd.

Proposition 2.3. (Comparison theorem.) For i = 1, 2, let Y (i) be FN-measurable random vari-
ables with Y (1) ≥ Y (2), and g(i) = {g(i)

n } ∈A with g(1)
n ≥ g(2)

n . Let E (i)
n (Y (i)) denote Eg

n (Y (i)) for
g = g(i), i = 1, 2 respectively. Assume also g(i) ∈B for either i = 1 or i = 2. Then

E (1)
n (Y (1)) ≥ E (2)

n (Y (2)), n = 0, 1, . . . , N.

Proof. Note first that

min
ω∈�

z��Xn(ω) = min
p∈�d

z�vp = min
θ∈�

z�θ (2.11)

for any z ∈Rd and n. Therefore, under (2.10) for g = g(i), g(i) is balanced in the terminology
of [15], so the result follows from Theorem 3.2 of [15]. Here we repeat essentially the same
proof for the readers’ convenience. Let

{(
Y (i)

n , Z(i)
n
)}

be the solution of (2.7) with g = g(i) and

YN = Y (i). We have Y (1)
N ≥ Y (2)

N by assumption. Suppose Y (1)
k ≥ Y (2)

k for some k. Then

0 ≤ Y (1)
k − Y (2)

k = Y (1)
k−1 − Y (2)

k−1 − g(1)
k

(
Z(1)

k

)+ g(2)
k

(
Z(2)

k

)+ (
Z(1)

k − Z(2)
k

)�
�Xk

and so (
Z(1)

k − Z(2)
k

)�
�Xk ≥ −Y (1)

k−1 + Y (2)
k−1 + g(1)

k

(
Z(1)

k

)− g(2)
k

(
Z(2)

k

)
.

Since the right-hand side is Fk−1-measurable, this implies further

min
θ∈�

θ�(Z(1)
k − Z(2)

k

)≥ −Y (1)
k−1 + Y (2)

k−1 + g(1)
k

(
Z(1)

k

)− g(2)
k

(
Z(2)

k

)
by (2.11). Therefore

Y (1)
k−1 − Y (2)

k−1 ≥ g(1)
k

(
Z(1)

k

)− g(2)
k

(
Z(2)

k

)− min
θ∈�

θ�(Z(1)
k − Z(2)

k

)
= g(1)

k

(
Z(2)

k

)− g(2)
k

(
Z(2)

k

)+ g(1)
k

(
Z(1)

k

)− g(1)
k

(
Z(2)

k

)− min
θ∈�

θ�(Z(1)
k − Z(2)

k

)
≥ 0
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10 M. FUKASAWA ET AL.

under (2.10) for gn = g(1)
n , and also

Y (1)
k−1 − Y (2)

k−1 ≥ g(1)
k

(
Z(1)

k

)− g(2)
k

(
Z(2)

k

)− min
θ∈�

θ�(Z(1)
k − Z(2)

k

)
= g(1)

k

(
Z(1)

k

)− g(2)
k

(
Z(1)

k

)+ g(2)
k

(
Z(1)

k

)− g(2)
k

(
Z(2)

k

)− min
θ∈�

θ�(Z(1)
k − Z(2)

k

)
≥ 0

under (2.10) for gn = g(2)
n . The result then follows by induction. �

Remark 2.3. A sufficient condition for gn to meet (2.10) is that gn(z) is continuously
differentiable in z with ∇gn(z) taking values in �. Indeed, by Taylor’s theorem,

gn(z1) − gn(z2) = A�
n (z1 − z2), An =

∫ 1

0
∇gn(z2 + t(z1 − z2)) dt,

and then notice that An is �-valued because � is a convex set.

Example 2.4. (Locally entropic monetary utility.) Let {(P̂n,0, . . . , P̂n,d)�} be a �d-valued
predictable process, let {Bn} and {�n} be positive predictable processes, and

gn(z) = − 1

�n
log

(
d∑

j=0

e−�nz�vj P̂n,j

)
− 1

�n
log Bn. (2.12)

Using a similar calculation to Example 2.1, we deduce the relation

Yn−1 = − 1

�n
{log Ê[e−�nYn |Fn−1] + log Bn}, n = N, . . . , 1.

In particular, when Bn = 1, Eg
n−1 is locally the minus of the entropic risk measure with risk-

aversion parameter �n extending (2.9). In contrast to the dynamic entropic risk measure studied
in [1], we have the time-consistency property Eg

m(Eg
n (Y)) = Eg

m(Y) for any m ≤ n when Bn = 1
for all n even if the process {�n} is not constant. We allow Bn �= 1 in order to include an example
in Section 3. We call Eg

n a locally entropic monetary utility. A brief numerical study for this
utility is provided in Appendix B. We have

∇gn(z) = Ê[�Xn e−�nz��Xn | Fn−1]

Ê[e−�nz��Xn | Fn−1]
= vP̂n(z),

where P̂n(z) = (P̂n,0(z), . . . , P̂n,d(z))� and

P̂n,j(z) = e−�nz�vj P̂n,j∑d
k=0 e−�nz�vk P̂n,k

.

Since P̂n(z) is continuous in z and �d-valued for all n, by Remark 2.3, the assumptions of
Proposition 2.3 on g(i)

n are satisfied.

Next, we seek a robust representation of Eg when g is concave. Let C denote the set of
g = {gn} ∈B with gn(z) being concave in z for all n.

Lemma 2.5. Let g = {gn} ∈A. Then g ∈ C if and only if

gn(z) = min
θ∈�

{z�θ + bn(θ )}, (2.13)
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where
bn(θ ) = sup

z∈Rd
{gn(z) − z�θ}.

Proof. If gn is concave, then it is continuous on the interior of its domain that is Rd.
Therefore by a well-known fact on the Legendre transform, we have

gn(z) = inf
x∈Rd

{z�x + bn(x)}.

Let x /∈ �. Since � is a closed convex set of Rd, by the Hahn–Banach theorem (or the
separating hyperplane theorem), there exists z0 ∈Rd such that

min
θ∈�

z�
0 θ > z�

0 x.

Using (2.10), for z = αz0, α > 0,

gn(z) − z�x ≥ gn(0) + min
θ∈�

θ�z − z�x = gn(0) + α min
θ∈�

z�
0 (θ − x).

Since the last term is positive, letting α → ∞, we conclude bn(x) = ∞. This implies

gn(z) = inf
θ∈�

{z�θ + bn(θ )} = inf
(θ,b)∈An

{z�θ + b},

where An = {(θ, b) ∈ � ×R ; gn(w) ≤ w�θ + b for all w ∈Rd}. Fix n and z and then take a
sequence {(θk, bk)} ⊂ An such that z�θk + bk → gn(z). Since � is compact, there exists a
converging subsequence {θkj} with limit θ∗ ∈ �. We have bkj = z�θkj + bkj − z�θkj → gn(z) −
z�θ∗ =: b∗. Also, w�θkj + bkj ≥ gn(w) for all w implies w�θ∗ + b∗ ≥ gn(w) for all w, hence
(θ∗, b∗) ∈ An. Thus we obtain (2.13). Conversely, if (2.13) is true, then gn(z) is concave, being
the minimum of concave (affine) functions. Since

z�
1 θ + bn(θ ) = z�

2 θ + bn(θ ) + θ�(z1 − z2) ≥ z�
2 θ + bn(θ ) + min

θ∈�
θ�(z1 − z2),

we derive (2.10) from (2.13). �

Let PN denote the set of the probability measures on (�, FN) absolutely continuous with
respect to P. For P̂ ∈PN , there corresponds a �d-valued predictable process {P̂n} by (2.4). The
measure P̂ is recovered from {P̂n} by (2.5). Let Ê denote the expectation under P̂ and define

cg
n(P̂) = Ê

[
N∑

i=n+1

bi(vP̂i)

∣∣∣∣Fn

]
,

where bi is associated with g = {gn} ∈ C via (2.13). The following theorem shows the nature
of the g-expectation with the gradient constraint as a nonlinear expectation, taking care
of Knightian uncertainty, refining a general convex duality result in [18] for an explicit
representation of a penalty function.

Theorem 2.2. Let g ∈ C. Then, for any FN-measurable random variable Y,

Eg
n (Y) = min

P̂∈PN

{
Ê[Y | Fn] + cg

n(P̂)
}
, n = 0, 1, . . . , N. (2.14)
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12 M. FUKASAWA ET AL.

Proof. By (2.13), we have
gn(z) ≤ z�vP̂n + bn(vP̂n)

for any P̂ ∈PN . Therefore, by Propositions 2.2 and 2.3, we have

Eg
n (Y) ≤ Ê[Y | Fn] + cg

n(P̂)

for any P̂ ∈PN . On the other hand, for any Y ∈ FN , there exists the solution {(Yn, Zn)} of (2.7)
with YN = Y . By (2.13), there exists P̂n such that

gn(Zn) = Z�
n vP̂n + bn(vP̂n)

for each n. Since {gn} and {Zn} are predictable, {P̂n} is a �d-valued predictable process. Let
P̂ ∈PN be associated with {P̂n}. Then {(Yn, Zn)} solves the BSDE with ĝn(z) = z�vP̂n +
bn(vP̂n) as well, and so by Proposition 2.2,

Eg
n (Y) = Yn = Ê[Y | Fn] + cg

n(P̂),

which implies (2.14). �

Corollary 2.1. Let g ∈ C. Let Y and Y ′ be FN-measurable random variables.

(i) If Y ≥ Y ′, then Eg
n (Y) ≥ Eg

n (Y ′), n = 0, 1, . . . , N.

(ii) For any Fn-measurable [0,1]-valued random variable λ,

Eg
n (λY + (1 − λ)Y ′) ≥ λEg

n (Y) + (1 − λ)Eg
n (Y ′), n = 0, 1, . . . , N.

Example 2.5. Let �n ⊂ � and

gn(z) = inf
θ∈�n

z�θ, n = 1, . . . , N.

Here, the set �n can be random in such a way that gn is Fn−1 ⊗ B(Rd)-measurable. Then we
have (2.13) with bn such that bn(θ ) = 0 if θ ∈ �̄n while bn(θ ) = ∞ otherwise, where �̄n is the
closure of �n. In particular when �n = �, by Theorem 2.2,

Eg
n (Y) = min

P̂∈PN

Ê[Y | Fn], n = 1, . . . , N,

for any FN-measurable random variable Y . Note also that

Eg
0 (Y) = min

P̂∈PN

Ê[Y] = min
ω∈�

Y(ω).

When �n = {vP(1)
n , . . . , vP(m)

n } for a �d-valued predictable process {P(i)
n }, letting E(x) denote

the expectation under the measure determined by {P(xn)
n } for x = (x1, . . . , xN) ∈ {1, . . . , m}N ,

by Theorem 2.2, we have

Eg
n (Y) = min

x
E(x)[Y | Fn], n = 1, . . . , N.
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2.5. Filtration consistent nonlinear expectations

Inspired by Coquet et al. [16], we call E : L0(�, FN, P) →R a filtration consistent
nonlinear expectation if:

(i) Y ≥ Y ′ ⇒ E(Y) ≥ E(Y ′),

(ii) Y ≥ Y ′ and E(Y) = E(Y ′) ⇒ Y = Y ′,

(iii) E(c) = c for any constant c ∈R, and

(iv) for any n = 1, . . . , N and Y , there exists an Fn-measurable η such that E(Y1A) = E(η1A)
for any A ∈ Fn.

Further, η is uniquely determined as shown in [16]. Let it be denoted by En(Y). It follows
that

En(Em(Y)) = En(Y) (2.15)

for any m ≥ n, and
En(Y)1A = En(Y1A) (2.16)

for any A ∈ Fn.

Proposition 2.4. Let g = {gn} ∈A, and assume that for n = 1, . . . , N,

(i) gn(0) = 0 and

(ii) for any z1, z2 ∈Rd

gn(z1) − gn(z2) ≥ min
θ∈�

θ�(z1 − z2),

with equality holding only if z1 = z2.

Then Eg
0 is a filtration consistent nonlinear expectation with En = Eg

n and a translation
invariance property,

En(Y + η) = En(Y) + η, (2.17)

for any FN-measurable random variable Y, Fn-measurable random variable η, and n =
1, . . . , N.

Proof. From Proposition 2.3 and its proof, we observe the first two properties of filtration
consistent nonlinear expectation. By gn(0) = 0 we derive (2.15) and (2.16), from which the
other properties follow. �

The following theorem is a discrete analog of Theorem 7.1 of [16].

Proposition 2.5. Let E be a filtration consistent nonlinear expectation with the translation
invariance property (2.17). Let gn(z) = En−1(z��Xn). Then En = Eg

n .

Proof. We have EN(Y) = Y for any Y , so the claim is true for n = N. Assume Ek(Y) = Eg
k (Y)

for k ≥ n. Then, by (2.2), there exists Fn−1-measurable An and Zn such that

En(Y) = An + Z�
n �Xn.

Then, by (2.15) and (2.17),

En−1(Y) = An + En−1(Z�
n �Xn).
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The last term is gn(Zn) by (2.16). Therefore

En(Y) − En−1(Y) = −gn(Zn) + Z�
n �Xn,

which implies that En−1(Y) = Eg
n−1(Y). The result follows by induction. �

3. Market equilibrium analysis

3.1. Monetary utility maximization

Now we consider {Xn} to be a d-dimensional asset price process. The lattice L is then
understood as the price grid. For any {Fn}-predictable Rd-valued process Z = {Zn} and w ∈R,

Wn(w, Z) := w +
n∑

i=1

Z�
i �Xi

represents the wealth process associated with the portfolio strategy Z and the initial wealth w.
Applying Theorem 2.1 with gn = 0, n = 1, . . . , N, we observe that the market is complete, that
is, for any FN-measurable random variable Y , there exists a predictable process Z and w ∈R

such that Y = WN(w, Z).
Consider an agent whose utility functional is Eg

0 for g ∈ C. This utility is monetary in the
sense that for all n = 0, . . . , N, Eg

n (Y + A) = Eg
n (Y) + A for any FN-measurable random vari-

able Y and Fn-measurable random variable A. When assuming gn(0) = 0 for all n in addition,
the utility is normalized in the sense that Eg

n (0) = 0, n = 0, . . . , N, and it is time-consistent in
the sense that Eg

m(Eg
n (Y)) = Eg

m(Y) for any m ≤ n and for any FN-measurable random variable
Y . The simplest example is Eg

n (Y) =E[Y | Fn] corresponding to gn(z) = z�E[�Xn | Fn−1].
More generally, Eg

n (Y) is a conditional expectation with respect to a probability measure when
gn are linear for all n by Proposition 2.2. The driver {gn} should reflect the agent’s belief in the
distribution of the price process {Xn}. For example, if gn = 0 for all n, then Eg

n (Y) =EQ[Y | Fn]
irrespective of P. The choice of nonlinear {gn} accommodates a nonlinear evaluation of risk,
extending the exponential utility (2.9). In light of Theorem 2.2, our problem can be interpreted
as a robust utility maximization.

The agent’s objective is to maximize Eg
0 (H + WN(w, π )) among the predictable process π =

{πn}, where H is a given FN-measurable random variable representing an initial endowment
of the agent, i.e. an initially endowed asset or a scheduled random cashflow. Since the utility is
monetary, it suffices to treat the case w = 0. Let

Yπ
n = Eg

n (H + WN(0, π ) − Wn(0, π )) = Eg
n (H + WN(0, π )) − Wn(0, π ). (3.1)

Then the problem is equivalent to maximizing Yπ
0 among π . The following theorem character-

izes the maximizer.

Theorem 3.1. Assume that there exists a predictable process {Z†
n} such that

gn(Z†
n) = sup

z∈Rd
gn(z), n = 1, . . . , N. (3.2)

Then

max
π

Yπ
0 = max

π
Eg

0 (H + WN(0, π )) = Eg
0 (H + WN(0, π∗)),
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where π∗
n = Z†

n − Z∗
n , Z∗

n = ZH
n + Zg

n,

ZH
n = (d + 1)(vv�)−1EQ[H�Xn | Fn−1],

Zg
n = (d + 1)(vv�)−1EQ[Gn�Xn | Fn−1], (3.3)

and

Gn =
N∑

i=n+1

EQ[gi(Z
†
i ) | Fn]

for n = 1, . . . , N. Moreover,
Yπ∗

n =EQ[H | Fn] + Gn (3.4)

for n = 0, 1, . . . , N. If in addition Z†
n is unique, then π∗

n is the unique maximizer.

Proof. Let Y∗
n denote the right-hand side of (3.4). Then {(Y∗

n , Z∗
n )} is the solution of the

BS�E
�Y∗

n = −gn(Z†
n) + (Z∗

n )��Xn, Y∗
N = H, (3.5)

by Theorem 2.1. Note that

�Yπ
n = −gn(Zn) + Z�

n �Xn − π�
n �Xn, Yπ

N = H,

for a predictable process {Zn} by (3.1). This means {(Yπ
n , Zπ

n )}, Zπ
n = Zn − πn solves the BS�E

�Yπ
n = −hπ

n (Zπ
n ) + (Zπ

n )��Xn, Yπ
N = H,

where hπ
n (z) = gn(z + πn). For any predictable process π , we have hπ

n ≤ gn(Z†
n). Therefore

Yπ
n ≤ Y∗

n by Proposition 2.3. Notice also that by choosing π∗
n = Z†

n − Z∗
n we have gn(Z†) =

hπ∗
n (Z∗

n ), so that {(Y∗
n , Z∗

n )} satisfies the same BS�E as {(Yπ∗
n , Zπ∗

n )}. Hence Y∗
n = Yπ∗

n . �

Remark 3.1. Applying Theorem 2.1 to gn = 0 and YN = H, we have

H =EQ[H] +
N∑

n=1

ZH
n �Xn

with {ZH
n } defined by (3.3). Therefore the optimal strategy π∗ = Z†

n − Z∗
n = −ZH

n + Z†
n − Zg

n

of Theorem 3.1 is decomposed into the hedging part −ZH
n and the optimal investment part

Z†
n − Zg

n .

Example 3.1. (Locally entropic monetary utility.) Consider (2.12). Let �◦
d denote the interior

of �d and assume {(P̂n,1, . . . , P̂n,d)�} to be �◦
d-valued. Then the map z �→ gn(z) is strictly

concave and its unique maximizer is given by Z†
n = b(y) of (2.3) for

y = 1

�n
log P̂n := 1

�n

(
log P̂n,1, . . . , log P̂n,d

)�
,

or equivalently

Z†
n = 1

�n
(vv�)−1v log P̂n. (3.6)
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Indeed, v�
j Z†

n = �−1
n log P̂n,j − a(y) implies

d∑
j=0

vj e−�nv�
j Z†

n P̂n,j = 0,

and thus ∇gn(Z†
n ) = 0 for all n. We also have

1

�n
log Bn + gn(Z†

n) = − 1

�n
log

(
d∑

j=0

e−�nv�
j Z†

n P̂n,j

)

= − 1

�n
log

(
(d + 1) e

1
d+1 1� log P̂n

)

= 1

�n

1

d + 1

d∑
j=0

log
1

(d + 1)P̂n,j

= 1

�n
DKL(Qn||P̂n)

≥ 0, (3.7)

where DKL denotes the Kullback–Leibler divergence on �d and Qn = 1/(d + 1). By (3.3) and
(3.6),

π∗
n = Z†

n − Zg
n − ZH

n = −ZH
n + (vv�)−1v

(
log P̂n

�n
− Ŷn

)
,

where Ŷn = (Ŷn,0, . . . , Ŷn,d)� and Ŷn,j =EQ[Gn | Fn−1, �Xn = vj]. The first term −ZH
n is the

hedging term as noted in Remark 3.1. The term

Z†
n = (vv�)−1v

log P̂n

�n
≈ (vv�)−1v

P̂n − 1
�n

= 1

�n
(vv�)−1Ê[�Xn | Fn−1]

can be interpreted as the discrete counterpart of the Merton portfolio (see e.g. Remark 8.9
of [27]). The term Ŷn adjusts the expected return depending on the stochastic dynamics of
DKL(Qi||P̂i) for i ≥ n + 1. Indeed, when Bn = 1 and �n = γ for all n and a constant γ > 0 as
in (2.8), we have

Gn =
n∑

i=n+1

EQ[gi(Z
†
i ) | Fn]

= 1

γ

n∑
i=n+1

EQ[DKL(Qi||P̂i)|Fn]

= 1

γ
EQ

[
log

dQ

dP̂
− log EQ

[
dQ

dP̂

∣∣∣∣Fn

] ∣∣∣∣Fn

]

by (3.7), where P̂ is associated with {P̂n} by (2.5). Note also that Zg
n = 0 if Gn is deterministic,

which is the case when {P̂n}, {�n}, and {Bn} are deterministic.

Example 3.2. Let d = 2 and

v =
(

0 1 −1
−2c c c

)
,

https://www.cambridge.org/core/terms. https://doi.org/10.1017/jpr.2025.10045
Downloaded from https://www.cambridge.org/core. IP address: 216.73.216.168, on 09 Nov 2025 at 05:34:52, subject to the Cambridge Core terms of use, available at

https://www.cambridge.org/core/terms
https://doi.org/10.1017/jpr.2025.10045
https://www.cambridge.org/core


BS�Es on lattices with application 17

where c ∈R. Then we have

Xn,2 = c

(
3

n∑
k=1

|�Xk,1|2 − 2n

)
.

Indeed, if Xn = (n − a − b)v0 + av1 + bv2 for (a, b) ∈N2, then

a + b =
n∑

k=1

|�Xk,1|2, Xn,2 = −2c(n − a − b) + c(a + b) = c(3(a + b) − 2n).

Regarding {Xn,1} as a price process of an asset, the above identity allows us to interpret XN,2 as
an affine transform of the variance swap payoff of the asset. Further, regarding Q as the pricing
measure, {Xn,2} corresponds to the price process of the variance swap payoff. Note that {Xn,1}
describes a trinomial model for the asset, which is not complete. The variance swap trading
makes the two-dimensional market {Xn} complete.

3.2. General equilibrium

Consider m agents who maximize respective utilities E (i)
0 (H(i) + WN(0, π (i))), i = 1, . . . , m

through trading strategies π (i) of the d-dimensional asset {Xn}, where E (i) is the solution map of
the BS�E (2.7) with g = g(i) ∈ C, and H(i) is an FN-measurable random variable representing
an endowment for the agent i, i = 1, . . . , m. Let Hn denote the total supply vector of the asset
vector Xn and assume {Hn} to be an Rd-valued predictable process. We say the market is in
general equilibrium if there exist predictable processes π (i) = {π (i)

n }, i = 1, . . . , m such that

(i) E (i)
0 (H(i) + WN(0, π (i))) = maxπ E (i)

0 (H(i) + WN(0, π )) for all i = 1, . . . , m, and

(ii)
∑m

i=1 π
(i)
n = Hn for all n = 1, . . . , N,

where the maximum is among all predictable processes π .

Proposition 3.1. Let H(i) and H̃(i), i = 1, . . . , m be FN-measurable random variables, and let
{Hn} and {H̃n} be Rd-valued predictable processes satisfying

m∑
i=1

H(i) +
N∑

n=1

H�
n �Xn =

m∑
i=1

H̃(i) +
N∑

n=1

H̃�
n �Xn.

Then the market with the endowments H(i) and the total supply {Hn} is in general equilibrium if
and only if the market with the endowments H̃(i) and total supply {H̃n} is in general equilibrium.

Proof. Let Z†(i), ZH(i), and Zg(i), respectively, denote Z†, ZH , and Zg in Theorem 3.1 with
g = g(i) and H = H(i). Then, by Theorem 3.1,

−Hn +
m∑

i=1

π (i)
n = −Hn −

m∑
i=1

ZH(i) +
m∑

i=1

(
Z†(i) − Zg(i))= −ZH +

m∑
i=1

(
Z†(i) − Zg(i)),

where ZH is defined by (3.3) with

H =
m∑

i=1

H(i) +
N∑

n=1

H�
n �Xn.

Therefore, whether or not
∑m

i=1 π
(i)
n = Hn depends on H(i) and {Hn} only through H. �
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18 M. FUKASAWA ET AL.

We are interested in conditions on g(i) for the market to be in general equilibrium. In light
of Proposition 3.1, we assume hereafter H(i) = 0 (i ≥ 2) and Hn = 0 (n ≥ 1), without loss of
generality. Let H denote H(1).

For functions f (1) and f (2) on Rd, define the sup-convolution f (1)�f (2) by

f (1)� f (2)(z) = sup
x∈Rd

{ f (1)(x) + f (2)(z − x)}.

For the drivers g(i) = {g(i)
n }, i = 1, . . . , m of the m agents’ utilities, let

gn(z) = g(1)
n � · · ·�g(m)

n (z). (3.8)

Lemma 3.1. For all n,

sup
z∈Rd

gn(z) =
m∑

i=1

sup
z∈Rd

g(i)
n (z). (3.9)

Proof. It is trivial that gn(z) is upper-bounded by the right-hand side sum for any z,
and hence its supremum is upper-bounded. Conversely, let

{
z(i)

k

}
be a sequence for which

limk→∞ g(i)
n
(
z(i)

k

)= supz∈Rd g(i)
n (z) for each i. Then

m∑
i=1

g(i)
n

(
z(i)

k

)≤ gn

(
m∑

i=1

z(i)
k

)
≤ sup

z∈Rd
gn(z)

for any k, and the limit is similarly bounded. �

A single agent whose utility is Eg
0 with g = {gn} defined by (3.8) and whose endowment is

H is called the representative agent of the market. The following theorem reduces the general
equilibrium problem for the multi-agent market to the one for a single agent market. This
extends the idea of the well-known Gorman aggregation theorem.

Proposition 3.2. Assume that there exists a unique predictable process {Z†(i)
n } for each

i = 1, . . . , m such that
g(i)

n (Z†(i)
n ) = sup

z∈Rd
g(i)

n (z)

for all n = 1, . . . , N. Assume further that the maximizer of the map z �→ gn(z)(ω) is unique for
each n and ω ∈ �. The market for the m agents is in general equilibrium if and only the market
for the representative agent is in general equilibrium.

Proof. Let {(Y∗(i)
n , Z∗(i)

n )} be the solution of

�Y∗(i)
n = −g(i)

n (Z†(i)
n ) + (Z∗(i)

n )��Xn,

with Y∗(1)
N = H and Y∗(i)

N = 0 for i ≥ 2. By Theorem 3.1, the unique optimal strategy π (i) for the

agent i is given by π
(i)
n = Z†(i)

n − Z∗(i)
n . By (3.9), we have

m∑
i=1

g(i)
n (Z†(i)

n ) = sup
z∈Rd

gn(z) = gn(Z†
n), Z†

n :=
m∑

i=1

Z†(i)
n .

Therefore

Y∗
n :=

m∑
i=1

Y∗(i)
n , Z∗

n :=
m∑

i=1

Z∗(i)
n
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BS�Es on lattices with application 19

solves
�Y∗

n = −gn(Z†
n) + (Z∗

n )��Xn, Y∗
N = H.

Since Z†
n is the unique maximizer of gn, the unique optimal strategy for the representative agent

is π∗
n = Z†

n − Z∗
n , again by Theorem 3.1. Hence

m∑
i=1

π i
n =

m∑
i=1

Z∗(i)
n −

m∑
i=1

Z†(i)
n = Z∗

n − Z†
n = π∗

n .

Therefore
∑m

i=1 π i
n = 0 if and only if π∗

n = 0. �

3.3. Equilibrium in a single agent market

By Proposition 3.2, it suffices to consider the case m = 1 in order to characterize the general
equilibrium. Let m = 1, and put gn = g(1)

n and πn = π
(1)
n . The market is in general equilibrium if

and only if Eg
0 (H) = maxπ Eg

0 (H + WN(0, π )), that is, π∗
n ≡ 0 is the maximizer. The following

theorems characterize the general equilibrium by a backward recurrence relation for the BS�E
driver {gn}.
Theorem 3.2. The market is in general equilibrium if (3.2) holds with

Z†
n = (d + 1)(vv�)−1EQ[(H + Gn)�Xn | Fn−1], n = 1, . . . , N, (3.10)

where

Gn =EQ

[
N∑

i=n+1

sup
z∈Rd

gi(z)

∣∣∣∣Fn

]
.

Conversely, if the market is in general equilibrium and there exist sequences of maximizers
{Z†

n} of {gn}, then (3.10) is one of them.

Proof. Notice that the right-hand side of (3.10) coincides with Z∗
n defined in Theorem 3.1. If

(3.2) holds with (3.10), then we conclude that π∗
n = 0 is optimal by Theorem 3.1, which means

that the market is in general equilibrium. Conversely, if the market is in general equilibrium,
then by Theorem 3.1, Z∗

n should coincide with a maximizer of gn if any. �

Proposition 3.3. Let fn : � ×Rd × �d →R be Fn−1 ⊗ B(Rd × �d)-measurable, concave on
Rd and continuously differentiable on Rd with ∇fn taking values in �, and 0 ∈ ∇fn(z, �d) for
all z ∈Rd, n = 1, . . . , N. Then there exists a �d-valued predictable process {P̂n} such that the
market with g = {gn}, gn(z) = fn(z, P̂n), is in general equilibrium.

Proof. Note first that g ∈ C by Remark 2.3. We construct {P̂n} inductively. By the assump-
tion, there exists P̂N such that ∇fN(Z†

N, P̂N) = 0 for Z†
N defined by (3.10) for n = N. Given

P̂k for k ≥ n + 1, let Z†
n be defined by (3.10) with gk(z) = fk

(
z, P̂k

)
. By the assumption, there

exists P̂n such that ∇fn(Z†
n , P̂n) = 0. Since z �→ fn(z, P̂n) is concave, Z†

n is a maximizer of
gn(z) = fn(z, P̂n). The result then follows from Theorem 3.2. �

Example 3.3. (Locally entropic monetary utility.) We consider (2.12) again with {P̂n}, P̂n =
(P̂n,1, . . . , P̂n,d)�, being �◦

d-valued. The driver gn is of the form gn(z) = (f (�nz, P̂n) −
log Bn)/�n, where

f (z, p) = − log
d∑

j=0

e−z�vjpj, z ∈Rd, p = (p0, . . . , pd)� ∈ �d. (3.11)
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20 M. FUKASAWA ET AL.

By (3.6), we have ∇fn(Zn, P̂n) = 0 if and only if

Zn = 1

�n
(vv�)−1v log P̂n.

By Theorem 3.2, the market is in general equilibrium if and only if

v log P̂n = (d + 1)�nEQ[(H + Gn)�Xn | Fn−1], n = 1, . . . , N.

This is a backward recurrence equation for {P̂n} because

Gn =EQ

[
N∑

i=n+1

1

�i
(DKL(Qi||P̂i) − log Bi)

∣∣∣∣Fn

]

by (3.7). Since v has rank d and v1 = 0, an equivalent condition is that

P̂n,j = e�nȲn,j∑d
k=0 e�nȲn,k

, Ȳn,j =EQ[H + Gn | Fn−1, �Xn = vj], j = 0, . . . , d, (3.12)

for n = 1, . . . , N. Let Y∗
n =EQ[H | Fn] + Gn. Then

Yn =EQ[Yn | Fn−1, �Xn] =
d∑

j=0

Ȳn,j1{�Xn=vj},

which implies

P̂n,j1{�Xn=vj} = e�nY∗
n

(d + 1)EQ[e�nY∗
n | Fn−1]

1{�Xn=vj}, j = 0, . . . , d,

under (3.12). Therefore the market is in general equilibrium if and only if

dP̂

dQ
=

N∏
n=1

e�nY∗
n

EQ[e�nY∗
n | Fn−1]

,

where P̂ is defined by (2.5). Further, by (3.5), we have

log Ê[e−�nY∗
n | Fn−1] = −�n(Y∗

n−1 − gn(Z†
n)) + log Ê[e−�n(�Xn)�Z†

n | Fn−1]

= −�n(Y∗
n−1 − gn(Z†

n)) − fn(�nZ†
n , P̂n)

= −�nY∗
n−1 − log Bn.

This implies

dQ

dP̂
=

N∏
n=1

e−�nY∗
n

Ê[e−�nY∗
n | Fn−1]

= exp

{
N∑

n=1

−�n�Y∗
n

}
N∏

n=1

Bn. (3.13)
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BS�Es on lattices with application 21

In particular, when Bn = 1 and �n = γ for all n and a constant γ > 0 as in (2.8), we have

dQ

dP̂
= e−γ H

Ê[e−γ H]
, (3.14)

which characterizes the equilibrium probability measure P̂ and is consistent with the well-
known computation under exponential utility.

Remark 3.2. In addition to the conditions of Proposition 3.3, if fn is of the form fn(z, p) =
f (�nz, p)/�n for a smooth function f : Rd × �d →R with ∇f (0, p) = p and a positive
predictable process {�n} as in Example 3.3 with Bn = 1, then we have

gn(z) = fn(z, P̂n) ≈ z�P̂n

considering �n to be small. This approximation implies in turn

Eg
n (Y) ≈ Ê[Y | Fn]

in light of Proposition 2.2, where Ê is the expectation under P̂ defined by (2.5). Therefore, in
this case, extending Example 3.3, we can interpret �n as a risk-aversion parameter and P̂ as the
belief of the agent. If the market is in general equilibrium,

Ê[�Xn | Fn−1] = vP̂n

is interpreted as an equilibrium return.

Example 3.4. If H = h(XN) and gn(z) = fn(Xn−1, z) for deterministic functions h and fn, as in
Proposition 2.1, and if f (x,z) is strictly concave and continuously differentiable in z, then the
condition (3.10) follows from the deterministic identity

∇zfn(x, (vv�)−1vNun(x)) = 0, x ∈ L, n = 1, . . . , N,

where Nun is as in Proposition 2.1. For example, for the market with no random endowments
(H(i) = 0) and unit total supply (Hn = 1), we have H = 1�XN .

Example 3.5. Consider (2.12) with Bn = 1, �n = γn(Xn−1) and P̂n = pn(Xn−1) for determin-
istic functions γn : L → (0, ∞) and pn : L → �◦

d. Assume also H = h(XN) as in Example 3.4.
Then, from Examples 3.3 and 3.4, the market is in general equilibrium if

v log pn(x) = γn(x)vNun(x), x ∈ L, n = 1, . . . , N.

The function un(x) is computed backward inductively without using pn(x). For a given func-
tion γn(x), there exists a unique pn(x) ∈ �◦

d satisfying this equation for each x ∈ L. For the
sequence of such functions pn(x) obtained in the backward manner, the �d-valued sequence
P̂n = pn(Xn−1) defines a unique equilibrium probability P̂ by (2.5) associated with the sequence
�n = γn(Xn−1). The equilibrium return is approximated as

Ê[�Xn | Fn−1] = vP̂n ≈ v log P̂n = γn(Xn−1)vNun(Xn−1)

using v1 = 0.
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22 M. FUKASAWA ET AL.

3.4. Equilibrium under heterogeneous beliefs

Here we assume m > 1 again and give more explicit computations of the sup-convolution in
special cases. First, we consider a homogeneous case, i.e. the case where all of the drivers g(i)

have the same functional form determined by a common �d-valued predictable process {P̂n}
as

g(i)
n (z) = 1

�
(i)
n

fn(�(i)
n z, P̂n), (3.15)

where fn : � ×Rd × �d →R is as in Proposition 3.3 and {�(i)
n }, i = 1, . . . , m are positive

predictable processes quantifying each agent’s risk preference; see Remark 3.2. By induction,
we can show that

gn(z) := g(1)
n � · · ·�g(m)

n (z) = 1

�n
fn(�nz, P̂n),

with
1

�n
=

m∑
i=1

1

�
(i)
n

. (3.16)

Proposition 3.4. Under (3.15), there exists a �d-valued predictable process {P̂n} such that the
market is in general equilibrium.

Proof. The proof follows from Propositions 3.3 and 3.2. �

Example 3.6. (Locally entropic monetary utility.) Let fn(z, p) = f (z, p) defined by (3.11). The
predictable processes {�(i)

n } and {�n} are then interpreted as the local risk-aversion parameter
for the agent i and for the representative agent respectively. Then (3.12) defines the unique
sequence {P̂n} such that the market is in general equilibrium. The equilibrium probability
measure P̂ satisfies (3.13) with Bn = 1. When �n = γ for all n for a constant γ > 0, then the
representative agent has the exponential utility (2.9) and the equilibrium probability measure
P̂ is characterized by (3.14).

Now we consider a heterogeneous case. We assume locally entropic monetary utilities
g(i)

n (z) = f (�(i)
n z, P̂(i)

n )/�
(i)
n , where f is defined by (3.11), and {�(i)

n } and

{
P̂(i)

n

}=
{(

P̂(i)
n,0, . . . , P̂(i)

n,d

)�}
,

respectively, are (0, ∞)-valued and �◦
d-valued predictable processes for each i = 1, . . . , m.

Each sequence {P̂(i)
n } determines a probability measure P̂(i) on FN by (2.5), which is interpreted

as the agent i’s belief in the law of {Xn}.
Proposition 3.5. Define {�n} by (3.16). Then

g(1)
n � · · ·�g(m)

n (z) = 1

�n
f (�nz, P̃n) − 1

�n
log Bn,

where P̃n = (P̃n,0, . . . , P̃n,d)� and

P̃n,j = 1

Bn

m∏
i=1

(
P̂(i)

n,j

)�n/�
(i)
n , Bn =

d∑
j=0

m∏
i=1

(
P̂(i)

n,j

)�n/�
(i)
n .
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Proof. The case m = 2 follows by solving the equation

∇f
(
�(1)

n x, P̂(1)
n

)= ∇f
(
�(2)

n (z − x), P̂(2)
n

)
in x ∈Rd; see Lemma A.1. The general case then follows by induction. �

Remark 3.3. By Lemma A.2 we have Bn ≤ 1, with equality holding if and only if P̂(i)
n = P̂(1)

n

for all i.

By Proposition 3.5, the representative agent’s market falls into Example 3.3. In particular,
when �n = γ > 0 (a constant), the market is in general equilibrium if and only if P̃n = P̂n,
where

dQ

dP̂
= e−γ H ∏N

n=1 Bn

Ê[e−γ H
∏N

n=1 Bn]
.

To highlight the outcome of heterogeneous beliefs, let us further assume there are only two
agents (m = 2) with constant risk aversion �

(i)
n = γi > 0 and with no endowment (H = 0). In

this case, ∇g(i)(0,Q) = 0, and so, if the two agents have a common belief P̂, we need P̂=Q

for the market to be in general equilibrium. The optimal strategies are simply π
(1)
n = π

(2)
n = 0.

On the other hand, for any �◦
d-valued deterministic sequence {P̂(1)

n }, by choosing P̂(2)
n as

P̂(2)
n,j = (P̂(1)

n,j)
−γ2/γ1∑d

k=0 (P̂(1)
n,k)−γ2/γ1

,

we have P̃n,j = 1/(d + 1) for all n and j, which makes this market with heterogeneous beliefs

be in general equilibrium. The individual optimal strategies π
(1)
n = −π

(2)
n are non-zero; the

agents bet on their beliefs.
Another observation is that the equilibrium return is mostly affected by the belief of the least

risk-averse agent. Indeed, if �
(1)
n � �

(i)
n for i ≥ 2, we have �n/�

(1)
n ≈ 1, while �n/�

(i)
n ≈ 0 for

i ≥ 2. Therefore P̃n ≈ P̂(1)
n .

Remark 3.4. The product
∏

n Bn corresponds to the consensus characteristic introduced in a
continuous-time framework [26] of heterogeneous beliefs. It can be interpreted as a discounting
factor, and was further investigated in [21].

Appendix A. Computation of sup-convolution

Lemma A.1. Let α > 0, β > 0, pj > 0, qj > 0, j = 0, . . . , d, and z ∈Rd. Then

sup
x∈Rd

{
− 1

α
log

d∑
j=0

e−αx�vjpj − 1

β
log

d∑
j=0

e−β(z−x)�vjqj

}

= − 1

γ
log

d∑
j=0

e−γ z�vjpγ /α
j qγ /β

j ,

where γ = 1/(1/α + 1/β).
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Proof. The first-order condition is

d∑
j=0

vj

(
e−αx�vjpj

S(x, α, {pk}) − e−β(z−x)�vjqj

S(z − x, β, {qk})
)

= 0,

where

S(x, α, {pk}) =
d∑

j=0

e−αx�vjpj.

Since v1 = 0 and rank v = d, the first-order condition is met if and only if

−αx�vj + log pj = −β(z − x)�vj + log qj + c(x), j = 0, . . . , d,

for a function c. Substituting

x�vj = β

α + β
z�vj + log pj − log qj − c(x)

α + β
,

we obtain

− 1

α
log

d∑
j=0

e−αx�vjpj = − 1

α
log

d∑
j=0

e−γ z�vjpγ /α
j qγ /β

j − c(x)

α + β
,

− 1

β
log

d∑
j=0

e−β(z−x)�vjqj = − 1

β
log

d∑
j=0

e−γ z�vjpγ /α
j qγ /β

j + c(x)

α + β
,

hence the result. �

Lemma A.2. Let (pi,0, . . . , pi,d)�, i = 1, . . . , m be m points in �◦
d. Let γi > 0 for i = 1, . . . , m

and

γ =
(

m∑
i=1

1

γi

)−1

.

Then
d∑

j=0

m∏
i=1

pγ /γi
i,j ≤ 1.

Proof. The case m = 1 is trivial. Let

γ̂k =
(

k∑
i=1

1

γi

)−1

, k = 1, . . . , m.

If the inequality is true when m = k, then

d∑
j=0

k+1∏
i=1

pγ̂k+1/γi
i,j =

d∑
j=0

pk+1,j

(∏k
i=1 pγ̂k/γi

i,j

pk+1,j

)γ̂k+1/γ̂k

≤
(

d∑
j=0

k∏
i=1

pγ̂k/γi
i,j

)γ̂k+1/γ̂k

≤ 1

by Jensen’s inequality. We obtain the result by induction. �
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FIGURE 1. Y0 = Eg
0 (YN ) as a function of β ∈ (−0.1, 0.1) for α = 0, 0.5 and 1.

Appendix B. Numerical experiment

Here we give a brief numerical experiment on the locally entropic monetary utility defined
by (2.12). We focus on the case Bn = 1 and P̂n,j = 1/(d + 1) for all n and j. The purpose here
is to examine numerically the effect of the local risk-aversion process {�n}. More specifically,
we consider an auto-regressive structure

log
�n+1

γ
= α log

�n

γ
+ β√

N
1��Xn

with constants γ > 0, α ∈ [0, 1] and β ∈R, and compute the g-expectation Eg
0 (YN) for YN =

(Nd)−1/21�XN . When β is negative, the negative values of 1��Xn push �n up, that is, the
utility becomes more risk-averse when 1��Xn is negative. We are interested in how such
dynamics affects the initial utility value Y0 = Eg

0 (YN).
For example, for d = 100, N = 3, γ = 1, and �/(d + 1) being the identity matrix, Figure 1

shows the shapes of Y0 = Eg
0 (YN) as a function of β ∈ (−0.1, 0.1) for α = 0, 0.5, and 1. For the

negative region of β, we have monotone shapes, which means that the larger the variance of
the process {�n}, the less the initial utility. This monotonicity is lost in the positive region of β.
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