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Abstract
In 2016, I solved a problem of de la Harpe from 2006: Is there a nondiscrete C∗-simple group? However the
solution was not fully satisfactory, as the C∗-simple groups provided (and their operator algebras) are very close to
discrete groups. All previously known examples are of this form. In this article I give yet another construction of
nondiscrete C∗-simple groups. The statement in the title then follows. This in particular gives the first examples of
nonelementary C∗-simple groups (in Wesolek’s sense).
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1. Introduction

A fundamental motivation of operator algebra theory is to give a framework for understanding locally
compact groups. Successful achievements in this direction include Glimm’s dichotomy theorem, the
Kasparov theory, the Baum–Connes theory, and Popa’s deformation/rigidity theory. Also, via the (re-
duced) crossed product construction, locally compact groups produce interesting examples of concrete
operator algebras. On the one hand, for discrete groups many deep structural results on these opera-
tor algebras have been established. On the other hand, their nondiscrete counterparts are not yet on a
comparable level.

In this article, we focus on C∗-simplicity [9], the simplicity of the reduced group C∗-algebra, of locally
compact groups. For discrete groups, satisfactory characterisations of C∗-simplicity were established
in the last decade (see e.g., [1, 6]). However, the results do not (at least directly) extend to nondiscrete
groups. C∗-simplicity of nondiscrete groups is still a mysterious property. A main reason for this
difficulty is the lack of interesting examples. Indeed, even the existence of such a group – questioned
by de la Harpe [3] – was not known until [13]. Although such groups are now known [11, 13], all the
currently known examples are very close to discrete groups. (More precisely, they are essentially the
projective limit of discrete groups of particularly good form; see [13, Proposition], which is the only
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previously known result to produce a nondiscrete C∗-simple group. In particular, all these groups are
elementary in Wesolek’s sense by [15, Theorem 3.18].)

In this article, we provide a new framework to produce nondiscrete C∗-simple groups. Note that
C∗-simple groups must be totally disconnected, by [10, Theorem A]. Thus our attention is naturally
restricted to totally disconnected groups. As a result of the new construction, we conclude the statement
in the title: every totally disconnected locally compact group realises as an open subgroup of a C∗-
simple group. In particular we obtain the first examples of C∗-simple groups which are nonelementary
in Wesolek’s sense [15]. We believe that our new construction sheds new light on (nondiscrete) C∗-
simplicity, and that our proof gives a new insight into the analysis of the group and reduced crossed
product operator algebras of nondiscrete groups.

2. Preliminaries

Here we fix notations, and prove a basic lemma.

Notations

Throughout the article, let G be a totally disconnected locally compact group. We fix a left Haar
measure 𝜇 on G. Define 𝐿2 (𝐺) := 𝐿2 (𝐺, 𝜇). Let 𝜆 : 𝐺 � 𝐿2 (𝐺) denote the left regular representation.
The representation 𝜆 integrates to the ∗-representation of the group algebra 𝐶𝑐 (𝐺) on 𝐿2 (𝐺) which is
given by the convolution product. The reduced group C∗-algebra C∗

r (𝐺) is the operator norm closure of
𝐶𝑐 (𝐺) ⊂ B

(
𝐿2 (𝐺)

)
. For a compact open subgroup K of G, set

𝑝𝐾 := 𝜇(𝐾)−1 𝜒𝐾 ∈ 𝐶𝑐 (𝐺) ⊂ C∗
r (𝐺).

Observe that 𝑝𝐾 is the orthogonal projection onto the K-fixed point space 𝐿2 (𝐺)𝐾 . A theorem of van
Dantzig [14] shows that the set of compact open subgroups 𝐾 < 𝐺 forms a local basis at the identity
element 𝑒 ∈ 𝐺. Hence the net (𝑝𝐾 )𝐾<𝐺 forms an approximate unit of C∗

r (𝐺). For a closed subgroup
H of G, we identify C∗

r (𝐻) with the C∗-subalgebra of the multiplier algebra M
(
C∗

r (𝐺)
)

in the obvious
way (compare [7]). In particular, when H is open, we have C∗

r (𝐻) ⊂ C∗
r (𝐺). When 𝐻 < 𝐺 is a closed

subgroup normalised by a compact subgroup 𝐾 < 𝐺, we equip C∗
r (𝐻) with the K-action induced from

the conjugation action 𝐾 � 𝐻.
The symbol ⊗ stands for the minimal tensor product of C∗-algebras, the Hilbert space tensor product

and the tensor product of unitary representations. Denote by �r the reduced C∗-crossed product. (The
underlying actions should be always clear from the context.) For a C∗-algebra A equipped with a compact
group action 𝐾 � 𝐴, denote by 𝐴𝐾 the fixed point algebra of the K-action.

On conditional expectations

The following lemma should be well known to experts. For completeness of the article, we include the
proof.

Lemma 2.1. Let 𝐾 < 𝐺 be a compact open subgroup. Let 𝛼 : 𝐺 � 𝐴 be a C∗-dynamical system. Then
there is a faithful conditional expectation

𝐸𝐾 : 𝑝𝐾 (𝐴�r 𝐺)𝑝𝐾 → 𝑝𝐾 𝐴𝑝𝐾 = 𝐴𝐾 𝑝𝐾

satisfying 𝐸𝐾 (𝑝𝐾 𝑎𝜆𝑠𝑝𝐾 ) = 𝜒𝐾 (𝑠)𝑝𝐾 𝑎𝑝𝐾 for all 𝑎 ∈ 𝐴, 𝑠 ∈ 𝐺.
The analogous statement holds true in the von Neumann algebra setting. Moreover, in this setting,

𝐸𝐾 can be chosen to be normal.

Proof. We show only the C∗-algebra case. The proof in the von Neumann algebra case is identical to
that in the C∗-algebra case.
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Take a covariant representation (𝜋, 𝑣) of (𝐴, 𝛼) on ℌ such that 𝜋 is faithful. (For instance, take
a faithful regular covariant representation of (𝐴, 𝛼).) We identify 𝐴�r 𝐺 with a C∗-subalgebra of
B

(
ℌ ⊗ 𝐿2 (𝐺)

)
via the regular covariant representation associated to 𝜋. Then this gives rise to an

inclusion 𝑝𝐾 (𝐴�r 𝐺)𝑝𝐾 ⊂ B
(
ℌ ⊗ 𝐿2 (𝐺)𝐾

)
. We also identify 𝑝𝐾 𝐴𝑝𝐾 with the C∗-algebra 𝜋

(
𝐴𝐾

)
⊗

idC𝜒𝐾 on ℌ ⊗ C𝜒𝐾 in the obvious way. Let q denote the orthogonal projection from ℌ ⊗ 𝐿2 (𝐺)𝐾 onto
ℌ ⊗ C𝜒𝐾 . Define

𝐸 : B
(
ℌ ⊗ 𝐿2 (𝐺)𝐾

)
→ B(ℌ ⊗ C𝜒𝐾 )

by

𝐸 (𝑥) := 𝑞𝑥𝑞.

Then under the foregoing identifications of C∗-algebras, we obtain

𝐸 (𝑝𝐾 (𝐴�r 𝐺)𝑝𝐾 ) = 𝑝𝐾 𝐴𝑝𝐾 .

Hence the map 𝐸 restricts to a conditional expectation

𝐸𝐾 : 𝑝𝐾 (𝐴�r 𝐺)𝑝𝐾 → 𝑝𝐾 𝐴𝑝𝐾 .

Direct computations show that the map 𝐸𝐾 satisfies the required equation. Let 𝜌 : 𝐺 � 𝐿2 (𝐺) denote
the right regular representation of G. Observe that (𝑣 ⊗ 𝜌) (𝐺)𝑝𝐾 commutes with 𝑝𝐾 (𝐴�r 𝐺)𝑝𝐾 .
As the subset [(𝑣 ⊗ 𝜌) (𝐺)𝑝𝐾 ] · (ℌ ⊗ C𝜒𝐾 ) spans a dense subspace of ℌ ⊗ 𝐿2 (𝐺)𝐾 , the conditional
expectation 𝐸𝐾 is faithful. �

3. New construction of nondiscrete C∗-simple groups

Recall that G is a totally disconnected locally compact group. We will construct an ambient C∗-simple
group G of G.

To avoid confusion, we first introduce the following notations. Let Υ𝑛, 𝑛 ∈ N, be pairwise distinct
copies of the group ⊕

𝐾<𝐺

⊕
𝐺/𝐾

Z2,

where the first direct sum is taken over the set of all compact open subgroups K of G. We equip each
Υ𝑛 with the G-action induced from the left translation G-actions on 𝐺/𝐾 . Let Ξ𝑛, 𝑛 ∈ N, be pairwise
distinct copies of the integer group Z. We equip each Ξ𝑛 with the trivial G-action.

Set

Γ1 := Υ1, Λ1 := Γ1 ∗ Ξ1,

equipped with the obvious G-actions. Assume that Γ𝑛 and Λ𝑛 have been defined. We then define

Γ𝑛+1 := Λ𝑛 × Υ𝑛+1, Λ𝑛+1 := Γ𝑛+1 ∗ Ξ𝑛+1,

equipped with the obvious G-actions. As a result, we obtain the increasing sequence

Γ1 < Λ1 < Γ2 < Λ2 < · · ·
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of discrete groups. Define Λ to be the inductive limit of this sequence. As the inclusions are G-
equivariant, we have a natural G-action 𝛼 on Λ. Now set

G := Λ �𝛼 𝐺.

Clearly G contains an open subgroup isomorphic to G. Define G𝑛 := Λ𝑛 � 𝐺 < G for 𝑛 ∈ N.
For an open compact subgroup 𝐾 < 𝐺 (< G), the following observation on 𝑝𝐾C∗

r (G)𝑝𝐾 is useful.
Note first that the ∗-subalgebra 𝑝𝐾𝐶𝑐 (G)𝑝𝐾 is dense in 𝑝𝐾C∗

r (G)𝑝𝐾 . Since K is open in G, the
characteristic functions 𝜒𝑆 , 𝑆 ∈ 𝐾\G/𝐾 , form a basis of 𝑝𝐾𝐶𝑐 (G)𝑝𝐾 . Therefore one can approximate
a given element 𝑥 ∈ 𝑝𝐾C∗

r (G)𝑝𝐾 arbitrarily well by an element of the form∑
𝑠∈𝐹

𝑝𝐾 𝑥𝑠𝜆𝑠𝑝𝐾 ,

where 𝑛 ∈ N, 𝐹 = {𝑒, 𝑠1, . . . , 𝑠𝑙} is a finite subset in G having the pairwise disjoint K-double cosets,
𝑥𝑠 ∈ C∗

r (Λ𝑛) for all 𝑠 ∈ 𝐹 and 𝑥𝑒 ∈ C∗
r (Λ𝑛)

𝐾 .
Note that by [15, Theorem 3.18], the class of elementary totally disconnected locally compact groups

is closed under taking open subgroups and group extensions. Therefore the group G is elementary if
and only if the original group G is elementary. Typical examples of nonelementary totally disconnected
locally compact groups include PSL𝑑

(
Q𝑝

)
and Aut(𝑇𝑑), where p is a prime number, 𝑑 ∈ {3, 4, . . . }

and 𝑇𝑑 is a d-regular tree [15, Proposition 6.3].
The following theorem is the main result of this article:

Theorem 3.1. The locally compact group G is C∗-simple.

Proof. Let I be a nonzero (closed two-sided) ideal of C∗
r (G) = C∗

r (Λ) �r,𝛼 𝐺. Take a nonzero positive
element 𝑥 ∈ 𝐼. Let 𝐾 < 𝐺 be a compact open subgroup satisfying 𝑎 := 𝑝𝐾 𝑥𝑝𝐾 ≠ 0. We will show that
𝑝𝐾 ∈ 𝐼.

Let

𝐸𝐾 : 𝑝𝐾 C∗
r (G)𝑝𝐾 → C∗

r (Λ)
𝐾 𝑝𝐾

be the faithful conditional expectation provided in Lemma 2.1. Since a is positive and nonzero, so is
𝐸𝐾 (𝑎). By rescaling a if necessary, we may further assume that

‖𝐸𝐾 (𝑎)‖ = 1.

Choose an 𝑛 ∈ N and 𝑎0 ∈ 𝑝𝐾𝐶𝑐 (G𝑛)𝑝𝐾 satisfying

‖𝑎 − 𝑎0‖ < 1/2, ‖𝐸𝐾 (𝑎0)‖ = 1.

Write

𝑎0 =
∑
𝑠∈𝐹

𝑝𝐾 𝑥𝑠𝜆𝑠𝑝𝐾 , 𝑥𝑠 ∈ C∗
r (Λ𝑛), 𝑥𝑒 ∈ C∗

r (Λ𝑛)
𝐾 ,

where 𝐹 = {𝑒, 𝑠1, . . . , 𝑠𝑙} is a finite subset of G having the pairwise distinct K-double cosets. Note that
‖𝑥𝑒‖ = ‖𝐸𝐾 (𝑎0)‖ = 1.

Let Υ𝑛+1,𝐾 < Υ𝑛+1 be the Kth direct summand of Υ𝑛+1. Let C∗
r

(
Υ𝑛+1,𝐾

)
� 𝐶

(
{0, 1}𝐺/𝐾

)
be the

obvious G-equivariant ∗-isomorphism. Define

𝑈 :=

{(
𝜖𝑔𝐾

)
𝑔𝐾 ∈𝐺/𝐾 ∈ {0, 1}𝐺/𝐾 : 𝜖𝐾 = 0, 𝜖𝑔𝐾 = 1 for 𝑔𝐾 ⊂

𝑙⊔
𝑖=1

𝐾𝑠𝑖𝐾

}
.
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Observe that U is a K-invariant (nonempty) clopen subset of {0, 1}𝐺/𝐾 . Moreover, for each i we have
𝛼𝑠𝑖 (𝑈) ∩ 𝑈 = ∅. We regard 𝑝 := 𝜒𝑈 as an element of C∗

r (Λ). Then 𝑝𝜆𝑠𝑖 𝑝 = 0 for 𝑖 = 1, . . . , 𝑙. The
projection p is nonzero and commutes with 𝑝𝐾 and 𝑥𝑠 , 𝑠 ∈ 𝐹. Thus

𝑝𝑎0 𝑝 = 𝑝𝑥𝑒𝑝𝐾 .

Since 𝑥𝑒 and p sit in the first and second tensor product components of C∗
r (Γ𝑛+1) = C∗

r (Λ𝑛) ⊗C∗
r (Υ𝑛+1),

respectively, we have

‖𝑝𝑥𝑒‖ = ‖𝑝‖‖𝑥𝑒‖ = 1.

Let B be the C∗-subalgebra of C∗
r (Λ)

𝐾 generated by C∗
r (Γ𝑛+1)

𝐾 and C∗
r (Ξ𝑛+1). By [5, Theorem 2],

B is simple. Note that 𝑝𝑥𝑒 ∈ 𝐵. Therefore, by [16, Lemma 2.3], one has a sequence 𝑏1, . . . , 𝑏𝑟 ∈ 𝐵
satisfying ����� 𝑟∑

𝑖=1
𝑏𝑖𝑏𝑖

∗

����� ≤ 2,
𝑟∑
𝑖=1

𝑏𝑖 𝑝𝑥𝑒𝑏
∗
𝑖 = 1𝐵 .

This implies

𝑟∑
𝑖=1

𝑏𝑖 𝑝𝑎0 𝑝𝑏∗
𝑖 =

𝑟∑
𝑖=1

𝑏𝑖 𝑝𝑥𝑒𝑏
∗
𝑖 𝑝𝐾 = 𝑝𝐾 .

Since
��∑𝑟

𝑖=1 𝑏𝑖 𝑝(𝑎 − 𝑎0)𝑝𝑏∗
𝑖

�� ≤ 2‖𝑎 − 𝑎0‖ < 1, we have ‖𝑝𝐾 + 𝐼 ‖C∗
r (G)/𝐼 < 1. As 𝑝𝐾 is a projection,

this yields 𝑝𝐾 ∈ 𝐼. Since 𝐾 < 𝐺 can be chosen arbitrarily small, we conclude 𝐼 = C∗
r (G). �

We keep the settings 𝐺,G and so on until the end of this article.

4. Uniqueness of KMS weight on C∗
r (G)

By modifying the proof of Theorem 3.1, we also obtain the uniqueness of KMS weight on C∗
r (G)

with respect to the modular flow. From now on, we freely use the basic facts on the Plancherel weight
observed in [10, Section 2.6].

For a locally compact group H, let Δ𝐻 : 𝐻 → R>0 denote the modular function of H. Define
𝐻0 := ker(Δ𝐻 ) < 𝐻. Note that for totally disconnected H, it is not hard to see that 𝐻0 is open in H and
that Δ𝐻 (𝐻) ⊂ Q. Observe that for our G and G,

Δ𝐺 (𝐺) = ΔG (G), G0 = Λ � 𝐺0.

Let 𝜑 denote the Plancherel weight on C∗
r (G). Let 𝜎𝜑 be the modular flow on C∗

r (G):[
𝜎
𝜑
𝑡 ( 𝑓 )

]
(𝑠) := ΔG (𝑠)

i𝑡 𝑓 (𝑠) for 𝑓 ∈ 𝐶𝑐 (G), 𝑠 ∈ G, 𝑡 ∈ R.

Throughout the paper, a weight on a C∗-algebra is always assumed to be densely defined, lower semicon-
tinuous and nonzero (i.e., proper) without being stated. (See [8] or [10, Section 2.6] for the definitions.)

For a weight 𝜓 on a C∗-algebra A, as in [8, Definition 1.1], denote by M𝜓 the linear span of
𝜓−1 ([0,∞)). Note that M𝜓 is a hereditary ∗-subalgebra of A. In addition, when 𝜓 is tracial, M𝜓 is a
norm dense ideal of A, and hence it contains all projections in A. We call the ∗-subalgebra{

𝑎 ∈ 𝐴 : M𝜓𝑎 ∪ 𝑎M𝜓 ⊂ M𝜓 ,
𝜓(𝑎𝑥) = 𝜓(𝑥𝑎) for all 𝑥 ∈ M𝜓

}
⊂ 𝐴
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the centraliser of 𝜓. We set

𝐶𝑐𝑐 (G) :=
⋃
𝐾<𝐺

𝑝𝐾𝐶𝑐 (G)𝑝𝐾 .

Here the union is taken over all compact open subgroups 𝐾 < 𝐺. Note that 𝐶𝑐𝑐 (G) is a ∗-subalgebra
of 𝐶𝑐 (G). Observe that for any 𝜎𝜑-KMS weight 𝜓 on C∗

r (G), as every 𝑝𝐾 is a projection fixed by 𝜎𝜑 ,
we have 𝐶𝑐𝑐 (G) ⊂ M𝜓 . Indeed, as 𝑝𝐾 is a projection, one has an analytic element 𝑎 ∈ M𝜓 with
𝑝𝐾 ≤ 𝑝𝐾 𝑎∗𝑎𝑝𝐾 . Then, by the KMS condition, we have

𝜓(𝑝𝐾 ) ≤ 𝜓(𝑝𝐾 𝑎∗𝑎𝑝𝐾 ) = 𝜓
(
𝜎
𝜑
i/2(𝑎)𝑝𝐾𝜎

𝜑
i/2(𝑎

∗)
)
≤ 𝜓

(
𝜎
𝜑
i/2(𝑎)𝜎

𝜑
i/2(𝑎

∗)
)
= 𝜓(𝑎∗𝑎).

Theorem 4.1. Up to scalar multiple, the Plancherel weight 𝜑 is the only 𝜎𝜑-KMS weight on C∗
r (G).

When G is nonunimodular, there is no tracial weight on C∗
r (G).

Proof. We consider the following claim:

Claim. Let 𝜓 be a weight on C∗
r (G) whose centraliser contains 𝐶𝑐𝑐 (G0) and satisfies 𝐶𝑐𝑐 (G) ⊂ M𝜓 .

Then for any compact open subgroup 𝐾 < 𝐺 and any 𝑠 ∈ G \ 𝐾 , we have

𝜓(𝜆𝑠𝑝𝐾 ) = 0.

Note that by the foregoing observations, any 𝜎𝜑-KMS weights and tracial weights on C∗
r (G) satisfy

the assumption of the claim.
We first prove the theorem under the assumption that the claim holds true. In the case that 𝜓 is a

𝜎𝜑-KMS weight, we will show that 𝜓 is a scalar multiple of 𝜑. Take any two compact open subgroups
𝐾1, 𝐾2 < 𝐺. Define 𝐾 := 𝐾1 ∩ 𝐾2 and take 𝑠1, . . . , 𝑠𝑙 , 𝑡1, . . . , 𝑡𝑟 ∈ 𝐺 satisfying 𝐾1 =

⊔𝑙
𝑖=1 𝑠𝑖𝐾, 𝐾2 =⊔𝑟

𝑖=1 𝑡𝑖𝐾 . Then

𝑝𝐾1 =
1
𝑙

𝑙∑
𝑖=1

𝜆𝑠𝑖 𝑝𝐾 , 𝑝𝐾2 =
1
𝑟

𝑟∑
𝑖=1

𝜆𝑡𝑖 𝑝𝐾 .

Since 𝑟𝜇(𝐾1) = 𝑙𝜇(𝐾2), the hypothesis implies

𝐶 := 𝜓(𝑝𝐾1 )𝜇(𝐾1) = 𝜓(𝑝𝐾2 )𝜇(𝐾2).

By [10, Lemma 2.23] (see also [8]), we obtain 𝜓 = 𝐶𝜑. Next consider the case that G is nonunimodular
and that 𝜓 is a tracial weight. In this case, the equality in the claim implies that the weight 𝜓 vanishes
on 𝐶𝑐𝑐 (G). Since the projections 𝑝𝐾 , where 𝐾 < 𝐺 are compact open subgroups, form an approximate
unit of C∗

r (G), it follows from the tracial condition and lower semicontinuity of 𝜓 that 𝜓 = 0. This proves
the statement of the theorem. Hence it suffices to show the claim.

We now prove the claim. Let 𝜓, 𝐾 < 𝐺, 𝑠 ∈ G \ 𝐾 be as in the claim. Write 𝑠 = 𝑔𝑢, 𝑔 ∈ Λ, 𝑢 ∈ 𝐺. To
show the claimed equation 𝜓(𝜆𝑠𝑝𝐾 ) = 0, we first recall from the proof of Theorem 3.1 that when 𝑢 ∉ 𝐾 ,
one has a nonzero projection 𝑝 ∈ C∗

r (Γ1)
𝐾 satisfying 𝑝𝜆𝑢 𝑝 = 0. In fact, p is taken from the group algebra

C[Γ1]. When 𝑢 ∈ 𝐾 , define 𝑝 := 𝜆𝑒 ∈ C[Γ1]. Choose 𝑛 ∈ N satisfying 𝑔 ∈ Λ𝑛. Consider the subgroup
Σ := Λ𝑛 ∗Ξ𝑛+1 ∗Ξ𝑛+2 < Λ. Denote by 𝜏 the canonical tracial state on C∗

r (Σ). As observed in [12, Lemma
3.8], thanks to [4, Lemma 5], one can proceed with the Powers averaging argument [9] for Σ by using
only elements in Ξ𝑛+1 ∗Ξ𝑛+2. This implies that for any 𝜀 > 0, one has 𝑡1, . . . , 𝑡𝑟 ∈ Ξ𝑛+1 ∗Ξ𝑛+2 satisfying�����1

𝑟

𝑟∑
𝑖=1

𝜆𝑡𝑖𝑥𝜆∗
𝑡𝑖 − 𝜏(𝑥)

����� < 𝜀 for 𝑥 = 𝑝, 𝜆𝑔 .
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Then, as Ξ𝑛+1 ∗ Ξ𝑛+2 commutes with G, we have������ 1
𝑟2

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖𝜆𝑡 𝑗 𝑝𝐾𝜆𝑠𝑝𝐾𝜆∗

𝑡 𝑗𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖

������ =

������1
𝑟

𝑟∑
𝑖=1

⎡⎢⎢⎢⎢⎣𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖 𝑝𝐾

���1
𝑟

𝑟∑
𝑗=1

𝜆𝑡 𝑗𝜆𝑔𝜆
∗
𝑡 𝑗

���𝜆𝑢 𝑝𝐾𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖

⎤⎥⎥⎥⎥⎦
������

< 𝜀 +
𝜏

(
𝜆𝑔

)
𝑟

����� 𝑟∑
𝑖=1

𝜆𝑡𝑖 𝑝𝐾 𝑝𝜆𝑢 𝑝𝑝𝐾𝜆∗
𝑡𝑖

�����
= 𝜀.

Here the last equation holds true because the condition 𝑢 ∈ 𝐾 implies 𝑔 ≠ 𝑒. Since p is a K-invariant
projection and Σ, 𝐾 ⊂ G0, the previous inequality yields      𝜓���𝜆𝑠𝑝𝐾

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆∗
𝑡 𝑗𝜆𝑡𝑖 𝑝𝜆∗

𝑡𝑖𝜆𝑡 𝑗
���
      =

      𝜓���
𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆𝑠𝑝𝐾

(
𝜆∗
𝑡 𝑗𝜆𝑡𝑖 𝑝𝜆∗

𝑡𝑖

) (
𝜆𝑡𝑖 𝑝𝜆∗

𝑡𝑖𝜆𝑡 𝑗 𝑝𝐾

)���
      

=

      𝜓���
𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖𝜆𝑡 𝑗 𝑝𝐾𝜆𝑠𝑝𝐾𝜆∗

𝑡 𝑗𝜆𝑡𝑖 𝑝𝜆∗
𝑡𝑖

���
      

≤ 𝑟2𝜓(𝑝𝐾 )𝜀.

This yields

|𝜏(𝑝)𝜓(𝜆𝑠𝑝𝐾 ) | ≤

      𝜓���𝑝𝐾𝜆𝑠𝑝𝐾
���𝜏(𝑝) −

1
𝑟2

𝑟∑
𝑖=1

𝑟∑
𝑗=1

𝜆∗
𝑡 𝑗𝜆𝑡𝑖 𝑝𝜆∗

𝑡𝑖𝜆𝑡 𝑗
������

      + 𝜓(𝑝𝐾 )𝜀

≤ 2𝜓(𝑝𝐾 )𝜀.

Since 𝜀 > 0 was chosen arbitrarily small (independent on p), we conclude

𝜓(𝜆𝑠𝑝𝐾 ) = 0.

�

5. On factoriality and types of group von Neumann algebras 𝐿(G)
In this section we observe the factoriality of the group von Neumann algebra 𝐿(G). We then determine
its Murray–von Neumann–Connes type. For the definition of Connes’ S-invariant, we refer the reader
to [2, Section III].

Theorem 5.1. The von Neumann algebra 𝐿(G) is a nonamenable factor of type⎧⎪⎪⎪⎨⎪⎪⎪⎩
II1 when 𝐺 is discrete,

II∞ when 𝐺 is nondiscrete and unimodular,
III otherwise,

whose Connes’ S-invariant is the closure of Δ𝐺 (𝐺) in R≥0.

Proof. We first show that 𝐿(G) and 𝐿(G0) are factors. By [10, Proposition 2.25], the centraliser of the
Plancherel weight on 𝐿(G) is equal to 𝐿(G0). Hence it suffices to show the factoriality of 𝐿(G0). Let 𝜑
be the Plancherel weight on 𝐿(G0). Note that 𝜑 is a faithful normal semifinite tracial weight on 𝐿(G0).
Hence if 𝐿(G0) is not a factor, then one has a normal semifinite tracial weight 𝜓 which is dominated by
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𝜑 but is not a scalar multiple of 𝜑. This contradicts the uniqueness of the tracial weight on C∗
r (G0) (up

to scalar multiple), which follows from the proof of Theorem 4.1.
We next show the nonamenability of 𝐿(G). Take any compact open subgroup 𝐾 < 𝐺. Then by

Lemma 2.1, the corner 𝑝𝐾 𝐿(G)𝑝𝐾 of 𝐿(G) admits a conditional expectation

𝐸𝐾 : 𝑝𝐾 𝐿(G)𝑝𝐾 → 𝐿(Λ)𝐾 𝑝𝐾 .

Since 𝐿(Λ)𝐾 𝑝𝐾 is nonamenable, so is 𝐿(G).
Finally we determine the Murray–von Neumann–Connes type of 𝐿(G). When G is discrete, it is clear

from Theorem 4.1 that 𝐿(G) is of type II1. (Alternatively, in the discrete-group case, the statement follows
from the fact that G is a nonamenable ICC discrete group.) When G is nondiscrete and unimodular,
observe that the Plancherel weight on 𝐿(G) is tracial and unbounded. Since 𝐿(G) is nonamenable, it
must be of type II∞. The nonunimodular case and the last statement follow from Connes’ theorem [2]
(see [10, Theorem 2.27]). �
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