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Abstract

We study backward stochastic difference equations (BSAEs) driven by a d-dimensional
stochastic process on a lattice, whose increments take only d + 1 possible values that
generate the lattice. Interpreting the driving process as a d-dimensional asset price
process, we provide applications to an optimal investment problem and to a market
equilibrium analysis, where utility functionals are defined via BSAEs.
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1. Introduction

The theory of backward stochastic differential equations (BSDEs), initiated by Bismut [7]
and Pardoux and Peng [32], has been extensively studied over the past three decades, partic-
ularly in relation to stochastic control, finance, and insurance (see e.g. [17, 39]). Important
applications include dynamic risk measures [4] and g-expectations [16, 33], which generalize
classical expectations and martingales to nonlinear settings. Recent applications to financial
economics include [6], [8], [20], [24], [28], and [30].

While BSDEs are powerful theoretical tools, their solutions are typically implicit and
require discretization for numerical implementation. As discrete analogs, backward stochas-
tic difference equations (BSAEs) have been widely studied, falling into two main categories.
The first focuses on BSAEs as weak approximations of BSDEs [9, 10, 11, 12, 29, 31, 35, 37].
The second explores the structure of BSAEs themselves. A general framework is provided
in [15], while specific cases involving driving martingales with the predictable representation
property are studied in [14] and [19].

This paper falls into the second category and studies a class of BSAEs including the one
introduced in [31] and [37], where a d-dimensional scaled random walk — whose increments
take only d + 1 values — is used to approximate Brownian motion in BSDEs. Such a ran-
dom walk is minimal among discrete-time processes that converge to d-dimensional Brownian
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2 M. FUKASAWA ET AL

motions. The weak convergence of this BSAE to the BSDE was proved in [31], and the con-
vergence rate in a Markovian setting was given in [37], generalizing the one-dimensional case
in[11].

This minimal BSAE is computationally efficient, as it involves only a (d 4 1)-dimensional
problem, in contrast to a 2¢-dimensional problem required when using d-dimensional Bernoulli
random walks [12]. Although Cohen and Elliott [15] have developed a general BSAE the-
ory, we focus on the specific structure of this minimal BSAE, which exhibits properties not
covered in their general framework. In the one-dimensional case, it reduces to a BSAE on a
binomial tree, studied in [19] in the context of dynamic risk measures. We treat the general
multi-dimensional setting here.

Our key contribution is to identify a gradient constraint on the BSAE driver, which endows
the solution with certain properties as a generalized conditional expectation. This allows us to
link the driver to a measure change for the driving random walk, and apply these insights to
market equilibrium analysis.

The g-expectation is part of the solution of a BSDE or BSAE, and generalizes the expecta-
tion and the certainty equivalent of an expected utility. A subclass of them with concavity and
translation invariance has been employed as the utility functional for market equilibrium anal-
yses in [3], [13], [25], and [28]. In this paper, we also apply our BSAE to a market equilibrium
analysis. In contrast to the preceding studies, which place an emphasis on incomplete markets,
we are interested in explicit computations in a dynamically complete market.

Anderson and Raimondo [2] proved the existence of equilibrium in a continuous-time
dynamically complete market by means of non-standard analysis, where an approximation
to a Brownian motion by a minimal random walk played a key role. We consider a simpler
dynamically complete market to derive explicit conditions for market equilibrium.

Under a unique equivalent martingale measure, our asset price model is a multi-dimensional
extension of the recombining binomial tree. In our approach, an asset price process is given as
a stochastic process taking values on a lattice. We do not argue the existence of an equilibrium
price but characterize the agents’ utilities under which the given discrete (in both time and
space) price process is to be in general equilibrium. This feature is in contrast to the preceding
studies [3], [13], and [25] and similar to [8], [23], [28], and [34] in continuous time.

Our framework includes heterogeneous agents with exponential utilities under heteroge-
neous beliefs. Their risk-aversion coefficients may be stochastic and time-varying. We observe
in particular that under equilibrium with heterogeneous beliefs, agents trade with each other,
even in the absence of random endowments to hedge, complementing earlier studies of
heterogeneous beliefs [5, 21, 22, 26, 30, 38].

In Section 2.1 we describe a lattice in R¢ where a stochastic process {X,} takes values, and
give some elementary linear algebraic lemmas as a preliminary. In Section 2.2 we introduce
the process {X,} that is the source of randomness in this paper and generates a filtration. It is
minimal in the sense that the increment AX,, takes values in a set {vy, . .., v4} of d 4+ 1 points
in R?. Some elementary measure change formulas are also given as a preliminary.

In Section 2.3 our BSAE

AYy=—gn(Z) +Z] AX,, Yy=7,

is formulated. Due to the minimality of {X,}, there exists a unique solution {(Y¥},, Z,)} to the
above equation, without orthogonal martingale terms needed in [10] and [12]. The process
{X,,} itself takes more than d + 1 points, so this BSAE is different from the one studied in [14].
The g-expectation &5 for g = {g,} is defined by £; (Y) = Y,,. Proposition 2.1 concerns the case
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BSAE:s on lattices with application 3

gn(2) =fu(X—1, 2) and Yy = h(Xy) for deterministic functions f;, and A to provide a nonlinear
Feynman—Kac-type formula, which is a computationally efficient recurrence equation on the
lattice for a deterministic function u,, such that Y,, = u,(X},).

Section 2.4 is about the aforementioned gradient constraint. First we observe that the g-
expectation is a conditional expectation when g, are linear with slope coefficients included in
the convex hull ® of the set {vg, ..., v4}. The importance of this constraint on the slope is a
special feature of our BSAE, and to the best of our knowledge has not been recognized in the
preceding studies of multi-dimensional BSAEs. A balance condition introduced by Cohen and
Elliot [15] for a comparison theorem to hold is translated in terms of ® for our BSAE. We
also prove a robust representation when g, are concave, where the set ® again plays an impor-
tant role. In Section 2.5 we show that a translation-invariant filtration-consistent nonlinear
expectation is a g-expectation.

In Section 3 we regard {X,,} as a d-dimensional asset price process. In Section 3.1 we con-
sider an optimal investment strategy which maximizes the g-expectation of terminal wealth.
By the minimality, the market is complete, extending the well-known binomial tree model for
a one-dimensional asset. Our asset price model can be seen as a discrete approximation of the
multi-dimensional Bachelier model with constant covariance and general stochastic drift. An
advantage of our use of the minimal process as an approximation is that the completeness of
the Bachelier model is preserved. Further, the minimality property naturally arises in a vari-
ance swap pricing model as illustrated in Example 3.2. In Sections 3.2-3.4 we give a market
equilibrium analysis. We consider agents whose utility functionals are g expectations and seek
conditions on those g expectations under which {X,,} is an equilibrium price process.

Throughout our financial application, we have short maturity problems in mind, and so, for
brevity, assume interest rates, dividend rates, and consumption rates to be zero as in [3], [13],
[25], and [28].

We use the convention that
n

ZaiZO

i=m

for any sequence {a;} if m > n.
2. BSAE on a lattice

2.1. Lattice
We start by describing a lattice. Let {v1, ..., v4} be a basis of R?. The subset

d
L= Zzivi, L€l i=1,...,d
i=1

of R is a d-dimensional lattice generated by the basis. Notice that L admits an alternative

expression
d
L= Znivi, i eN,i=0,1,...,d¢, (2.1)
i=0
where vo = —v; — - - - — vz and N is the set of the non-negative integers. Let

v=[vo, Vi, ..., V4l
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4 M. FUKASAWA ET AL

be the d x (d + 1) matrix with v;, i =0, . .., d as its column vectors. Put
1=(,..., 1) eR¥L

The following lemmas will be of repeated use in this paper.
Lemma 2.1. The (d + 1) x (d + 1) matrix (1, v") is invertible.

Proof. We show that the row vectors of (1, v') are linearly independent. Suppose
(@0, - .., ag)1, v )=0,

or equivalently
d d

ZO[j:O, Zajvj'zo
Jj=0

Jj=0

for scalars «;. By the second equation and the definition of vy, we have

d
Z (aj — ap)v; =0,
j=1
from which we can conclude o = o for all j because {v1, ..., v4} is a basis. Together with
the first equation, we then conclude a; = 0 for all j. O

Lemma 2.2. Let y € Rt The unique solution to the equation
y=(1,vz, z=(0,21,...,22) €eR! 2.2)

is given by

0 =a(y):= Lﬂy, @ eeesza) =b() = (vw) vy (2.3)
d+1

Proof. By Lemma 2.1, there exists a unique z € R%*! such that (2.2) holds. Since v1 =0,
multiplying both sides of (2.2) by 1T, we obtain the first equation of (2.3). Also, multiply-
ing both sides of (2.2) by v and again using v1 =0, we have vy =vv' (z1,...,zq4)". Since
{vi, ..., vq} is a basis, v has rank d. Therefore vT has rank d and so, for any x € R4 \ {0},
x"vv x=|v'x|?>#0. This implies that the d x d matrix vv' is invertible and, in turn, the
second equation of (2.3) is valid. [l

2.2. Probability space

Let (2, %, P) be a probability space. For a stochastic process {X,},en, We put AX, =
X, —X,—1. Let {X,,} be a d-dimensional stochastic process with AX, taking values in

{vo, vi,...,vg} for all n>1 and Xo=0. By (2.1), X, takes values in L for all neN.
Let %, =0(Xp, ..., Xy), n€N, be the natural filtration generated by {X,}, and put P, =
(Pno,---» P,wg)—r for n > 1, where

P”)j:]P)(Aanvjlgnfl)’ JZO,,d
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BSAE:s on lattices with application 5

Note that {P,} is a Ag4-valued predictable process, where
Ag={peR™ :1Tp=1, p>0}.

We assume Py, jis positive foralln > 1 andj =0, ..., d. Let N € N\ {0}. The following lemma
will be of repeated use in this paper.

Lemma 2.3. For any Ag-valued predictable process (P}, there exists a probability measure P
on (Q, Fn) such that P, = (Pp0, - . ., Pn,d)T, where

Poj=BAXy=v;| Fio), j=0,....d, n=1,...,N. 2.4)
Proof. Define P by
n Pk
PA)=E[Ly1al, L,= H(Z El{Axk v,}) (2.5)
k=1 \j=0 ~ "

for A € Zy. The measure PP is a probability measure because

E[Zi F 1} Zd: -

=0 n,j =0 n,

"U)

Liax,=v;)

and so L, is a martingale with Ly = 1. Using Bayes’ formula, we derive

P(AX, =vj | Fp_1) =

EILN1{aX,=v) | Fn-1] Py
=E Liax,=v}

E[Ly | ynfl] Pn,j

yn—ljl :i)n,ja

by the martingale property of L,,. (]

,1{Axn=v,-}>-
n,Jj

Lemma 2.4. The measure Q is the unique probability measure on Fy under which {X,} is a
martingale. Under Q, {AX,} is i.i.d. with

Define a measure Q on %y by

N d

1
Q@A) =ElLylal. Ly=] |(— >
d+1%

n=1

Let Eq denote the integration under Q.

Q(AX, =v) = Q(AX, =vj| Fn_1) = m

foralln=1,... Nandj=0,...,d. Wealso have

1
EQlAX, | Zu11=0,  EglAXu(AX)" | Fomi]= Zgw ' (2.6)

Proof. By Lemma 2.3, Q is a probability measure with Q(AX, =v; | Z,_1)=1/(d+ 1),
which implies

Egl[AX, | Fn1]= v1=0.

1
d+1
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6 M. FUKASAWA ET AL

Therefore {X,,} is a martingale with (2.6). There is no other such measure because

d d

ZO[J':L ZO[J'VJ‘ZO
Jj=0

Jj=0

implies oj = 1/(d + 1) as in the proof of Lemma 2.1. Since the conditional law of AX;, given
Fn—1 is deterministic for every n, {AX,,} is i.i.d. O

Remark 2.1. For any positive definite d x d matrix X, we can construct such a lattice L that
vv!| = ¥. Indeed, starting with an arbitrary basis, say, v; = e; (the standard basis of Rd) with
vo=—v; —---—vg and v=[vg, ..., Vg], using the Cholesky decomposition ¥ = CCT and
v =CCT, if we take vj=CC_1\7j, j=0,...,d, then v=CC~'v and so we get vw! =
CcC 9w (CT)~IcT = . In particular, we can construct such v; that vv! is the identity
matrix. In this case a scaling limit of {X,,} under Q is the d-dimensional standard Brownian
motion. Such a set of vectors played an essential role in proving the existence of continuous-
time market equilibrium in Anderson and Raimondo [2] by means of non-standard analysis,
where the existence of the vectors was proved in a recursive manner. It is also the building
block of a d-dimensional diamond in topological crystallography [36].

2.3. Existence, uniqueness and representation

Here we introduce our BSAE. Let A denote the set of the sequences g = {gn}nN (of F 1 ®

ZA(R?) measurable functions g,: Q x R? — R. Now we state an elementary but fundamental
result.

Theorem 2.1. Let Yy be an Fy-measurable random variable, and let g ={g,} € A. Then
there exist uniquely an adapted process {Y,}n—0,...N—1 and an R4-valued predictable process
{Zn}n=1,...N Such that

AYy=—gi(Z)+Z] AX,, n=1,...,N. (2.7)
Further, they admit the following representation:

Y :]EQ[Yn | Fn_1]+ gn(Zy),
Zy=(d+ D) EglVaAX, | Fy1] = (w) "V,

where Y, = ()_’n,o, R l_/ml)T and
Yn,j = EQ[Yn | Fn_1, AXy = Vj] =(d+ 1)E(@[Ynl{AX,,=v]-} | Fn-1l.

Proof. Since Yy is #y-measurable, there exists a function f: IN - R such that Yy =

fX1, ..., Xn). Since Py ; are positive by the assumption, (2.7) for n = N is equivalent to the
system of equations for .#y_j-measurable random variables
JXi, .o, Xn—1, Xn—1 +v0) v Z)
. . _ Ty [ {N-1 — 8N (4N
Y:= : =1,v") |: Zn ]
S, .o Xn—1, Xn—1 +Vva)

Applying Lemma 2.2, we obtain (2.7) for n = N with

ZIn=bY), Yn_1=a(Y)+gn(Zn),
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BSAE:s on lattices with application 7

where a(y) and b(y) are defined by (2.3). It is clear that both Zy and Yy_; are Fn_1-
measurable. By backward induction, we obtain {Y,,} and {Z,}. The representation follows from
(2.7) and (2.6) by taking the conditional expectation under Q. U

For g ={g,} € A fixed, the .%,,-measurable random variable Y,, given by Theorem 2.1 is
uniquely determined by the .#y-measurable random variable Yy. We write this mapping as
Y, =ES(Yy) and call it the g-expectation of Yy (with respect to .%,). The stochastic process
{(Yy, Z,)} given by Theorem 2.1 is called the solution of the BSAE (2.7).

Remark 2.2. In the literature, say, in [15], BSAE is formulated by decomposing AY,, into a

predictable part and a martingale difference part. In our formulation (2.7), AX,, is not neces-

sarily a martingale difference. It is a minor reparametrization because (2.7) can be rewritten as
AYy = —§n(Zy) +Z, (AXy — Ay)

with 2,(2) = g1(z) — 2" An, Ap = E[AX, | Zui].

Example 2.1. Let y > 0, {(Pn,o, R 13,,,01)—'—} be a Ag-valued predictable process, and

d
1 N A
en(2)=—— log(z e V¢ VJP,,J). (2.8)
N
Then |
E8(Y)=——logB[e " | #,], n=0,1,...,N, (2.9)
v

for any .#x-measurable random variable Y, where 1 is the expectation under the measure P on
Zy defined by (2.5). To see this, note that by Lemma 2.3,

1 I T
gn(2) =~ log E[e7% & | Z,4].
Substituting ¥, = Y,,—1 — gn(Zn) + Z,T AX,, we have
1 Ar 1 Al ST
- logE[e™ """ | Fuot] = Yot — gn(Zy) — ” logE[e 7% 2% | Z, 1] =Y,

which implies (2.9) for n = N — 1. The general case follows by backward induction.

Next we give a discrete analog of the nonlinear Feynman—Kac formula, which is computa-
tionally efficient when dealing with large N.

Proposition 2.1. Let f,,: L x RI!SR n=1,....N and h: L— R Define u,: L— R,
n=0,1,..., N backward inductively by

U1 (%) = Un(x) + Ltn(x) + fr(x, (v ) VN, (x))
with uy = h, where

d
1
Luy(x) = Y E (tn(x +vj) — un(x)),
J=0

Nty (x) = ( (x +v0) — n(x), - . . , un(x +vg) — ty (X)) .
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8 M. FUKASAWA ET AL

Then the unique solution to (2.7) with g, =f,(Xy—1, ) and Yy = h(Xy) is given by
Yoot =t 1Xm1),  Zo=W) WNuy(X,1), n=1,...,N.

Proof. By de_ﬁnition, Yn = h(Xy) = un(Xy). Suppose Y, = u,(X,). Then, by Theorem 2.1,
Zy = (VVT)_IVYn, where

Yo j=Eql¥y | Fuo1, AXy =vj] = un(Xo1 +v)).
Using vl =0, we conclude Z, = (v )™ YvAu,(X,—1). Further, again by Theorem 2.1,
Yu1 =EqlYy | Zu-1]+ gn(Zn) = un(Xn—1) + Lun(Xn—1) + gn(Zn) = tn—1(Xp—1),
which concludes the proof. O

2.4. A gradient constraint

Let ® be the closed convex hull spanned by {vg, vy, ..., vg}, or equivalently
O ={wp;peA4}

In this section we study BSAEs with the gradient of g being constrained in ©.

Example 2.2. The triangular lattice of R? is generated by

(%) ()

In this case, vv| =1 and © is an equilateral triangle.

Proposition 2.2. Let g,(2) :AIZ + B, for a ®-valued predictable process {A,} and a pre-
dictable process {Bp}, n=1, ..., N. Then

N
5§(Y)=IE[Y+ > B

i=n+1

ﬁn:|, n=0,1,...,N,

for any Fn-measurable random variable Y, where [ is the expectation under the measure Pon
Fy defined by (2.5) with P, = (Pp.o, . .., Py.a)" such that A, = vP,.

Proof. By Lemma 2.3,

E[LyAX, | Fp-i1]

RIAX, | Foo1]= TR

d
= Z Vji’n,j = Vﬁn =An
j=0
for all n. On the other hand, from (2.7), we have

N N
Y=Yy=Yo+ Y (—8Z)+Z AX)=Y,+ Y (=Bi+Z (AX; - Ay).
i=n+1 i=n+1

Taking the conditional expectation under P, we get the conclusion. t
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BSAE:s on lattices with application 9

Example 2.3. Let N=1, d=1, Q={+, -}, vo=—1,vi =1, and AX|(£)==1. Then

L=7,v=(—1,1), ®©=[—1,1] and vl =2 Following the proof of Theorem 2.1, the

solution of the linear BSAE AY| = —AZ| 4+ Z; AX; can be constructed as
Yi(+)+Yi(—) Yi(+)—-ri(=) 1+A

1

—A
Yi(—)

for any A € R. The expression given by Proposition 2.2 is Yy = E[Y1], which can be directly
seen with P| = ((1—=A)/2,(14+A)/2)T forAc®=[—1, 1]. For A ¢ ©, we observe that Y,
is not increasing in either Y1(+) or Yi(—). In particular, Yy cannot be represented as an
expectation in this case.

The set ® plays a key role also for a comparison theorem. Let B denote the set of the
sequence g = {g,}_, € A with

gn(22) — gu(z1)) = min 6 " (22 — 21) (2.10)
0e®

for all 71, 7o € RY.

Proposition 2.3. (Comparison theorem.) Fori=1, 2, let Y® be fijeasumble random vari-
ables with YV > Y® and g = {g( )} € A with g(l) > gﬁ,z) Let &(f)(Y(")) denote E5(YD) for
g=g¥, i=1,2 respectively. Assume also g® € B for either i =1 or i = 2. Then

EVYD) > eDy?) n=0,1,...,N.
Proof. Note first that
T . T T
AX, = = 0 2.11
min z n(w) ;2‘5; ¢ Vp=nming (2.11)
for any z € R? and n. Therefore, under (2.10) for g = g®, g is balanced in the terminology
of [15], so the result follows from Theorem 3.2 of [15]. Here we repeat essentially the same

proof for the readers’ convenience. Let {(Y,(li), Z,(,i))} be the solution of (2.7) with g = g® and
Yy =Y. We have Yj(vl) > Y,(\,z) by assumption. Suppose Y,El) >Y, ,EZ) for some k. Then

(1) 2) _ (1) (2) (1) ((1) 2) ((2) (1) O\ T
0=y’ - =v" -1 - () +& (") + (2 —Z") AXk

and so 1 2N T 1 2 1 1 2 2
(@40~ 22) axi= v, v, 4 0 (70) - 2 (20).

Since the right-hand side is .%;_-measurable, this implies further

min0" (2, -27) = -2+ v2 +4°(27) - £7(27)

by (2.11). Therefore
022 ) - o) - g (2 -7
=g,i”<z§f>> @) + 6 (@) - 8(Z%) - minoT (2" - )

>0
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10 M. FUKASAWA ET AL

under (2.10) for g,, = gg) , and also
012 = ) - ) - e (- 2)
= g0(A) 52 (7") + 42 (2) ~ 52(2%) ~minoT (7" - 7)
>0
under (2.10) for g, = gﬁ,z). The result then follows by induction. U

Remark 2.3. A sufficient condition for g, to meet (2.10) is that g,(z) is continuously
differentiable in z with Vg,(z) taking values in ®. Indeed, by Taylor’s theorem,

1
gn(z1) — gn(22) =A) (21 — ), A =/ Vgn(za +1(z1 — 22)) dt,
0

and then notice that A,, is ®-valued because © is a convex set.

Example 2.4. (Locally entropic monetary utility.) Let {(IA’n,o, R fD,,,d)T} be a Ag-valued
predictable process, let {B,,} and {I",;} be positive predictable processes, and
1 d T 1
an(2) = T 1og<j§ e Inz V-and') T log B,.. (2.12)

Using a similar calculation to Example 2.1, we deduce the relation
L e fife-Tatn _
Yo-1= F—{log]E[e | Fu—1]l+1ogB,}, n=N,..., 1.
n

In particular, when B, =1, 85_1 is locally the minus of the entropic risk measure with risk-
aversion parameter I, extending (2.9). In contrast to the dynamic entropic risk measure studied
in [1], we have the time-consistency property E5(Es(Y)) = Ey(Y) for any m < n when B, =1
for all n even if the process {I',;} is not constant. We allow B, # 1 in order to include an example
in Section 3. We call £ a locally entropic monetary utility. A brief numerical study for this
utility is provided in Appendix B. We have

RlAX, e T A% | 7, ]

Ble=Tne" 8% | 7, 1]

Vgn(z) = =vPy(2),

where P,(2) = (Pn,0(2), - - ., Pna(z))T and
e_rtlZTVjﬁn’j

d _T.-Tv D .
D ko €T Py

P ()=

Since ISn(z) is continuous in z and Ag-valued for all n, by Remark 2.3, the assumptions of
Proposition 2.3 on gﬁf) are satisfied.

Next, we seek a robust representation of £8 when g is concave. Let C denote the set of
g ={gn} € B with g,(z) being concave in z for all n.

Lemma 2.5. Let g = {g,} € A. Then g € C if and only if
gn(z) =min{z' 0 + b,(0)}, (2.13)
fe®
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BSAE:s on lattices with application 11

where
by(0) = sup{gn(z) —z' 6}.

zeRd

Proof If g, is concave, then it is continuous on the interior of its domain that is R?.
Therefore by a well-known fact on the Legendre transform, we have

gn(2) = inf {z7x+ bu(x)}.
xeRd

Let x¢ ®©. Since ® is a closed convex set of R, by the Hahn-Banach theorem (or the
separating hyperplane theorem), there exists zo € R? such that

T T
1% .
minzy 6 > zo x
Using (2.10), for z = azp, @ > 0,
T T T s Ty
gn(@) —z xZgn(O)—i-ggg@ z—27 X gn(O)—i-agélgzo(@ X).

Since the last term is positive, letting & — 0o, we conclude b,,(x) = co. This implies

=inf{z'0+b,0))= inf {'O+b
&n(2) 012@){1 + bn(0)} (e,f;eA,,{Z + b},

where A, ={(0,b) € ® xR ; g,(w) <w'8 + b forall w e R?}. Fix n and z and then take a
sequence {(6k, bx)} C A, such that 2 Ok + by — gn(2). Since ® is compact, there exists a
converging subsequence {Hk } with limit 9, € ®. We have bk =z ij + bk] — zTGk] — gn(2) —

20, =:by. Also, w6, + by; > gn(w) for all w implies wTe* + by > gu(w) for all w, hence
(04, by) € A,,. Thus we obtaln (2.13). Conversely, if (2.13) is true, then g,(z) is concave, being
the minimum of concave (affine) functions. Since

20 +by(0) =20 +by(0) + 0 (21 — 22) > 25 0 + bu(6) + Iglél(l} 0" (z1 — 22),

we derive (2.10) from (2.13). O

Let Py denote the set of the probability measures on (2, Fy) absolutely continuous with
respect to IP. For P € Py, there corresponds a Ag4-valued predictable process (P, } by (2.4). The
measure [P is recovered from (P} by (2.5). Let [& denote the expectation under PP and define

N
S(P) =IAE|: Z bi(vP;) fn],

i=n+1
where b; is associated with g ={g,} € C via (2.13). The following theorem shows the nature
of the g-expectation with the gradient constraint as a nonlinear expectation, taking care
of Knightian uncertainty, refining a general convex duality result in [18] for an explicit
representation of a penalty function.

Theorem 2.2. Let g € C. Then, for any % y-measurable random variable Y,

E8(Y)= min {E[Y | Z)+E@®), n=0,1,...,N. (2.14)
PePy
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12 M. FUKASAWA ET AL

Proof. By (2.13), we have
8n(2) <2 VP, + by(vP,)

for any Pe ‘Pn. Therefore, by Propositions 2.2 and 2.3, we have
E8Y) <E[Y | ) + E(B)

for any Pe Py On the other hand, for any Y € .Zy, there exists the solution {(Y;,, Z,)} of (2.7)
with Yy =Y. By (2.13), there exists P, such that

en(Zy) =Z) VP, + by(VPy)

for each n. Since {g,} and {Z, } are predictable, {P } is a Ag-valued predictable process Let
IP’GPN be associated with {P }. Then {(Y,, Z,)} solves the BSDE with g,(z)=2z" vP, +
n(VPn) as well, and so by Proposition 2.2,

ESX) =Y, =E[Y | Z] + (),
which implies (2.14). O
Corollary 2.1. Let g € C. Let Y and Y' be .Zy-measurable random variables.
Q) IfY>Y' then E5(Y) > E5(Y), n=0,1,...,N
(ii) For any %#,-measurable [0,1]-valued random variable A,
ESAY+(1 =Y =AEEM)+ (1 —0ESY), n=0,1,...,N.
Example 2.5. Let ®, C ® and

= inf z'0, n=1,...,N.
&n(2) 91€n®nz n

Here, the set ®,, can be random in such a way Ehat gnis 71 ® %’(Rd)-measurable. Then we
have (2.13) with b,, such that b,(6) =0 if 0 € ®,, while b,(9) = co otherwise, where ®,, is the
closure of ®,. In particular when ®, = ®, by Theorem 2.2,

E4(Y)= min E[Y|.Z,], n=1,...,N,
PePy

for any .%y-measurable random variable Y. Note also that

E5(Y) = min E[Y] = min Y().
I@?E'PN weR

When ®, = {VP(I) .. VP(m)} for a Ag-valued predictable process {P(l)} letting E® denote
the expectation under the measure determined by {P,(f”)} for x=(x1,...,xy) {1, ..., m}N s
by Theorem 2.2, we have

EY)=minEW[Y|.%,], n=1,...,N.
X
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BSAE:s on lattices with application 13

2.5. Filtration consistent nonlinear expectations

Inspired by Coquet et al. [16], we call £: LO(Q, Zy,P) - R a filtration consistent
nonlinear expectation if:

(i) Y>Y = &)= &Y,
(i) Y>Y andEX)=EXY) =Y =Y,
(iii) &(c) = c for any constant ¢ € R, and

(iv) foranyn=1, ..., NandY, there exists an .%,-measurable 5 such that E(Y14) = E(nly)
for any A € %,.

Further, 7 is uniquely determined as shown in [16]. Let it be denoted by &,(Y). It follows
that
En(Em(Y)) = En(Y) (2.15)

for any m > n, and
En(N)la=En(Y1n) (2.16)

for any A € .%,,.
Proposition 2.4. Let g = {g,} € A, and assume that forn=1, ..., N,
(i) gn(0)=0and
(i) foranyz1,z2 € R4
gn(21) = gn(z2) = min 0 (2 — 22),
6e®
with equality holding only if 71 = z5.

Then Eg is a filtration consistent nonlinear expectation with &, =E; and a translation
invariance property,

EY +n) =)+, (2.17)

for any Fn-measurable random variable Y, %,-measurable random variable n, and n=
I,...,N.

Proof. From Proposition 2.3 and its proof, we observe the first two properties of filtration
consistent nonlinear expectation. By g,(0) =0 we derive (2.15) and (2.16), from which the
other properties follow. (|

The following theorem is a discrete analog of Theorem 7.1 of [16].

Proposition 2.5. Let £ be a filtration consistent nonlinear expectation with the translation
invariance property (2.17). Let ,(2) = En—1(z" AX,). Then £, = Es.

Proof. We have Ey(Y) =Y for any Y, so the claim is true for n = N. Assume &(Y) = Sf(Y)
for k > n. Then, by (2.2), there exists .%,_1-measurable A,, and Z, such that

E(V)=A, +Z] AX,.
Then, by (2.15) and (2.17),

En1(V)=An+ & 1(Z,) AXy).
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14 M. FUKASAWA ET AL

The last term is g,(Z,) by (2.16). Therefore
En(Y) = En1(YV) = —gu(Zy) + Z, DXy,
which implies that £,_1(Y) = 5571 (Y). The result follows by induction. O
3. Market equilibrium analysis

3.1. Monetary utility maximization

Now we consider {X,} to be a d-dimensional asset price process. The lattice L is then
understood as the price grid. For any {.%, }-predictable R?-valued process Z = {Z,} and w € R,

n
Wow, Z):= w+ Z Z AX;
i=1

represents the wealth process associated with the portfolio strategy Z and the initial wealth w.
Applying Theorem 2.1 with g, =0,n=1, ..., N, we observe that the market is complete, that
is, for any .%y-measurable random variable Y, there exists a predictable process Z and w € R
such that Y = Wy (w, Z).

Consider an agent whose utility functional is €g for g € C. This utility is monetary in the
sense that foralln=0, ..., N, ES(Y +A) = E5(Y) + A for any .Zy-measurable random vari-
able Y and .%,-measurable random variable A. When assuming g, (0) = 0 for all » in addition,
the utility is normalized in the sense that Es 0)=0,n=0,..., N, and it is time-consistent in
the sense that £ (E5(Y)) = E5(Y) for any m < n and for any .%y-measurable random variable
Y. The simplest example is £5(Y) = E[Y | .%,] corresponding to g,(z) =z  E[AX, | Z,_1].
More generally, £5(Y) is a conditional expectation with respect to a probability measure when
gn are linear for all n by Proposition 2.2. The driver {g,} should reflect the agent’s belief in the
distribution of the price process {X,,}. For example, if g, = O for all n, then g8y = EglY | #l
irrespective of P. The choice of nonlinear {g,} accommodates a nonlinear evaluation of risk,
extending the exponential utility (2.9). In light of Theorem 2.2, our problem can be interpreted
as a robust utility maximization.

The agent’s objective is to maximize Eg (H + Wx(w, 7)) among the predictable process 7 =
{rr,}, where H is a given .%y-measurable random variable representing an initial endowment
of the agent, i.e. an initially endowed asset or a scheduled random cashflow. Since the utility is
monetary, it suffices to treat the case w = 0. Let

VI =E5(H + Wyn(0, m) — Wy(0, m)) = ES(H + Wi (0, ) — Wy(0, 7). 3.1

Then the problem is equivalent to maximizing ¥§ among 7. The following theorem character-
izes the maximizer.
Theorem 3.1. Assume that there exists a predictable process {Z;} such that

n(Z))=sup gu(z), n=1,...,N. (3.2)

zeRd

Then
max Y =max & (H + Wy (0, 7)) = ES(H + Wy (0, %)),
/g b/
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BSAE:s on lattices with application 15

where 1) =7 — 7%, 7 = 7ZH + 73,

ZH =@+ (W) "EQIHAX, | 1],

78 = (d+ 1)(vw ) 'EglGuAXy | Pt (3.3)

and
N 1.
Go=)_ Eqlgiz))| F]
i=n+1
forn=1,..., N. Moreover,
Y7 =EqlH | Zu] + Gy (3.4)

forn=0,1,...,N. Ifin addition Z,I is unique, then 1, is the unique maximizer.

Proof. Let Y, denote the right-hand side of (3.4). Then {(Y;/, Z*)} is the solution of the
BSAE
AY;=—gu(Z) +(Z)TAX,, Y=H, (3.5)

by Theorem 2.1. Note that
AYT = —gu(Zy) + Z) AX, — 7] AX,, Y% =H,
for a predictable process {Z,} by (3.1). This means {(Y], ZT)}, Z] =Z, — m, solves the BSAE

AYT = —W(ZF)+(Z")  AX,, Y} =H,

where /] (z) = gn(z+ 7,). For any predictable process m, we have A, < g,,(ZZ). Therefore
YT < Y’ by Proposition 2.3. Notice also that by choosing 7 =Z] — Z* we have g,(Z") =
BT (Z7), so that {(Y*, Z)} satisfies the same BSAE as {(Y7", Z7")}. Hence Y = Y7 . O

Remark 3.1. Applying Theorem 2.1 to g, =0 and Yy = H, we have

N
H=Eg[H] + ZZ,'YAX,,

n=1

with {Z¥} defined by (3.3). Therefore the optimal strategy n* =Z| — 7 = -z + 7 — 7}
of Theorem 3.1 is decomposed into the hedging part —Z,I,'I and the optimal investment part
VARSY /3

Example 3.1. (Locally entropic monetary utility.) Consider (2.12). Let A} denote the interior
of Ay and assume {(f’n,l, e, f’n’d)T} to be Aj-valued. Then the map z+> g,(z) is strictly
concave and its unique maximizer is given by Z,Tl = b(y) of (2.3) for

1 A 1 A A T

y=—logP,:= —(logPn1,....logPuq) ,
n Fl’l

or equivalently

1 .
7 = F—(va)*vlog p,. (3.6)
n
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16 M. FUKASAWA ET AL

Indeed, V]TZZ =T, "'logP,, j — a(y) implies

d

Tz A
E vje Ty Z"P,,,J:O,

j=0
and thus Vgn(ZZ) =0 for all n. We also have
1 1 d T2
_loan‘i‘gn(Z;I):__ log Z e " P
T D

1
== log((d—l— 1)eu’+1l logp”)

n
) d
:F__Z
=0

1 "
= F_DKL(Qn||Pn)
n

>0, 3.7

(d + I)P,”

where D1, denotes the Kullback—Leibler divergence on Ay and Q,, =1/(d + 1). By (3.3) and
(3.6),

log P -
ni=7 —78 70 = 71 —i—(VVT)_lV( Ig, - Yn>,
n
where f/n = (f/,,,o, R f/,,,d)T and f/,,,j =Eq[G, | Fn-1, AX;, =vj]. The first term —Zf is the
hedging term as noted in Remark 3.1. The term

IOan ~ (VVT)—IVPH -

Zh=wvH) vy
" ( ) Fn Fn

1 R
= — (W) 'E[AX, | Foi]
n

can be interpreted as the discrete counterpart of the Merton portfolio (see e.g. Remark 8.9
of [27]). The term ¥, adjusts the expected return depending on the stochastic dynamics of
Dx1.(Qil |f’,~) for i > n+ 1. Indeed, when B, =1 and I';, = y for all n and a constant y > 0 as
in (2.8), we have

n
Gu=Y EqlgiZ) | F]
i=n+1

1 n “
== ) EqlDku(@ilIP)I 7]

i=n+1

L[]

by (3.7), where P is associated with {13,,} by (2.5). Note also that Z; = 0 if G,, is deterministic,
which is the case when {P,}, {I",}, and {B,} are deterministic.

(0 1 -1
Y=\l2c ¢ ¢ )
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where ¢ € R. Then we have

n
X2 =c<3 Z |AX; 1 |? — 2n>.

k=1
Indeed, if X, = (n — a — b)vo + av| + bv, for (a, b) € N2, then

n
a+b= Z |AXy 1 |2, X2 =—2c(n—a—b)+ cla+b)=c(@B(a+b) —2n).
k=1
Regarding {X;, 1} as a price process of an asset, the above identity allows us to interpret Xy > as
an affine transform of the variance swap payoff of the asset. Further, regarding Q as the pricing
measure, {X, 2} corresponds to the price process of the variance swap payoff. Note that {X, 1}
describes a trinomial model for the asset, which is not complete. The variance swap trading
makes the two-dimensional market {X,} complete.

3.2. General equilibrium

Consider m agents who maximize respective utilities Sé’)(H(i) +WnO, 7)), i=1,...,m
through trading strategies 7”) of the d-dimensional asset {X, }, where £? is the solution map of
the BSAE (2.7) with g = ¢ € C, and H? is an .#y-measurable random variable representing
an endowment for the agent i, i=1, ..., m. Let H, denote the total supply vector of the asset
vector X, and assume {H,,} to be an R?-valued predictable process. We say the market is in

general equilibrium if there exist predictable processes 7 = {n,(zi) },i=1,..., msuch that
() ELHD + Wy (0, 1?)) = max, £ (HO + Wy (0, 7)) forall i=1, ..., m, and
i) Y, o\ =H, foralln=1,...,N,

where the maximum is among all predictable processes 7.

Propositi01~1 31. Let HY and HD, i=1, ..., mbe Fn-measurable random variables, and let
{H,} and {H,)} be R?-valued predictable processes satisfying

m

N N
Z HO + Z H) AX, = i HD + Z H AX,.

i=1 n=1 i=1 n=1

Then the market with the endowments H? and the total supply {Hp} is in general equilibrium if
and only if the market with the endowments H” and total supply (H,} is in general equilibrium.

Prqof. Let ZT®, ZH(’), and Z8®, respectively, denote 7", ZH and Z8 in Theorem 3.1 with
g=2¢% and H = H®. Then, by Theorem 3.1,

—H,+ i 7= —H, — i ZH 4 i (270 — 780) = —7H 4 i (210 — 78),
i i j i=1
where Z is defined by (3.3) with

m N
H= Z HD + Z HAX,.
i=1 n=1

Therefore, whether or not Y™, 7\ = H, depends on H® and {H,} only through H. O
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18 M. FUKASAWA ET AL

We are interested in conditions on g for the market to be in general equilibrium. In light
of Proposition 3.1, we assume hereafter H? =0 (i > 2) and H, =0 (n > 1), without loss of
generality. Let H denote HV.

For functions £ and f® on R¢, define the sup-convolution f(VCIf? by

0@ = sup (V0 +P @ - ).

xeRd
For the drivers g = {g},i=1, ..., mof the m agents’ utilities, let
g =g"0- Og" . (3.8)
Lemma 3.1. For all n,
S n(2) = 121: sup g (). (3.9)

Proof. 1t is trivial that g,(z) is upper-bounded by the right-hand side sum for any z,
and hence its supremum is upper-bounded Conversely, let { (’)} be a sequence for which
limg_s o0 g4 )( ) = SUp,cpd ¢9(z) for each i. Then

Z g(l) (l) =é&n Zz(l) < sup gn(z)
zeR4
for any k, and the limit is similarly bounded. (]

A single agent whose utility is Sg with g = {g,} defined by (3.8) and whose endowment is
H is called the representative agent of the market. The following theorem reduces the general
equilibrium problem for the multi-agent market to the one for a single agent market. This
extends the idea of the well-known Gorman aggregation theorem.

Proposition 3.2. Assume that there exists a unique predictable process {Z;{(i)} for each

i=1,...,msuchthat . . .
g2} ™) = sup g0
zeRd
foralln=1, ..., N. Assume further that the maximizer of the map z+> g,(2)(w) is unique for

each n and w € Q2. The market for the m agents is in general equilibrium if and only the market
for the representative agent is in general equilibrium.

Proof Let {(Y:?, Z:™)} be the solution of
AYFD — (l)(ZT(l)) + (Z*(l))T AX,,
n

with Y5 = H and Y3 = 0 for i > 2. By Theorem 3.1, the unique optimal strategy 7 ) for the
agent i is given by n(') Z;[(') - Z,f('). By (3.9), we have

Zk%ﬁ%—&m&@—&@* ZV—XﬁW
zeR4

Therefore
m m

= 3nt zn= 3z

i=1 i=1
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BSAE:s on lattices with application 19

solves

AY} = —gu(Z) +(Z)  AX,, Y =H.
Since Z; is the unique maximizer of g,, the unique optimal strategy for the representative agent
is ) = 27! — Z*, again by Theorem 3.1. Hence

m

m m
o=z -3z =zr 7 =77,
i=1

i=1 i=1

Therefore Y 7| i = 0 if and only if 7 = 0. O

3.3. Equilibrium in a single agent market

By Proposition 3.2, it suffices to consider the case m = 1 in order to characterize the general
equilibrium. Letm =1, and put g, = g§}) and , = 71,51). The market is in general equilibrium if
and only if Eg (H) = max, Eg (H + Wp(0, m)), that is, ;¥ = 0 is the maximizer. The following
theorems characterize the general equilibrium by a backward recurrence relation for the BSAE
driver {g,}.

Theorem 3.2. The market is in general equilibrium if (3.2) holds with
Zh =(@d+ 1w ') 'Eql(H + G)AX, | Zuo1l. n=1,....N, (3.10)

Conversely, if the market is in general equilibrium and there exist sequences of maximizers
{Z'} of {gn}, then (3.10) is one of them.

where

N
G, =EQ|: Z sup gi(Z)

i=n+12€R?

Proof. Notice that the right-hand side of (3.10) coincides with Z defined in Theorem 3.1. If
(3.2) holds with (3.10), then we conclude that 77,7 = 0 is optimal by Theorem 3.1, which means
that the market is in general equilibrium. Conversely, if the market is in general equilibrium,
then by Theorem 3.1, Z should coincide with a maximizer of g, if any. (|

Proposition 3.3. Lerf,,: Q x RYx Ay — Rbe Fpy ® ,@(Rd x Ag)-measurable, concave on
R? and continuously differentiable on R? with Vf, taking values in ©, and 0 € Vf,(z, Ag) for
allzeRY n=1,...,N. Then there exists a Ag-valued predictable process {f’n} such that the
market with g = {gn}, gn(2) =fu(z, ﬁ,,), is in general equilibrium.

Proof. Note first that g € C by Remark 2.3. We construct P} inductively. By the assump-
tion, there exists fDN such that VfN(Z}:,, IA’N) =0 for Z}:, defined by (3.10) for n=N. Given
Py fork>n+1, let Zjl be defined by (3.10) with gx(z) =fx (z, IA’k). By the assumption, there
exists f’n such that an(Z,j, f’n) =0. Since z+> f,(z, f’,,) is concave, ZZ is a maximizer of
8n(2) =fu(z, P,)). The result then follows from Theorem 3.2. O

Example 3.3. (Locally entropic monetary utility.) We consider (2.12) again with (P}, P, =
Pn.1, - - .,Pn,d)T, being Aj-valued. The driver g, is of the form g,(z) = (f(I'yz, Py) —
log B,)/ 'y, where

d
T,
fapy=—log) e Vp. zeR. p=(po.....ps) €Aq (3.11)
Jj=0
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20 M. FUKASAWA ET AL
By (3.6), we have Vf,(Z,, P,)=0if and only if
1 N
Zy, = —(VVT)_IV log P,,.
Iy

By Theorem 3.2, the market is in general equilibrium if and only if
viog P, =(d + DT Egl(H + G)AX, | Fu1l, n=1,...,N.

This is a backward recurrence equation for {IA’n} because

N
G,,=E@[ > —(DKL<Q,||P> logB>'fn]

i= n+1
by (3.7). Since v has rank d and vl = 0, an equivalent condition is that
ernijnj

Zk_ l—‘n nk
forn=1,...,N.Let Y} =Eq[H | #,] + G,. Then

Pyj= Yuj=EqlH + Gy | Fu1, AXy=vjl, j=0,...,d, (3.12)

d
Y, =EglYu | Fn1, AXy] =Z JHAaX,=v}s

which implies
eln?y

(d+ DEg[e™"n | Z,—1]

Pn,jl{AXn:vJ-} = Liax,=v), J=0,....4d,

under (3.12). Therefore the market is in general equilibrium if and only if
dHD N F Yy

1_[ EQ[ernY |

where P is defined by (2.5). Further, by (3.5), we have

AP oyr . A T
log Ble ™" n | Z,_11= —TW(Y:_| — gu(Z))) + log Ble Tn(AXn) 2| 2, ]

= TV}, — 8u(Z)) — fo(TuZ), Py)
=-TI,Y,_, —logB,.

This implies

N gl N N
H—]=6XP{Z—FnAY;‘} [ (3.13)
1

-, Y
n= IE[e 7, n=1
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In particular, when B,, = 1 and I',, = y for all n and a constant > 0 as in (2.8), we have

dQ_ " (3.14)
P R[e-vH] '

which characterizes the equilibrium probability measure PP and is consistent with the well-
known computation under exponential utility.

Remark 3.2. In addition to the conditions of Proposition 3.3, if f;, is of the form f,(z, p) =
f(Tpz, p)/ Ty for a smooth function f: R x Ay — R with Vf(0,p)=p and a positive
predictable process {I',} as in Example 3.3 with B,, = 1, then we have

gn(2) = fu(z, Pn) ~ ZTIA')n
considering I';, to be small. This approximation implies in turn
ESN ~ELY | 7]

in light of Proposition 2.2, where [ is the expectation under P defined by (2.5). Therefore, in
this case, extending Example 3.3, we can interpret I',, as a risk-aversion parameter and PP as the
belief of the agent. If the market is in general equilibrium,

R[AX, | Fu1]=VP,

is interpreted as an equilibrium return.

Example 3.4. If H = h(Xy) and g,(2) =f:(Xs—1, z) for deterministic functions / and f;,, as in
Proposition 2.1, and if f(x,z) is strictly concave and continuously differentiable in z, then the
condition (3.10) follows from the deterministic identity

Vo folx, W) 'WNu,(x) =0, xeL, n=1,...,N,

where Nu, is as in Proposition 2.1. For example, for the market with no random endowments
(H® = 0) and unit total supply (H, = 1), we have H =17 Xy.

Example 3.5. Consider (2.12) with B, =1, I';, = y,(X,—1) and 13n = pn(X;—1) for determin-
istic functions y;,: L — (0, 00) and p,: L — Aj. Assume also H = h(Xy) as in Example 3.4.
Then, from Examples 3.3 and 3.4, the market is in general equilibrium if

vlog pp(x) = ¥u(X)VNu,(x), xeL, n=1,...,N.

The function u,(x) is computed backward inductively without using p,(x). For a given func-
tion y,(x), there exists a unique p,(x) € A7 satisfying this equation for each x € L. For the
sequence of such functions p,(x) obtained in the backward manner, the Ag4-valued sequence
P, = pu(X,—1) defines a unique equilibrium probability P by (2.5) associated with the sequence
'y = vu(X,—1). The equilibrium return is approximated as

E[AX,, | Fn1]l= Vi)n ~vlog Pn = Vn(Xn—l)VNun(Xn—l)
using vl =0.
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3.4. Equilibrium under heterogeneous beliefs

Here we assume m > 1 again and give more explicit computations of the sup-convolution in
special cases. First, we consider a homogeneous case, i.e. the case where all of the drivers g(’)
have the same functional form determined by a common Ag-valued predictable process {P,}
as

; 1 N
8@ = T2 P, (3.15)
n

where f,: Q x RY x A4 — R is as in Proposition 3.3 and {F,(li)}, i=1,...,m are positive
predictable processes quantifying each agent’s risk preference; see Remark 3.2. By induction,
we can show that

1 N
gn(z) = 81(11)5 e Dgizm)(z) = I—‘_fn(rnz, Pn)a
n

with

m

FL:Z ! (3.16)

"=l ry

Proposition 3.4. Under (3.15), there exists a A -valued predictable process (P} such that the
market is in general equilibrium.

Proof. The proof follows from Propositions 3.3 and 3.2. O

Example 3.6. (Locally entropic monetary utility.) Let f,(z, p) =f(z, p) defined by (3.11). The
predictable processes {Ff,’)} and {T",,} are then interpreted as the local risk-aversion parameter
for the agent i and for the representative agent respectively. Then (3.12) defines the unique
sequence {P,} such that the market is in general equilibrium. The equilibrium probability
measure P satisfies (3.13) with B, = 1. When I';, = y for all n for a constant y > 0, then the
representative agent has the exponential utility (2.9) and the equilibrium probability measure
P is characterized by (3.14).

‘Now we consider a heterogeneous case. We assume locally entropic monetary utilities
) =Pz, P/ TY, where f is defined by (3.11), and {T'Y} and

Al AT AT T
(PO = {0 ... B2

respectively, are (0, 0o)-valued and Aj-valued predictable processes for each i=1, ..., m.

Each sequence {f’,(f)} determines a probability measure P®) on .Zy by (2.5), which is interpreted
as the agent i’s belief in the law of {X,}.

Proposition 3.5. Define {I",,} by (3.16). Then
) (m) ! ~ 1
g, U -0g,"(2) = —f(Tuz, Py) — = log By,
Iy Iy

where P, = (i)n,o, e, Pn,d)—r and

P

SOV g 4 0T/ T
( n,j) ’ ”_ZH( n,j) .

1 Jj=0 i=1

1=

_ 1
By,
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Proof. The case m = 2 follows by solving the equation
UHx BP) = (1. )
in x € R?; see Lemma A.1. The general case then follows by induction. U

Remark 3.3. By Lemma A.2 we have B, < 1, with equality holding if and only if i)ﬁ,") = 13511)
for all i.

By Proposition 3.5, the representative agent’s market falls into Example 3.3. In particular,
when I';, = y > 0 (a constant), the market is in general equilibrium if and only if P, = P,,
where

dQ e vH ]_[il\’:1 B,
dP  E[e=7H [TV, B,]

To highlight the outcome of heterogeneous beliefs, let us further assume there are only two
agents (m = 2) with constant risk aversion F,(li) = y; > 0 and with no endovgment (H :AO). In
this case, Vg(i)(O, @) =0, and so, if the two agents have a common belief P, we need P = Q
for the market to be in general equilibrium. The optimal strategies are simply n,(ll) = 71,22) =0.

On the other hand, for any Aj-valued deterministic sequence {[A’,(ql) }, by choosing 1322) as
(1~
( pn’j) r2/vi

i)<2) _
d A ’
Yo B n/n

nj =

we have i’,,, j=1/(d+1) for all n and j, which makes this market with heterogeneous beliefs

be in general equilibrium. The individual optimal strategies 71,(,1) = —71,(,2) are non-zero; the

agents bet on their beliefs.

Another observation is that the equilibrium return is mostly affected by the belief of the least
risk-averse agent. Indeed, if I" f,l) < F,(f) fori>2,wehave I',/T° f,l) ~ 1, while T,/ F,(,i) ~ (0 for
i > 2. Therefore P, ~ 13,(11).

Remark 3.4. The product [, B, corresponds to the consensus characteristic introduced in a
continuous-time framework [26] of heterogeneous beliefs. It can be interpreted as a discounting
factor, and was further investigated in [21].

Appendix A. Computation of sup-convolution

Lemma A.l. Leta >0, 8>0,p;>0,4;>0,j=0,...,d, and z € RY. Then

d d
1 ‘ 1 ‘
sup { —— log E e_"‘xT"Jpj — —log 2 : e—ﬂ(z—x)Tv]qj
e = b=

d
1
= —; lOg Z e_yZTv.fp}//aq}//ﬁ’
Jj=0

where y =1/(1/a + 1/8).
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24 M. FUKASAWA ET AL

Proof. The first-order condition is

= S(x a, {Pk})  SG—x B Aah)

where

d
S o (b= e Vip;.

j=0

Since vl = 0 and rank v = d, the first-order condition is met if and only if
—oszvj +logpj=—B(z— x)ij +loggi+c(x), j=0,...,d,

for a function c. Substituting

xTVj _ B ZTV,' log pj —log gj — C(X)’
a+pB a+p
we obtain
__10 e —axTv; ___10 e —yz! Yip )’/Ol V/ﬂ C(x) i
g Z P : Z R
_l log Z efﬂ(zfx)‘rv]-q_ _ _l log Z e vz vjp}’/aq)//ﬂ + Lx)
B , ! B , / a+p’
J=0 j=0
hence the result. O
Lemma A.2. Let (p; 0. . . . ,p,-,d)T, i=1,...,mbempointsin Aj. Lety; >0 fori=1,...,m
and
y= o
(Z Vi)
i=1
Then

d m
ZHPV/VI<1

j=0 i=1

Proof. The case m = 1 is trivial. Let

ko -1
Yk = — ., k=1,...,m.
<Z )/i)
i=1
If the inequality is true when m = k, then
d k+l m VIYiN Prs1 [Tk d k Vier1/ vk
i =1Pij i
=) < () s
j=0 i=1 J j i

by Jensen’s inequality. We obtain the result by induction. U
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FIGURE 1. Yy = Sg(YN) as a function of g € (0.1, 0.1) for« =0, 0.5 and 1.

Appendix B. Numerical experiment

Here we give a brief numerical experiment on the locally entropic monetary utility defined
by (2.12). We focus on the case B, = 1 and ﬁn,j =1/(d+ 1) for all n and j. The purpose here
is to examine numerically the effect of the local risk-aversion process {I',;}. More specifically,
we consider an auto-regressive structure

r r
log o log — + ilTAX,,
14

VN

with constants y > 0, « € [0, 1] and 8 € R, and compute the g-expectation Sg (Yy) for Yy =
(Nd)~'21T X. When B is negative, the negative values of 1T AX, push ', up, that is, the
utility becomes more risk-averse when 1T AX,, is negative. We are interested in how such
dynamics affects the initial utility value Yy = Sg Yn).

For example, for d =100, N=3, y =1, and X /(d + 1) being the identity matrix, Figure 1
shows the shapes of Yy = Eg(YN) as a function of g € (—0.1, 0.1) for & =0, 0.5, and 1. For the
negative region of 8, we have monotone shapes, which means that the larger the variance of
the process {I",,}, the less the initial utility. This monotonicity is lost in the positive region of .
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