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Abstract. Feng and Huang [Variational principle for weighted topological pressure.
J. Math. Pures Appl. (9) 106 (2016), 411–452] introduced weighted topological entropy
and pressure for factor maps between dynamical systems and established its variational
principle. Tsukamoto [New approach to weighted topological entropy and pressure. Ergod.
Th. & Dynam. Sys. 43 (2023), 1004–1034] redefined those invariants quite differently
for the simplest case and showed via the variational principle that the two definitions
coincide. We generalize Tsukamoto’s approach, redefine the weighted topological entropy
and pressure for higher dimensions, and prove the variational principle. Our result allows
for an elementary calculation of the Hausdorff dimension of affine-invariant sets such
as self-affine sponges and certain sofic sets that reside in Euclidean space of arbitrary
dimension.
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1. Introduction
1.1. Dynamical systems and entropy. Topological pressure and its variational principle
have been significant in several fields, including the dimension theory of dynamical
systems. Recently, Feng and Huang devised an innovative invariant called weighted
topological pressure for factor maps between dynamical systems and proved its variational
principle [FH16]. Their work inspired Tsukamoto to suggest a new definition of this
invariant [Tsu22]. He also established a variational principle, revealing the non-trivial
coincidence of the two definitions. Tsukamoto focused on the simplest case with two
dynamical systems.

In this paper, we extend Tsukamoto’s definition to the case of an arbitrary number of
dynamical systems and prove its variational principle. With our result, we can plainly
calculate the Hausdorff dimension of self-affine sponges, a topic studied by Kenyon and
Peres [KP96]. Furthermore, we will show in §6 that we can determine the Hausdorff
dimension of certain sofic sets embedded in higher-dimensional Euclidean space.
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FIGURE 1. First four generations of a Bedford–McMullen carpet.

We review the basic notions of dynamical systems in this subsection. Refer to the book
of Walters [Wal82] for the details.

A pair (X, T ) is called a dynamical system if X is a compact metrizable space and
T : X → X is a continuous map. A map π : X → Y between dynamical systems (X, T )
and (Y , S) is said to be a factor map if π is a continuous surjection and π ◦ T = S ◦ π .
We sometimes write as π : (X, T ) → (Y , S) to clarify the dynamical systems in question.

For a dynamical system (X, T ), denote its topological entropy by htop(T ). Let P(f ) be
the topological pressure for a continuous function f : X → R (see §2 for the definition
of these quantities). Let M T (X) be the set of T-invariant probability measures on X and
hμ(T ) the measure-theoretic entropy for μ ∈ M T (X) (see §3.2). The variational principle
then states that [Din70, Gm71, Gw69, Ru73, Wal75]

P(f ) = sup
μ∈M T (X)

(
hμ(T )+

∫
X

f dμ

)
.

1.2. Background. We first look at self-affine sponges to understand the background
of weighted topological entropy introduced by Feng and Huang. Let m1, m2, . . . , mr
be natural numbers with m1 ≤ m2 ≤ · · · ≤ mr . Consider an endomorphism T on
T
r = R

r/Zr represented by the diagonal matrix A = diag(m1, m2, . . . , mr). For
D ⊂ ∏r

i=1{0, 1, . . . , mi − 1}, define

K(T , D) =
{ ∞∑
n=0

A−nen ∈ T
r

∣∣∣∣en ∈ D
}

.

This set is compact and T-invariant, that is, TK(T , D) = K(T , D).
These sets for r = 2 are known as Bedford–McMullen carpets or self-affine carpets.

Figure 1 exhibits a famous example, the case of D = {(0, 0), (1, 1), (0, 2)} ⊂ {0, 1} ×
{0, 1, 2}. The analysis of these sets is complicated compared with ‘self-similar’ sets.
Bedford [Bed84] and McMullen [McM84] independently studied these sets and showed
that, in general, their Hausdorff dimension is strictly smaller than their Minkowski
dimension (also known as box-counting dimension). Figure 1 has Hausdorff dimension
log2 (1 + 2log3 2) = 1.349 · · · and Minkowski dimension 1 + log3

3
2 = 1.369 · · · .

The sets K(T , D) for r ≥ 3 are called self-affine sponges. Kenyon and Peres [KP96]
calculated their Hausdorff dimension for the general case (see Theorem 1.5 in this section).
In addition, they showed the following variational principle for the Hausdorff dimension
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36 N. Alibabaei

of K(T , D):

dimHK(T , D) = sup
μ∈M T (Tr )

{
1

log mr
hμ(T )+

r∑
i=2

(
1

log mr−i+1
− 1

log mr−i+2

)
hμi (Ti)

}
.

(1.1)

Here, the endomorphism Ti on T
r−i+1 is defined from Ai = diag(m1, m2, . . . , mr−i+1),

and μi is defined as the push-forward measure of μ on T
r−i+1 by the projection onto the

first r − i + 1 coordinates. Feng and Huang’s definition of weighted topological entropy
of K(T , D) equals dimHK(T , D) with a proper setting.

1.3. Original definition of the weighted topological pressure. Motivated by the geome-
try of self-affine sponges described in the previous subsection, Feng and Huang introduced
a generalized notion of pressure. Consider dynamical systems (Xi , Ti) (i = 1, 2, . . . , r)
and factor maps πi : Xi → Xi+1 (i = 1, 2, . . . , r − 1):

(X1, T1)
π1 �� (X2, T2)

π2 �� · · · πr−1 �� (Xr , Tr).

We refer to this as a sequence of dynamical systems. Let w = (w1, w2, . . . , wr) be a
vector with w1 > 0 and wi ≥ 0 for i ≥ 2. Feng and Huang [FH16] ingeniously defined
the w-weighted topological pressure Pw

FH(f ) for a continuous function f : X1 → R and
established the variational principle [FH16, Theorem 1.4]:

Pw
FH(f ) = sup

μ∈M T1 (X1)

( r∑
i=1

wihπ(i−1)∗μ(Ti)+ w1

∫
X1

f dμ

)
. (1.2)

Here, π(i) is defined by

π(0) = idX1 : X1 → X1,

π(i) = πi ◦ πi−1 ◦ · · · ◦ π1 : X1 → Xi+1,

and π(i−1)∗μ is the push-forward measure of μ by π(i−1) on Xi . The w-weighted
topological entropy hw

top(T1) is the value of Pw
FH(f ) when f ≡ 0. In this case, equation

(1.2) becomes

hw
top(T1) = sup

μ∈M T1 (X1)

( r∑
i=1

wihπ(i−1)∗μ(Ti)

)
. (1.3)

We will explain here Feng and Huang’s method of defining hw
top(T1). For the definition

of Pw
FH(f ), see their original paper [FH16].

Let n be a natural number and ε a positive number. Let d(i) be a metric on Xi . For
x ∈ X1, define the nth w-weighted Bowen ball of radius ε centered at x by

Bw
n (x, ε) =

{
y ∈ X1

∣∣∣∣ d(i)(T ji (π(i−1)(x)), T ji (π
(i−1)(y))) < ε for every

0 ≤ j ≤ �(w1 + · · · + wi)n� and 1 ≤ i ≤ k.

}
.
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Consider � = {Bw
nj
(xj , ε)}j , an at-most countable cover of X1 by weighted Bowen balls.

Let n(�) = minj nj . For s ≥ 0 and N ∈ N, let

�
w,s
N ,ε = inf

{∑
j

e−snj
∣∣∣∣� = {Bw

nj
(xj , ε)}j covers X1 and n(�) ≥ N

}
.

This quantity is non-decreasing as N → ∞. The following limit hence exists:

�w,s
ε = lim

N→∞ �
w,s
N ,ε.

There is a value of s where �w,s
ε jumps from ∞ to 0, which we will denote by hw

top(T1, ε):

�w,s
ε =

{
∞ (s < hw

top(T1, ε)),

0 (s > hw
top(T1, ε)).

The value hw
top(T1, ε) is non-decreasing as ε → 0. Therefore, we can define the w-weighted

topological entropy hw
top(T1) by

hw
top(T1) = lim

ε→0
hw

top(T1, ε).

An important point about this definition is that in some dynamical systems, such as
self-affine sponges, the quantity hw

top(T1) is directly related to the Hausdorff dimension
of X1.

Example 1.1. Consider the self-affine sponges introduced in §1.2. Define pi : Tr−i+1 →
T
r−i by

pi(x1, x2, . . . , xr−i , xr−i+1) = (x1, x2, . . . , xr−i ).
Let X1 = K(T , D), Xi = pi−1 ◦ pi ◦ · · · ◦ p1(X1), and Ti : Xi → Xi be the endomor-
phism defined by Ai = diag(m1, m2, . . . , mr−i+1). Define the factor maps πi : Xi →
Xi+1 as the restrictions of pi . Let

w =
(

log m1

log mr
,

log m1

log mr−1
− log m1

log mr
, . . . ,

log m1

log m2
− log m1

log m3
, 1 − log m1

log m2

)
. (1.4)

Then each nth w-weighted Bowen ball is approximately a square of side length εm−n
1 .

Therefore,

dimHK(T , D) = hw
top(T1)

log m1
. (1.5)

1.4. Tsukamoto’s approach and its extension. Following the work of Feng and Huang
[FH16] described in §1.3, Tsukamoto [Tsu22] published an intriguing approach to these
invariants. There, he gave a new definition of the weighted topological pressure for a factor
map between two dynamical systems:

(X1, T1)
π �� (X2, T2).

He then proved the variational principle using his definition, showing the surprising
coincidence of the two definitions. His definition of weighted topological entropy allowed
for relatively easy calculations for sets like self-affine carpets.
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We will extend Tsukamoto’s idea, redefine the weighted topological pressure for a
sequence of dynamical systems of arbitrary length, and establish the variational principle.
Here we will explain our definition in the case f ≡ 0. See §2 for the general setting. We
will not explain Tsukamoto’s definition itself since it is obtained by letting r = 2 in the
following argument.

Consider a sequence of dynamical systems:

(X1, T1)
π1 �� (X2, T2)

π2 �� · · · πr−1 �� (Xr , Tr).

Take a metric d(i) on Xi . Let a = (a1, a2, . . . , ar−1) with 0 ≤ ai ≤ 1 for each i. Let N be
a natural number and ε a positive number. We define a new metric d(i)N on Xi by

d
(i)
N (x1, x2) = max

0≤n<N
d(i)(Ti

nx1, Tinx2).

We inductively define a quantity #a
i (�, N , ε) for � ⊂ Xi . For � ⊂ X1, set

#a
1(�, N , ε) = min

{
n ∈ N

∣∣∣∣ There exists an open cover {Uj }nj=1 of �

with diam(Uj , d(1)N ) < ε for all 1 ≤ j ≤ n

}
.

(The quantity #a
1(�, N , ε) is independent of the parameter a. However, we use this notation

for the convenience of what follows.) Let� ⊂ Xi+1. Suppose #a
i is already defined. We set

#a
i+1(�, N , ε)

= min
{ n∑
j=1

(#a
i (π

−1
i (Uj ), N , ε))ai

∣∣∣∣ n ∈ N, {Uj }nj=1 is an open cover of �

with diam(Uj , d(i+1)
N ) < ε for all 1 ≤ j ≤ n

}
.

We define the topological entropy of a-exponent ha(T ), where T = (Ti)i , by

ha(T ) = lim
ε→0

(
lim
N→∞

log #a
r (Xr , N , ε)
N

)
.

This limit exists since log #a
r (Xr , N , ε) is sub-additive in N and non-decreasing as ε tends

to 0.
From a = (a1, a2, . . . , ar−1), we define a probability vector (that is, all entries are

non-negative, and their sum is 1) wa = (w1, . . . , wr) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = a1a2a3 · · · ar−1,
w2 = (1 − a1)a2a3 · · · ar−1,
w3 = (1 − a2)a3 · · · ar−1,
...
wr−1 = (1 − ar−2)ar−1,
wr = 1 − ar−1.

The following theorem is a direct consequence of our main result in Theorem 2.1.

THEOREM 1.2. For a = (a1, a2, . . . , ar−1) with 0 ≤ ai ≤ 1 for each i,

ha(T ) = sup
μ∈M T1 (X1)

( r∑
i=1

wihπ(i−1)∗μ(Ti)

)
. (1.6)
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The strategy of the proof is adopted from Tsukamoto’s paper. However, there are some
additional difficulties. Let ha

var(T ) be the right-hand side of equation (1.6). We use the
‘zero-dimensional trick’ for proving ha(T ) ≤ ha

var(T ), meaning we reduce the proof to the
case where all dynamical systems are zero-dimensional. Merely taking a zero-dimensional
extension for each Xi does not work. Therefore, we realize this by taking step by step
extensions of the whole sequence of dynamical systems (see §3.3). Then we show ha(T ) ≤
ha

var(T ) by using an appropriate measure, the definition of which is quite sophisticated (see
σN in the proof of Theorem 4.1). In proving ha(T ) ≥ ha

var(T ), the zero-dimensional trick
can not be used. The proof, therefore, requires a detailed estimation of these quantities for
arbitrary covers, which is more complicated than the original argument in [Tsu22].

Theorem 1.2 and Feng and Huang’s version of variational principle in equation (1.3)
yield the following corollary.

COROLLARY 1.3. For a = (a1, a2, . . . , ar−1) with 0 < ai ≤ 1 for each i,

ha(T ) = h
wa
top(T1).

This corollary is rather profound, connecting the two seemingly different quantities.
We can calculate the Hausdorff dimension of self-affine sponges using this result as in
the following example. Additionally, we will show in §6 that we can now determine the
Hausdorff dimension of certain sofic sets in higher-dimensional Euclidean space.

Example 1.4. Let us take another look at self-affine sponges. Kenyon and Peres [KP96,
Theorem 1.2] calculated their Hausdorff dimension as follows. Recall the notation in §1.2
and that m1 ≤ m2 ≤ · · · ≤ mr .

THEOREM 1.5. Define a sequence of real numbers (Zj )j as follows. Let Zr be the
indicator of D, namely, Zr(i1, . . . , ir ) = 1 if (i1, . . . , ir ) ∈ D and 0 otherwise. Define
Zr−1 by

Zr−1(i1, . . . , ir−1) =
mr−1∑
ir=0

Zr(i1, . . . , ir−1, ir ).

More generally, if Zj+1 is already defined, let

Zj (i1, . . . , ij ) =
mj+1−1∑
ij+1=0

Zj+1(i1, . . . , ij , ij+1)
log mj+1/ log mj+2 .

Then
dimHK(T , D) = log Z0

log m1
.

We can prove this result in a fairly elementary way by Corollary 1.3 without requiring
measure theory on the surface. Set ai = logmr−i+1

mr−i for each 1 ≤ i ≤ r − 1, then wa

equals w in equation (1.4). Combining equation (1.5) and Corollary 1.3, we have

dimHK(T , D) = h
wa
top(T1)

log m1
= ha(T )

log m1
.

Hence, we need to show the following claim.
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CLAIM 1.6. We have

ha(T ) = log Z0.

Proof. Observe first that taking the infimum over closed covers instead of open ones in
the definition of ha(T ) does not change its value. Define a metric d(i) on each Xi by

d(i)(x, y) = min
n∈Zr−i+1

|x − y − n| .

Let

Dj = {(e1, . . . , ej )| there are ej+1, . . . , er with (e1, . . . , er) ∈ D}.
Define pi : Dr−i+1 → Dr−i by pi(e1, . . . , er−i+1) = (e1, . . . , er−i ). Fix 0 < ε < 1/mr
and take a natural number n withm−n

1 < ε. Fix a natural number N and let ψi : DN+n
r−i+1 →

DN+n
r−i be the product map of pi , that is, ψi(v1, . . . , vN+n) = (pi(v1), . . . , pi(vN+n)).
For x ∈ DN+n

r−i+1, define (recall that Ai = diag(m1, m2, . . . , mr−i+1))

U(i)x =
{ ∞∑
k=0

A−k
i ek ∈ Xi

∣∣∣∣ek ∈ Dr−i+1 for each k and (e1, . . . , eN+n) = x

}
.

Then {U(i)x }
x∈DN+n

r−i+1
is a closed cover ofXi with diam(U(i)x , d(i)N ) < ε. For x, y ∈ DN+n

r−i+1,

we write x � y if and only if U(i)x ∩ U(i)y �= ∅. We have for any i and x ∈ DN+n
r−i ,

π−1
i (U(i+1)

x ) ⊂
⋃

x′∈DN+n
r−i

x′�x

⋃
y∈ψi−1(x′)

U(i)y .

Notice that for each x ∈ DN+n
r−i , the number of x′ ∈ DN+n

r−i with x′ � x is not more than 3r .

Therefore, for every v = (v
(1)
1 , . . . , v(1)N+n) ∈ DN+n

r−1 , there are (v(k)1 , . . . , v(k)N+n) ∈ DN+n
r−1 ,

k = 2, 3, . . . , L, and L ≤ 3r , with

#a
1(π

−1
1 (U(2)v ), N , ε) ≤

L∑
k=1

Zr−1(v
(k)
1 ) · · · Zr−1(v

(k)
N+n).

We inductively continue while considering that the multiplicity is at most 3r and obtain

#a
r (Xr , N , ε)

≤ 3r(r−1)
∑

x1∈DN+n
1

( ∑
x2∈ψr−1

−1(x1)

(
· · ·

( ∑
xr−2∈ψ3

−1(xr−3)( ∑
(v1,...,vN+n)∈ψ2

−1(xr−2)
vj∈Dr−1 for each j

(Zr−1(v1) · · · Zr−1(vN+n))a1

)a2
)a3

· · ·
)ar−2

)ar−1

= 3r(r−1)
{ ∑
x1∈D1

( ∑
x2∈p−1

r−1(x1)

(
· · ·

( ∑
xr−1∈p−1

2 (xr−2)

Zr−1(x1, . . . , xr−1)
a1

)a2
· · ·

)ar−2
)ar−1

}N+n

= 3r(r−1)Z0
N+n.
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Therefore,

ha(T ) = lim
ε→0

(
lim
N→∞

log #a
r (Xr , N , ε)
N

)
≤ log Z0.

Next, we prove ha(T ) ≥ log Z0. We fix 0 < ε < 1/mr and use ε-separated sets. Take and
fix s = (t1, . . . , tr ) ∈ D, and set si = (t1, . . . , tr−i+1). Fix a natural number N and let
ψi : DNr−i+1 → DNr−i be the product map of pi as in the previous definition. Define

Qi =
{ N∑
k=1

Ai
−kek +

∞∑
k=N+1

Ai
−ksi ∈ Xi

∣∣∣∣e1, . . . , eN ∈ Dr−i+1

}
.

Then Qi is an ε-separated set with respect to the metric d(i)N on Xi . Consider an arbitrary
open cover F (i) of Xi for each i with the following properties (this (F (i))i is defined as a
chain of open (N, ε)-covers of (Xi)i in Definition 3.1).
(1) For every i and V ∈ F (i), we have diam(V , d(i)N ) < ε.
(2) For each 1 ≤ i ≤ r − 1 and U ∈ F (i+1), there is F (i)(U) ⊂ F (i) such that

π−1
i (U) ⊂

⋃
F (i)(U)

and

F (i) =
⋃

U∈F (i+1)

F (i)(U).

We have #(V ∩Qi) ≤ 1 for each V ∈ F (i) by (1). Let (e(2)1 , e(2)2 , . . . , e(2)N ) ∈ DNr−1 and
suppose U ∈ F (2) satisfies

N∑
k=1

A2
−ke(2)k +

∞∑
k=N+1

A2
−ks2 ∈ U ∩Q2.

Then π−1
1 (U) contains at least Zr−1(e

(2)
1 ) · · · Zr−1(e

(2)
N ) points of Q1. Hence,

#a
1(π

−1
1 (U), N , ε) ≥ Zr−1(e

(2)
1 ) · · · Zr−1(e

(2)
N ).

We continue this reasoning inductively and get

#a
r (Xr , N , ε)

≥
∑

e(r)∈DN1

( ∑
e(r−1)∈ψr−1

−1(e(r))

(
· · ·

( ∑
e(3)∈ψ3

−1(e(4))( ∑
(e
(2)
1 ,...,e(2)N )∈ψ2

−1(e(3))

e
(2)
j ∈Dr−1 for each j

(Zr−1(e
(2)
1 ) · · · Zr−1(e

(2)
N ))a1

)a2
)a3

· · ·
)ar−2

)ar−1

=
{ ∑
x1∈D1

( ∑
x2∈p−1

r−1(x1)

(
· · ·

( ∑
xr−1∈p−1

2 (xr−2)

Zr−1(x1, . . . , xr−1)
a1

)a2

· · ·
)ar−2

)ar−1
}N

= Z0
N .
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This implies

ha(T ) ≥ log Z0.

We conclude that

ha(T ) = log Z0.

We would like to mention the work of Barral and Feng [BF12, Fe11], and of Yayama
[Ya11]. These papers studied the related invariants when (Xi , Ti)(i = 1, . . . , r) are
subshifts over finite alphabets. In this subshift case, our definition of ha(T ) (and its
pressure version in §2) is essentially the same as that given in [BF12, Theorem 3.1].
Hence, we can say that our definition generalizes the approach in [BF12, Theorem 3.1]
from subshifts to general dynamical systems.

2. Weighted topological pressure
Here, we introduce the generalized, new definition of weighted topological pressure. Let
(Xi , Ti) (i = 1, 2, . . . , r) be dynamical systems and πi : Xi →Xi+1 (i = 1, 2, . . . , r−1)
factor maps. For a continuous function f : X1 → R and a natural number N, set

SNf (x) = f (x)+ f (T1x)+ f (T 2
1 x)+ · · · + f (T N−1

1 x).

Let d(i) be a metric on Xi . Recall that we defined a new metric d(i)N on Xi by

d
(i)
N (x1, x2) = max

0≤n<N
d(i)(Ti

nx1, Tinx2).

We may write these as ST1
N f or dTiN to clarify the maps T1 and Ti in the definitions above.

Let a = (a1, a2, . . . , ar−1) with 0 ≤ ai ≤ 1 for each i and ε a positive number. We
inductively define a quantity P a

i (�, f , N , ε) for � ⊂ Xi . For � ⊂ X1, set

P a
1 (�, f , N , ε)

= inf
{ n∑
j=1

exp(sup
Uj

SNf )

∣∣∣∣ n ∈ N, {Uj }nj=1 is an open cover of �

with diam(Uj , d(1)N ) < ε for all 1 ≤ j ≤ n

}
.

Let � ⊂ Xi+1. If P a
i is already defined, let

P a
i+1(�, f , N , ε)

= inf
{ n∑
j=1

(P a
i (π

−1
i (Uj ), f , N , ε))ai

∣∣∣∣ n ∈ N, {Uj }nj=1 is an open cover of �

with diam(Uj , dTi+1
N ) < ε for all 1 ≤ j ≤ n

}
.

We define the topological pressure of a-exponent P a(f ) by

P a(f ) = lim
ε→0

(
lim
N→∞

log P a
r (Xr , f , N , ε)

N

)
.

This limit exists since log P a
r (Xr , f , N , ε) is sub-additive in N and non-decreasing as

ε tends to 0. When r = 1, this coincides with the standard definition of the topological
pressure P(f ) on (X1, T1). The topological entropy htop(T1) is the value of P(f ) when
f ≡ 0. When we want to clarify the maps Ti and πi used in the definition of P a(f ), we
will denote it by P a(f , T ) or P a(f , T , π) with T = (Ti)

r
i=1 and π = (πi)

r
i=1.
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Recall that we defined a probability vector wa = (w1, . . . , wr) from a = (a1, a2, . . . ,
ar−1) by ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = a1a2a3 · · · ar−1,
w2 = (1 − a1)a2a3 · · · ar−1,
w3 = (1 − a2)a3 · · · ar−1,
...
wr−1 = (1 − ar−2)ar−1,
wr = 1 − ar−1.

(2.1)

Let

π(0) = idX1 : X1 → X1,

π(i) = πi ◦ πi−1 ◦ · · · ◦ π1 : X1 → Xi+1.

We can now state the main result of this paper.

THEOREM 2.1. Let (Xi , Ti) (i = 1, 2, . . . , r) be dynamical systems and πi : Xi →
Xi+1 (i = 1, 2, . . . , r − 1) factor maps. For any continuous function f : X1 → R,

P a(f ) = sup
μ∈M T1 (X1)

( r∑
i=1

wihπ(i−1)∗μ(Ti)+ w1

∫
X1

f dμ

)
. (2.2)

We define P a
var(f ) to be the right-hand side of this equation, where ‘var’ is the

abbreviation of ‘variational’. Then we need to prove

P a(f ) = P a
var(f ).

3. Preparation
In this section, we prepare several tools which will be used in the proof of Theorem 2.1.

3.1. Basic properties and tools. Let (Xi , Ti) (i = 1, 2, . . . , r) be dynamical systems,
πi : Xi → Xi+1 (i = 1, 2, . . . , r − 1) factor maps, a = (a1, . . . , ar−1) ∈ [0, 1]r−1, and
f : X1 → R a continuous function.

We will use the following notions in §§3.3 and 5.

Definition 3.1. Consider a cover F (i) of Xi for each i. For a natural number N and a
positive number ε, the family (F (i))i is said to be a chain of (N , ε)-covers of (Xi)i if the
following conditions are true.
(1) For every i and V ∈ F (i), we have diam(V , d(i)N ) < ε.
(2) For each 1 ≤ i ≤ r − 1 and U ∈ F (i+1), there is F (i)(U) ⊂ F (i) such that

π−1
i (U) ⊂

⋃
F (i)(U)

and

F (i) =
⋃

U∈F (i+1)

F (i)(U).
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Moreover, if all the elements of each F (i) are open/closed/compact, we call (F (i))i a
chain of open/closed/compact (N , ε)-covers of (Xi)i .

Remark 3.2. Note that we can rewrite P a
r (Xr , f , N , ε) using chains of open covers as

follows. For a chain of (N, ε)-covers (F (i))i of (Xi)i , let

Pa

(
f , N , ε, (F (i))i

)
=

∑
U(r)∈F (r)

( ∑
U(r−1)∈F (r−1)(U(r))

(
· · ·

( ∑
U(1)∈F (1)(U(2))

esup
U(1) SNf

)a1

· · ·
)ar−2

)ar−1

.

Then

P a
r (Xr , f , N , ε)

= inf {Pa(f , N , ε, (F (i))i)|(F (i))i is a chain of open (N , ε)-covers of (Xi)i}.
Just like the classic notion of pressure, we have the following property.

LEMMA 3.3. For any natural number m,

P a(ST1
m f , T m) = mP a(f , T ),

where T m = (Ti
m)ri=1.

Proof. Fix ε > 0. It is obvious from the definition of P a
1 that for any �1 ⊂ X1 and a

natural number N,

P a
1 (�1, ST1

m f , T m, N , ε) ≤ P a
1 (�1, f , T , mN , ε).

Let �i+1 ⊂ Xi+1. By induction on i, we have

P a
i (�i+1, ST1

m f , T m, N , ε) ≤ P a
i (�i+1, f , T , mN , ε).

Thus,
P a
r (S

T1
m f , T m, N , ε) ≤ P a

r (f , T , mN , ε). (3.1)

There exists 0 < δ < ε such that for any 1 ≤ i ≤ r ,

d(i)(x, y) < δ �⇒ dTim (x, y) < ε (for x, y ∈ Xi).
Then

d
T mi
N (x, y) < δ �⇒ d

Ti
mN(x, y) < ε (for x, y ∈ Xi and 1 ≤ i ≤ r). (3.2)

Let i = 1 in equation (3.2), then we have for any �1 ⊂ X1,

P a
1 (�1, f , T , mN , ε) ≤ P a

1 (�1, ST1
m f , T m, N , δ).

Take �i+1 ⊂ Xi+1. Again by induction on i and by equation (3.2), we have

P a
i (�i+1, f , T , mN , ε) ≤ P a

i (�i+1, ST1
m f , T m, N , δ).

Hence,

P a
r (f , T , mN , ε) ≤ P a

r (S
T1
m f , T m, N , δ).
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Combining with equation (3.1), we have

P a
r (S

T1
m f , T m, N , ε) ≤ P a

r (f , T , mN , ε) ≤ P a
r (S

T1
m f , T m, N , δ).

Therefore,

P a(ST1
m f , T m) = mP a(f , T ).

We will later use the following standard lemma of calculus.

LEMMA 3.4
(1) For 0 ≤ a ≤ 1 and non-negative numbers x, y,

(x + y)a ≤ xa + ya .

(2) Suppose that non-negative real numbers p1, p2, . . . , pn satisfy
∑n
i=1 pi = 1. Then

for any real numbers x1, x2, . . . , xn, we have
n∑
i=1

(−pi log pi + xipi) ≤ log
n∑
i=1

exi .

In particular, letting x1 = x2 = · · · = xn = 0 gives
n∑
i=1

(−pi log pi) ≤ log n.

Here, 0 · log 0 is defined as 0.

The proof for item (1) is elementary. See [Wal82, §9.3, Lemma 9.9] for item (2).

3.2. Measure theoretic entropy. In this subsection, we will introduce the classical
measure-theoretic entropy (also known as Kolmogorov–Sinai entropy) and state some of
the basic lemmas we need to prove Theorem 2.1. The main reference is the book of Walters
[Wal82].

Let (X, T ) be a dynamical system and μ ∈ M T (X). A set A = {A1, . . . , An} is called
a finite partition of X with measurable elements if X = A1 ∪ · · · ∪ An, each Ai is a
measurable set, and Ai ∩ Aj = ∅ for i �= j . In this paper, a partition is always finite and
consists of measurable elements.

Let A and A ′ be partitions of X. We define a new partition A ∨ A ′ by

A ∨ A ′ = {A ∩ A′|A ∈ A and A′ ∈ A ′}.
For a natural number N, we define a refined partition AN of A by

AN = A ∨ T −1A ∨ T −2A ∨ · · · ∨ T −(N−1)A ,

where T −iA = {T −i (A)|A ∈ A } is a partition for i ∈ N.
For a partition A of X, let

Hμ(A ) = −
∑
A∈A

μ(A) log (μ(A)).
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We set

hμ(T , A ) = lim
N→∞

Hμ(AN)

N
.

This limit exists sinceHμ(AN) is sub-additive in N. The measure theoretic entropy hμ(T )
is defined by

hμ(T ) = sup{hμ(T , A )|A is a partition of X}.
Let A and A ′ be partitions. Their conditional entropy is defined by

Hμ(A |A ′) = −
∑
A′∈A ′
μ(A′) �=0

μ(A′)
∑
A∈A

μ(A ∩ A′)
μ(A′)

log
(
μ(A ∩ A′)
μ(A′)

)
.

LEMMA 3.5
(1) Hμ(A ) is sub-additive in A : that is, for partitions A and A ′,

Hμ(A ∨ A ′) ≤ Hμ(A )+Hμ(A
′).

(2) Hμ(A ) is concave in μ: that is, for μ, ν ∈ M T (X) and 0 ≤ t ≤ 1,

H(1−t)μ+tν(A ) ≥ (1 − t)Hμ(A )+ tHν(A ).

(3) For partitions A and A ′,

hμ(T , A ) ≤ hμ(T , A ′)+Hμ(A
′|A ).

For the proof, confer with [Wal82, Theorem 4.3(viii), §4.5] for item (1), [Wal82,
Remark, §8.1] for item (2), and [Wal82, Theorem 4.12, §4.5] for item (3).

3.3. Zero-dimensional principal extension. Here we will see how we can reduce the
proof of P a(f ) ≤ P a

var(f ) to the case where all dynamical systems are zero- dimensional.
First, we review the definitions and properties of (zero-dimensional) principal extension.

The introduction here closely follows Tsukamoto’s paper [Tsu22] and the book of
Downarowicz [Dow11]. Suppose π : (Y , S) → (X, T ) is a factor map between dynamical
systems. Let d be a metric on Y. We define the conditional topological entropy of π by

htop(Y , S|X, T ) = lim
ε→0

(
lim
N→∞

supx∈X log #(π−1(x), N , ε)
N

)
.

Here,

#(π−1(x), N , ε) = min
{
n ∈ N

∣∣∣∣ There exists an open cover {Uj }nj=1 of π−1(x)

with diam(Uj , dN) < ε for all 1 ≤ j ≤ n

}
.

A factor map π : (Y , S) → (X, T ) between dynamical systems is said to be a principal
factor map if

htop(Y , S|X, T ) = 0.

Also, (Y , S) is called a principal extension of (X, T ).
The following theorem is from [Dow11, Corollary 6.8.9].
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THEOREM 3.6. Suppose π : (Y , S) → (X, T ) is a principal factor map. Then π preserves
measure-theoretic entropy, namely,

hμ(S) = hπ∗μ(T )

for any S-invariant probability measure μ on Y.

More precisely, it is proved in [Dow11, Corollary 6.8.9] that π is a principal factor map
if and only if it preserves measure-theoretic entropy, provided that htop(X, T ) < ∞.

Suppose π : (X1, T1) → (X2, T2) and φ : (Y , S) → (X2, T2) are factor maps between
dynamical systems. We define a fiber product (X1 ×X2

Y , T1 × S) of (X1, T1) and (Y , S)
over (X2, T2) by

X1 ×X2
Y = {(x, y) ∈ X1 × Y |π(x) = φ(y)},

T1 × S : X1 ×X2
Y � (x, y) �−→ (T1(x), S(y)) ∈ X1 ×X2

Y .

We have the following commutative diagram:

X1 ×X2
Y

π ′

��

ψ �� X1

π

��
Y

φ
�� X2

(3.3)

Here, π ′ and ψ are restrictions of the projections onto Y and X1, respectively:

π ′ : X1 ×X2
Y � (x, y) �−→ y ∈ Y ,

ψ : X1 ×X2
Y � (x, y) �−→ x ∈ X1.

Since π and φ are surjective, both π ′ and ψ are factor maps. The following lemma is
proved in [Tsu22, Lemma 5.3].

LEMMA 3.7. If φ is a principal extension in the diagram in equation (3.3), then ψ is also
a principal extension.

A dynamical system (Y , S) is said to be zero-dimensional if there is a clopen basis of
the topology of Y, where clopen means any element in the basis is both closed and open. A
basic example of a zero-dimensional dynamical system is the Cantor set {0, 1}N with the
shift map.

A principal extension (Y , S) of (X, T ) is called a zero-dimensional principal extension
if (Y , S) is zero-dimensional. The following important theorem can be found in [Dow11,
Theorem 7.6.1].

THEOREM 3.8. For any dynamical system, there is a zero-dimensional principal
extension.

Let (Yi , Ri) (i = 1, 2, . . . , m) be dynamical systems, πi : Yi → Yi+1 (i = 1, 2, . . . ,
m− 1) factor maps, and a = (a1, . . . , am−1) ∈ [0, 1]m−1. Fix 2 ≤ k ≤ m− 1 and take a
zero-dimensional principal extension φk : (Zk , Sk) → (Yk , Rk). For each 1 ≤ i ≤ k − 1,
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let (Yi ×Yk Zk , Ri × Sk) be the fiber product and φi : Yi ×Yk Zk → Yi be the restriction of
the projection as in the earlier definition. We have

Yi ×Yk Zk
φi ��

��

Yi

πk−1◦πk−2◦···◦πi
��

Zk
φk

�� Yk

By Lemma 3.7, φi is a principal factor map. We define �i : Yi ×Yk Zk → Yi+1 ×Yk Zk

by �i(x, y) = (πi(x), y) for each 1 ≤ i ≤ k − 2, and �k−1 : Yk−1 ×Yk Zk → Zk as the
projection. Then we have the following commutative diagram:

Y1 ×Yk
Zk

φ1 ��

�1
��

Y1

π1
��

Y2 ×Yk
Zk

φ2 ��

�2 ��

Y2
π2��

...

�k−2

��

...

πk−2

��
Yk−1 ×Yk

Zk
φk−1 ��

�k−1 ��

Yk−1

πk−1
��

Zk

πk◦φk �����
����

����
����

��
φk �� Yk

πk
��

Yk+1
πk+1��

...

πm−1

��
Ym

(3.4)

Let

(Zi , Si) = (Yi ×Yk
Zk , Ri × Sk) for 1 ≤ i ≤ k − 1, (Zi , Si)=(Yi , Ri) for k+1 ≤ i ≤ m,

�k = πk ◦ φk : Zk → Yk+1, �i = πi : Zi → Zi+1 for k + 1 ≤ i ≤ m− 1,

φi = idZi : Zi → Zi for k + 1 ≤ i ≤ m.

LEMMA 3.9. In the settings above,

P a
var(f , R, π) ≥ P a

var(f ◦ φ1, S, �)

and

P a(f , R, π) ≤ P a(f ◦ φ1, S, �).

Here, R = (Ri)i , π = (πi)i , S = (Si)i and � = (�i)i .
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Proof. We remark that the following proof does not require Zk to be zero-dimensional.
Let

π(0) = idY1 : Y1 → Y1,

π(i) = πi ◦ πi−1 ◦ · · · ◦ π1 : Y1 → Yi+1,

and

�(0) = idZ1 : Z1 → Z1,

�(i) = �i ◦�i−1 ◦ · · · ◦�1 : Z1 → Zi+1.

Let ν ∈ M S1(Y1) and 1 ≤ i ≤ m. Since all the horizontal maps in equation (3.4) are
principal factor maps, we have

h�(i−1)∗ν(Si) = h(φi)∗�(i−1)∗ν(Ri) = hπ(i−1)∗(φ1)∗ν(Ri).

It follows that

P a
var(f ◦ φ1, S, �) = sup

ν∈M S1 (Z1)

( m∑
i=1

wih�(i−1)∗ν(Si)+ w1

∫
Z1

f ◦ φ1 dν

)

= sup
ν∈M S1 (Z1)

( m∑
i=1

wihπ(i−1)∗(φ1)∗ν(Ri)+ w1

∫
Y1

f d((φ1)∗ν)
)

≤ sup
μ∈M T1 (Y1)

( m∑
i=1

wihπ(i−1)∗μ(Ri)+ w1

∫
Y1

f dμ

)
= P a

var(f , R, π).

(The reversed inequality is generally true by the surjectivity of factor maps, yielding
equality. However, we do not use this fact.)

Let di be a metric on Yi for each i and d̃k a metric on Zk . We define a metric d̃ i on
(Zi , Si) for 1 ≤ i ≤ k − 1 by

d̃ i ((x1, y1), (x2, y2))

= max{di(x1, x2), d̃k(y1, y2)} ((x1, y1), (x2, y2) ∈ Zi = Yi ×Yk Zk).

Set d̃ i = di for k + 1 ≤ i ≤ m. Take an arbitrary positive number ε. There exists
0 < δ < ε such that for every 1 ≤ i ≤ m,

d̃ i (x, y) < δ �⇒ di(φi(x), φi(y)) < ε (x, y ∈ Zi). (3.5)

Let N be a natural number. We claim that

P a
r (f , R, π , N , ε) ≤ P a

r (f ◦ φ1, S, �, N , δ).

Take M > 0 with

P a
r (f ◦ φ1, S, �, N , δ) < M .
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Then there exists a chain of open (N, δ)-covers (F (i))i of (Zi)i (see Definition 3.1 and
Remark 3.2) with

Pa(f ◦ φ1, S, �, N , δ, (F (i))i) < M .

We can find a compact set CU ⊂ U for each U ∈ F (m) such that
⋃
U∈F (m) CU = Zm.

Let K (m) := {CU |U ∈ F (m)}. Since �−1
m−1(CU) ⊂ �−1

m−1(U) is compact for each
U ∈ F (m), we can find a compact set EV ⊂ V for each V ∈ F (m−1)(U) such
that �−1

m−1(CU) ⊂ ⋃
V∈F (k)(U) EV . Let K (m−1)(CU) := {EV |V ∈ F (m−1)(U)} and

K (m−1) := ⋃
C∈K (m) K (m−1)(C). We continue likewise and obtain a chain of compact

(N, δ)-covers (K (i))i of (Zi)i with

Pa(f ◦ φ1, S, �, N , δ, (K (i))i) ≤ Pa(f ◦ φ1, S, �, N , δ, (F (i))i) < M .

Let φi(K (i)) = {φi(C)|C ∈ K (i)} for each i. Note that for any � ⊂ Zi ,

π−1
i−1(φi(�)) = φi−1(�

−1
i−1(�)).

This and equation (3.5) assure that (φi(K (i)))i is a chain of compact (N, ε)-covers of
(Yi)i . We have

Pa(f , R, π , N , ε, (φi(K (i)))i) = Pa(f ◦ φ1, S, �, N , δ, (K (i))i) < M .

Since f is continuous and each φi(K (i)) is a closed cover, we can slightly enlarge each set
in φi(K (i)) and create a chain of open (N, ε)-covers (O(i))i of (Yi)i satisfying

Pa(f , R, π , N , ε, (O(i))i) < M .

Therefore,

P a
r (f , R, π , N , ε) ≤ Pa(f , R, π , N , ε, (O(i))i) < M .

Since M > P a
r (f ◦ φ1, S, �, N , δ) was chosen arbitrarily, we have

P a
r (f , R, π , N , ε) ≤ P a

r (f ◦ φ1, S, �, N , δ).

This implies

P a(f , R, π) ≤ P a(f ◦ φ1, S, �).

The following proposition reduces the proof of P a(f ) ≤ P a
var(f ) in the next section to

the case where all dynamical systems are zero-dimensional.

PROPOSITION 3.10. For all dynamical systems (Xi , Ti) (i = 1, 2, . . . , r) and factor maps
πi : Xi → Xi+1 (i = 1, 2, . . . , r − 1), there are zero-dimensional dynamical systems
(Zi , Si) (i = 1, 2, . . . , r) and factor maps �i : Zi → Zi+1 (i = 1, 2, . . . , r − 1) with
the following property; for every continuous function f : X1 → R, there exists a continu-
ous function g : Z1 → R with

P a
var(f , T , π) ≥ P a

var(g, S, �)

and

P a(f , T , π) ≤ P a(g, S, �).
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Proof. We will first construct zero-dimensional dynamical systems (Zi , Si) (i =
1, 2, . . . , r) and factor maps �i : Zi → Zi+1 (i = 1, 2, . . . , r − 1) alongside the
following commutative diagram of dynamical systems and factor maps:

Z1
φr ��

�1 ���
��
��
�

��

· · · φ2 �� X1 ×Xr
Zr

φ1 ��

π
(2)
1��

X1

π1
��

Z2 ��

�2 ���
��
��

· · · �� X2 ×Xr
Zr ��

π
(2)
2��

X2

π2��
. . .

�r−3 ���
���

�
π
(4)
r−3��

...
π
(3)
r−3��

...
π
(2)
r−3��

...
πr−3��

Zr−2 ��

�r−2
����

���
���

���
���

� (Xr−2 ×Xr
Zr)×(Xr−1×Xr Zr )

Zr−1 ��

π
(3)
r−2

��

Xr−2 ×Xr
Zr ��

π
(2)
r−2

��

Xr−2

πr−2

��
Zr−1

ψr−1 ��

�r−1

����
���

���
���

���
���

���
Xr−1 ×Xr

Zr ��

π
(2)
r−1

��

Xr−1

πr−1

��
Zr

ψr ��

		��
��

��
��

Xr

��
{∗}

(3.6)

where all the horizontal maps are principal factor maps.
By Theorem 3.8, there is a zero-dimensional principal extension ψr : (Zr , Sr) →

(Xr , Tr). The set {∗} is the trivial dynamical system, and the maps Xr → {∗} and
Zr → {∗} send every element to ∗. For each 1 ≤ i ≤ r − 1, the map Xi ×Xr

Zr → Xi

in the following diagram is a principal factor map by Lemma 3.7:

Xi ×Xr
Zr

��

�� Xi

πr−1◦πr−2◦···◦πi
��

Zr
ψr

�� Xr

For 1 ≤ i ≤ r − 2, define π(2)i : Xi ×Xr
Zr → Xi+1 ×Xr

Zr by

π
(2)
i (x, z) = (πi(x), y).

Then every horizontal map in the right two rows of diagram (3.6) is a principal factor map.
Next, take a zero-dimensional principal extension ψr−1 : (Zr−1, Sr−1) → (Xr−1 ×Xr

Zr , Tr−1 × Sr) and let �r−1 = π
(2)
r−1 ◦ ψr−1. The rest of diagram (3.6) is constructed

similarly, and by Lemma 3.7, each horizontal map is a principal factor map.
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Let f : X1 → R be a continuous map. Applying Lemma 3.9 to the right two rows of
diagram (3.6), we get

P a
var(f , T , π) ≥ P a

var(f ◦ φ1, S(2), �(2))

and

P a(f , T , π) ≤ P a(f ◦ φ1, S(2), �(2))

for �(2) = (π
(2)
i )i and S(2) = (Ti × Sr)i . Again by Lemma 3.9,

P a
var(f ◦ φ1, S(2), �(2)) ≥ P a

var(f ◦ φ1 ◦ φ2, S(3), �(3))

and

P a(f ◦ φ1, S(2), �(2)) ≤ P a(f ◦ φ1 ◦ φ2, S(3), �(3))

where �(3) = ((π
(3)
i )r−2

i=1 , �r−1), and S(3) is the collection of maps associated with Zr
and the third row from the right of diagram (3.6). We continue inductively and obtain the
desired inequalities, where g is taken as f ◦ φ1 ◦ φ2 ◦ · · · ◦ φr .
4. Proof of P a(f ) ≤ P a

var(f )

Let a = (a1, . . . , ar−1) ∈ [0, 1]r−1. Recall that we defined (w1, . . . , wr) by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

w1 = a1a2a3 · · · ar−1,
w2 = (1 − a1)a2a3 · · · ar−1,
w3 = (1 − a2)a3 · · · ar−1,

...
wr−1 = (1 − ar−2)ar−1,
wr = 1 − ar−1

and P a
var(f ) by

P a
var(f ) = sup

μ∈M T1 (X1)

( r∑
i=1

wihπ(i−1)∗μ(Ti)+ w1

∫
X1

f dμ

)
,

where

π(0) = idX1 : X1 → X1,

π(i) = πi ◦ πi−1 ◦ · · · ◦ π1 : X1 → Xi+1.

The following theorem suffices by Proposition 3.10 in proving P a(f ) ≤ P a
var(f ) for

arbitrary dynamical systems.

THEOREM 4.1. Suppose (Xi , Ti) (i = 1, 2, . . . , r) are zero-dimensional dynamical sys-
tems and πi : Xi → Xi+1 (i = 1, 2, . . . , r − 1) are factor maps. Then we have

P a(f ) ≤ P a
var(f )

for any continuous function f : X1 → R.

Proof. Let d(i) be a metric on Xi for each i = 1, 2, . . . , r . Take a positive number ε and
a natural number N. First, we will backward inductively define a finite clopen partition
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A (i) of Xi for each i. Since Xr is zero-dimensional, we can take a sufficiently fine
finite clopen partition A (r) of Xr . That is, each A ∈ A (r) is both open and closed,
and diam(A, d(r)N ) < ε. Suppose A (i+1) is defined. For each A ∈ A (i+1), take a clopen
partition B(A) of π−1

i (A) ⊂ Xi such that any B ∈ B(A) satisfies diam(B, d(i)N ) < ε. We
let A (i) = ⋃

A∈A (i+1) B(A). Then A (i) is a finite clopen partition of Xi . We define

A (i)
N = A (i) ∨ T −1

i A (i) ∨ T −2
i A (i) ∨ · · · ∨ T −(N−1)

i A (i).

We employ the following notation. For i < j and A ∈ A
(j)
N , let A (i)

N (A) be the set of
‘children’ of A:

A (i)
N (A) = {B ∈ A (i)

N |πj−1 ◦ πj−2 ◦ · · · ◦ πi(B) ⊂ A}.
Also, for B ∈ A (i)

N and i < j , we denote by π̃jB the unique ‘parent’ of B in A
(j)
N :

π̃jB = A ∈ A
(j)
N such that πj−1 ◦ πj−2 ◦ · · · ◦ πi(B) ⊂ A.

We will evaluate P a(f , N , ε) from above using {A (i)}. Let A ∈ A (2)
N , and start by setting

Z
(1)
N (A) =

∑
B∈A (1)

N (A)

esupB SNf .

Let A ∈ A (i+1)
N . If Z(i−1)

N is already defined, set

Z
(i)
N (A) =

∑
B∈A (i)

N (A)

(Z
(i−1)
N (B))ai−1 .

We then define ZN by
ZN =

∑
A∈A (r)

N

(Z
(r−1)
N (A))ar−1 .

It is straightforward from the construction that

P a
r (Xr , f , N , ε) ≤ ZN .

Therefore, we only need to prove that there is a T1-invariant probability measure μ on X1

such that
r∑
i=1

wihπ(i−1)∗μ(Ti , A (i))+ w1

∫
X1

f dμ ≥ lim
N→∞

log ZN
N

.

Since each A ∈ A (1)
N is closed, we can choose a point xA ∈ A so that

SNf (xA) = sup
A

SNf .

We define a probability measure σN on X1 by

σN = 1
ZN

∑
A∈A (1)

N

Z
(r−1)
N (π̃rA)

ar−1−1
Z
(r−2)
N (π̃r−1A)

ar−2−1

× · · · × Z
(2)
N (π̃3A)

a2−1
Z
(1)
N (π̃2A)

a1−1
eSNf (xA)δxA ,
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where δxA is the Dirac measure at xA. This is indeed a probability measure on X1 since

σN(X1) = 1
ZN

∑
A∈A (1)

N

Z
(r−1)
N (π̃rA)

ar−1−1
Z
(r−2)
N (π̃r−1A)

ar−2−1

× · · · × Z
(2)
N (π̃3A)

a2−1
Z
(1)
N (π̃2A)

a1−1
eSNf (xA)

= 1
ZN

∑
Ar∈A (r)

N

Z
(r−1)
N (Ar)

ar−1−1 ∑
Ar−1∈A (r−1)

N (Ar )

Z
(r−2)
N (Ar−1)

ar−2−1

· · ·
∑

A3∈A (3)
N (A4)

Z
(2)
N (A3)

a2−1
∑

A2∈A (2)
N (A3)

Z
(1)
N (A2)

a1−1 ∑
A1∈A (1)

N (A2)

eSNf (xA1 )

︸ ︷︷ ︸
=Z(1)N (A2)

= 1
ZN

∑
Ar∈A (r)

N

Z
(r−1)
N (Ar)

ar−1−1 ∑
Ar−1∈A (r−1)

N (Ar )

Z
(r−2)
N (Ar−1)

ar−2−1

· · ·
∑

A3∈A (3)
N (A4)

Z
(2)
N (A3)

a2−1
∑

A2∈A (2)
N (A3)

Z
(1)
N (A2)

a1

︸ ︷︷ ︸
=Z(2)N (A3)

= · · · = 1
ZN

∑
Ar∈A (r)

N

Z
(j−1)
N (Ar)

ar−1 = 1.

Although σN is not generally T1-invariant, the following well-known trick allows us to
create a T1-invariant measure μ. We begin by setting

μN = 1
N

N−1∑
k=0

T1
k∗σN .

Since X1 is compact, we can take a sub-sequence of (μN)N so that it weakly converges to
a probability measure μ on X1. Then μ is T1-invariant by the definition of μN . We will
show that this μ satisfies

r∑
i=1

wihπ(i−1)∗μ(Ti , A (i))+ w1

∫
X1

f dμ ≥ lim
N→∞

log ZN
N

.

We first prove
r∑
i=1

wiHπ(i−1)∗σN (A
(i)
N )+ w1

∫
X1

SNf dμ = log ZN .

To simplify the notation, let

σ
(i)
N = π(i−1)∗σN

= 1
ZN

∑
B∈A (1)

N

Z
(r−1)
N (π̃rB)

ar−1−1 · · · Z(1)N (π̃2B)
a1−1

eSNf (xB)δπ(i)(xB)
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and

W
(j)
N =

∑
A∈A (j+1)

N

Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(j+1)
N (π̃j+2A)

aj+1−1
Z
(j)
N (A)

aj
log (Z(j)N (A)).

CLAIM 4.2. We have the following equations:

HσN (A
(1)
N ) = log ZN −

∫
X1

SNf dσN −
r−1∑
j=1

aj − 1
Zn

W
(j)
N ,

H
σ
(i)
N

(A (i)
N ) = log ZN − ai−1

Zn
W
(i−1)
N −

r−1∑
j=i

aj − 1
Zn

W
(j)
N (for 2 ≤ i ≤ r).

Here,
∑r−1
j=r ((aj − 1)/Zn)W

(j)
N is defined to be 0.

Proof. Let A ∈ A (1)
N . We have

σN(A) = 1
ZN

Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(1)N (π̃2A)
a1−1

eSNf (xA).

Then

HσN (A
(1)
N ) = −

∑
A∈A

(1)
N

σN(A) log (σN(A))

= log ZN −
∑

A∈A
(1)
N

σN(A)SNf (xA)

︸ ︷︷ ︸
(I)

−
r−1∑
j=1

aj − 1
ZN

∑
A∈A

(1)
N

Z
(r−1)
N (π̃rA)

ar−1−1· · ·Z(1)N (π̃2A)
a1−1

eSNf (xA)log (Z(j)N (π̃j+1A))

︸ ︷︷ ︸
(II)

.

For term (I), we have∫
X1

SNf dσN = 1
ZN

∑
A∈A (1)

N

Z
(r−1)
N (π̃rA)

ar−1−1

· · · Z(2)N (π̃3A)
a2−1

Z
(1)
N (π̃2A)

a1−1
eSNf (xA)SNf (xA)

= (I).

We will show that (II) = W
(j)
N . Let A′ ∈ A

(j+1)
N . Then any A ∈ A (1)

N (A′) satisfies
π̃j+1A = A′. Hence,
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(II) =
∑

A′∈A (j+1)
N

∑
A∈A (1)

N (A′)

Z
(r−1)
N

(π̃rA)
ar−1−1 · · · Z(1)

N
(π̃2A)

a1−1
eSNf (xA) log (Z(j)

N
(π̃j+1A))

=
∑

A′∈A (j+1)
N

Z
(r−1)
N

(π̃rA
′)ar−1−1 · · · Z(j+1)

N
(π̃j+2A

′)
aj+1−1

Z
(j)
N
(A′)

aj−1
log (Z(j)

N
(A′))

×
∑

A∈A (1)
N (A′)

Z
(j−1)
N

(π̃jA)
aj−1−1 · · · Z(1)

N
(π̃2A)

a1−1
eSNf (xA).

︸ ︷︷ ︸
(II)′

The term (II)′ can be calculated similarly to how we showed σN(X1) = 1. Namely,

(II)′ =
∑

Aj∈A (j)
N (A′)

Z
(j−1)
N (Aj )

aj−1−1 ∑
Aj−1∈A (j−1)

N (Aj )

Z
(j−2)
N (Aj−1)

aj−2−1

· · ·
∑

A3∈A (3)
N (A4)

Z
(2)
N (A3)

a2−1
∑

A2∈A (2)
N (A3)

Z
(1)
N (A2)

a1−1 ∑
A1∈A (1)

N (A2)

eSNf (xA1 )

︸ ︷︷ ︸
=Z(1)N (A2)

= · · · =
∑

Aj∈A (j)
N (A′)

Z
(j−1)
N (Aj )

aj−1 = Z
(j)
N (A′).

Thus, we get

(II) =
∑

A∈A (j+1)
N

Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(j+1)
N (π̃j+2A)

aj+1−1 · Z(j)N (A)
aj

log (Z(j)N (A))

= W
(j)
N .

This completes the proof of the first assertion.
Next, let 2 ≤ i ≤ r . For any A ∈ A (i)

N ,

σ
(i)
N (A) = 1

Zn

∑
B∈A (1)

N ,
π(i)(xB)∈A

Z
(r−1)
N (π̃rB)

ar−1−1 · · · Z(1)N (π̃2B)
a1−1

eSNf (xB)

= 1
Zn
Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(i−1)
N (π̃iA)

ai−1−1

×
∑

B∈A (1)
N (A)

Z
(i−2)
N (π̃i−1B)

ai−2−1 · · · Z(1)N (π̃2B)
a1−1

eSNf (xB).

As in the evaluation of term (II)′, we have∑
B∈A (1)

N (A)

Z
(i−2)
N (π̃i−1B)

ai−2−1 · · · Z(1)N (π̃2B)
a1−1

eSNf (xB) = Z
(i−1)
N (A)

ai−1 .
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Hence,

σ
(i)
N (A) = 1

Zn
Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(i)N (π̃i+1A)
ai−1

Z
(i−1)
N (A)

ai−1 .

Therefore,

H
σ
(i)
N

(A
(i)
N
) = −

∑
A∈A (i)

N

σ
(i)
N
(A) log σ (i)

N
(A)

= log ZN − 1
Zn

∑
A∈A (i)

N

Z
(r−1)
N

(π̃rA)
ar−1−1 · · · Z(i)

N
(π̃i+1A)

ai−1
Z
(i−1)
N

(A)
ai−1

× log (Z(r−1)
N

(π̃rA)
ar−1−1 · · · Z(i)

N
(π̃i+1A)

ai−1
Z
(i−1)
N

(A)
ai−1

)

= log ZN−ai−1
Zn

∑
A∈A (i)

N

Z
(r−1)
N

(π̃rA)
ar−1−1· · ·Z(i)

N
(π̃i+1A)

ai−1
Z
(i−1)
N

(A)
ai−1

log (Z(i−1)
N

(A))

−
r−1∑
j=i

aj − 1
Zn

∑
A∈A (i)

N

Z
(r−1)
N

(π̃rA)
ar−1−1· · ·Z(i)

N
(π̃i+1A)

ai−1
Z
(i−1)
N

(A)
ai−1

log(Z(j)
N
(π̃j+1A))

︸ ︷︷ ︸
(III)

.

Note that we can calculate term (III) as∑
A∈A (i)

N

Z
(r−1)
N (π̃rA)

ar−1−1 · · · Z(i)N (π̃i+1A)
ai−1

Z
(i−1)
N (A)

ai−1 log (Z(j)N (π̃j+1A))

=
∑

Aj+1∈A (j+1)
N

Z
(r−1)
N (π̃rAj+1)

ar−1−1· · · Z(j+1)
N (π̃j+2Aj+1)

aj−1
Z
(j)
N (Aj+1)

aj−1−1
log(Z(j)N (Aj+1))

×
∑

Aj∈A
(j)
N (Aj+1)

Z
(j−1)
N (Aj )

aj−2−1· · ·
∑

Ai+1∈A (i+1)
N (Ai+2)

Z
(i)
N (Ai+1)

ai+1−1 ∑
Ai∈A (i)

N (Ai+1)

Z
(i−1)
N (Ai)

ai−1

︸ ︷︷ ︸
=Z(i)N (Ai+1)

= · · · =
∑

Aj+1∈A
(j+1)
N

Z
(r−1)
N (π̃rAj+1)

ar−1−1

× · · · × Z
(j+1)
N (π̃j+2Aj+1)

aj−1
Z
(j)
N (Aj+1)

aj−1
log (Z(j)N (Aj+1)).

We conclude that

H
σ
(i)
N

(A (i)
N ) = log ZN − ai−1

Zn
W
(i−1)
N −

r−1∑
j=i

aj − 1
Zn

W
(j)
N .

This completes the proof of the claim.

By this claim,

r∑
i=1

wiHσ(i)N
(A

(i)
N )+w1

∫
X1

SNf dμ = log ZN−
r∑
i=2

wiai−1

Zn
W
(i−1)
N −

r−1∑
i=1

r−1∑
j=i

wi(aj−1)
Zn

W
(j)
N .
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However, we have
r∑
i=2

wiai−1W
(i−1)
N +

r−1∑
i=1

r−1∑
j=i

wi(aj − 1)W(j)
N = 0.

Indeed, the coefficient of W(k)
N (1 ≤ k ≤ r − 1) is

wk+1ak + (ak − 1)
k∑
i=1

wi = wk+1ak + (ak − 1)akak+1 · · · ar−1

= ak{wk+1 − (1 − ak)ak+1ak+2 · · · ar−1} = 0.

Thus, we have
r∑
i=1

wiHσ(i)N
(A (i)

N )+ w1

∫
X1

SNf dμ = log ZN . (4.1)

Let μ(i) = π(i−1)∗μ and μ(i)N = π(i−1)∗μN .

LEMMA 4.3. Let N and M be natural numbers. For any 1 ≤ i ≤ r ,

1
M
H
μ
(i)
N

(A (i)
M ) ≥ 1

N
H
σ
(i)
N

(A (i)
N )− 2M log |A (i)|

N
.

Here, |A (i)| is the number of elements in A (i).

Suppose this is true, and let N and M be natural numbers. Together with equation (4.1),
we obtain the following evaluation:

r∑
i=1

wi

M
H
μ
(i)
N

(A (i)
M )+ w1

∫
X1

f dμN ≥
r∑
i=1

wi

N
H
σ
(i)
N

(A (i)
N )

−
r∑
i=1

2M log |A (i)|
N

+ w1

N

∫
X1

SNf dσN

= log ZN
N

−
r∑
i=1

2M log |A (i)|
N

.

Let N = Nk → ∞ along the sub-sequence (Nk) for which μNk ⇀ μ. This yields

r∑
i=1

wi

M
Hμ(i) (A

(i)
M )+ w1

∫
X1

f dμ ≥ lim
N→∞

log ZN
N

.

We let M → ∞ and get
r∑
i=1

wihμ(i) (Ti , A (i))+ w1

∫
X1

f dμ ≥ lim
N→∞

log ZN
N

.

Hence,
P a

var(f ) ≥ P a(f ).

We are left to prove Lemma 4.3.
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Proof of Lemma 4.3. This statement appears in the proof of variational principle in
[Wal82, Theorem 8.6], and Tsukamoto also proves it in [Tsu22, Claim 6.3]. The following
proof is taken from the latter. We will explain for i = 1; the same argument works for all i.

Let A = A (1). Recall that μN = (1/N)
∑N−1
k=0 T1

k∗σN . Since the entropy function is
concave (Lemma 3.5), we have

HμN (AM) ≥ 1
N

N−1∑
k=0

HT1
k∗σN

(AM) = 1
N

N−1∑
k=0

HσN (T
−k
1 AM).

Let N = qM + r with 0 ≤ r < M , then

N−1∑
k=0

HσN (T
−k

1 AM) =
q∑
s=0

M−1∑
t=0

HσN (T
−sM−t
1 AM)−

qM+M−1∑
k=N

HσN (T
−k
1 AM)

≥
M−1∑
t=0

q∑
s=0

HσN (T
−sM−t

1 AM)−M log |AM |

≥
M−1∑
t=0

q∑
s=0

HσN (T
−sM−t

1 AM)−M2 log |A |. (4.2)

We will evaluate
∑q

s=0 HσN (T
−sM−t
1 AM) from below for each 0 ≤ t ≤ M − 1. First,

observe that

T −sM−t
1 AM =

M−1∨
j=0

T
−sM−t−j
1 A .

We have

{sM + t + j |0 ≤ s ≤ q, 0 ≤ j ≤ M − 1} = {t , t + 1, . . . , t + qM +M − 1}
without multiplicity. Therefore,

HσN (AN) ≤ HσN

( t+(q+1)M−1∨
k=0

T −k
1 A

)
by N < t + (q + 1)M

≤
q∑
s=0

HσN (T
−sM−t
1 AM)+

t−1∑
k=0

HσN (T
−k

1 A ) by Lemma 3.5.

This implies

q∑
s=0

HσN (T
−sM−t

1 AM) ≥ HσN (AN)−
t−1∑
k=0

HσN (T
−k

1 A )

≥ HσN (AN)−M log |A | by t < M .

Now, we sum over t and obtain

M−1∑
t=1

q∑
s=0

HσN (T
−sM−t

1 AM) ≥ MHσN (AN)−M2 log |A |.
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Combining with equation (4.2), this implies

N−1∑
k=0

HσN (T
−k

1 AM) ≥ MHσN (AN)− 2M2 log |A |.

It follows that

1
M
HμN (AN) ≥ 1

MN

N−1∑
k=0

HσN (T
−k

1 AM) ≥ 1
N
HσN (AN)− 2M log |A |

N
.

This completes the proof of Theorem 4.1.

5. Proof of P a
var(f ) ≤ P a(f )

It seems difficult to implement the zero-dimensional trick to prove P a
var(f ) ≤ P a(f ).

Hence, the proof is more complicated.

THEOREM 5.1. Suppose that (Xi , Ti) (i = 1, 2, . . . , r) are dynamical systems and πi :
Xi → Xi+1 (i = 1, 2, . . . , r − 1) are factor maps. Then we have

P a
var(f ) ≤ P a(f )

for any continuous function f : X1 → R.

Proof. Take and fix μ ∈ M T1(X1). Let μi = π(i−1)∗μ. We need to prove
r∑
i=1

wihμi (Ti)+ w1

∫
X1

f dμ ≤ P a(f , T ).

However, the following argument assures that giving an evaluation up to a constant is
sufficient: suppose there is a positive number C which does not depend on f nor (Ti)i
satisfying

r∑
i=1

wihμi (Ti)+ w1

∫
X1

f dμ ≤ P a(f , T )+ C. (5.1)

Applying this to Smf and T m = (Ti
m)i for m ∈ N yields

r∑
i=1

wihμi (Ti
m)+ w1

∫
X1

Smf dμ ≤ P a(Smf , T m)+ C.

We employ Lemma 3.3 and get

m

r∑
i=1

wihμi (Ti)+mw1

∫
X1

f dμ ≤ mP a(f , T )+ C.

Divide by m and let m → ∞. We obtain the desired inequality
r∑
i=1

wihμi (Ti)+ w1

∫
X1

f dμ ≤ P a(f , T ).

Therefore, we only need to prove inequality (5.1).
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Let A (i) = {A(i)1 , A(i)2 , . . . , A(i)mi } be an arbitrary partition of Xi for each i. We will
prove

r∑
i=1

wihμi (Ti , A (i))+ w1

∫
X1

f dμ ≤ P a(f , T )+ C.

We start by approximating elements of A (i) with compact sets using backward induction.
For 1 ≤ i ≤ r , let

�0
i = {0, 1, . . . , mr } × {0, 1, . . . , mr−1} × · · · × {0, 1, . . . , mi+1} × {0, 1, . . . , mi},
�i = {0, 1, . . . , mr } × {0, 1, . . . , mr−1} × · · · × {0, 1, . . . , mi+1} × {1, 2, . . . , mi}.

We will denote an element (jr , jr−1, . . . , ji) in �0
i or �i by jrjr−1 · · · ji . For each

A
(r)
j ∈ A (r), take a compact set C(r)j ⊂ A

(r)
j such that

log mr ·
mr∑
j=1

μr
(
A
(r)
j \ C(r)j

)
< 1.

Define C(r)0 as the remainder of Xr , which may not be compact:

C
(r)
0 =

mr⋃
j=1

A
(r)
j \ C(r)j = Xr \

mr⋃
j=1

C
(r)
j .

Then C (r) := {C(r)0 , C(r)1 , . . . , C(r)mr } is a measurable partition of Xr .
Next, consider the partition π−1

r−1(C
(r)) ∨ A (r−1) of Xr−1. For jrjr−1 ∈ �r−1, let

B
(r−1)
jr jr−1

= π−1
r−1(C

(r)
jr
) ∩ A(r−1)

jr−1
.

Then
π−1
r−1(C

(r)) ∨ A (r−1) = {B(r−1)
jr jr−1

|jrjr−1 ∈ �r−1},
and for each jr ∈ �0

r ,
mr−1⋃
jr−1=1

B
(r−1)
jr jr−1

= π−1
r−1(C

(r−1)
jr

).

For each jrjr−1 ∈ �r−1, take a compact set C(r−1)
jr jr−1

⊂ B
(r−1)
jr jr−1

(which could be empty)
such that

log |�r−1| ·
mr∑
jr=0

mr−1∑
jr−1=1

μr−1
(
B
(r−1)
jr jr−1

\ C(r−1)
jr jr−1

)
< 1.

Define C(r−1)
jr0 as the remainder of π−1

r−1(C
(r)
jr
):

C
(r−1)
jr0 = π−1

r−1(C
(r)
jr
) \

mr−1⋃
jr−1=1

C
(r−1)
jr jr−1

.

Then C (r−1) = {C(r−1)
jr jr−1

|jrjr−1 ∈ �0
r−1} is a measurable partition of Xr−1.
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Continue in this manner, and suppose we have obtained the partition
C (k) = {C(k)J |J ∈ �0

k} of Xk for k = i + 1, i + 2, . . . , r . We will define C (i). Each ele-
ment in π−1

i (C (i+1)) ∨ A (i) can be expressed using J ′ ∈ �0
i+1 and ji ∈ {1, 2, . . . , mi} by

B
(i)

J ′ji = π−1
i (C

(i+1)
J ′ ) ∩ A(i)ji .

Choose a compact set C(i)J ⊂ B
(i)
J for each J ∈ �i so that

log |�i | ·
∑

J ′∈�0
i+1

mi∑
ji=1

μi
(
B
(i)

J ′ji \ C(i)
J ′ji

)
< 1.

Finally, for J ′ ∈ �0
j+1, let

C
(i)

J ′0 = π−1
i (C

(i+1)
J ′ ) \

mi⋃
ji=1

C
(i)

J ′ji .

Set C (i) = {C(i)J |J ∈ �0
i }. This is a partition of Xi .

LEMMA 5.2. For C (i) constructed above, we have

hμi (Ti , A (i)) ≤ hμi (Ti , C (i))+ 1.

Proof. By Lemma 3.5,

hμi (Ti , A (i)) ≤ hμi(Ti , A (i) ∨ π−1
i (C (i+1)))

≤ hμi (Ti , C (i))+Hμi (A
(i) ∨ π−1

i (C (i+1))|C (i)).

Since C(i)J ⊂ B
(i)
J for J ∈ �i ,

Hμi (A
(i) ∨ π−1

i (C (i+1))|C (i))

= −
∑
J∈�0

i

μi (C
(i)
J ) �=0

μi(C
(i)
J )

∑
K∈�i

μi(B
(i)
K ∩ C(i)J )
μi(C

(i)
J )

log
(
μi(B

(i)
K ∩ C(i)J )
μi(C

(i)
J )

)

= −
∑

J ′∈�0
i+1

μi(C
(i)

J ′0) �=0

μi(C
(i)

J ′0)
mi∑
ji=1

μi(B
(i)

J ′ji ∩ C(i)
J ′0)

μi(C
(i)

J ′0)
log

(
μi(B

(i)

J ′ji ∩ C(i)
J ′0)

μi(C
(i)

J ′0)

)
.

By Lemma 3.4, we have

−
mi∑
ji=1

μi(B
(i)

J ′ji ∩ C(i)
J ′0)

μi(C
(i)

J ′0)
log

(
μi(B

(i)

J ′ji ∩ C(i)
J ′0)

μi(C
(i)

J ′0)

)
≤ log |�i |.

Therefore,

Hμi (A
(i) ∨ π−1

i (C (i+1))|C (i)) ≤ log |�i |
∑

J ′∈�0
i+1

μi

(
π−1
i (C

(i+1)
J ′ ) \

mi⋃
ji=1

C
(i)

J ′ji

)
< 1.
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Recall the definition of w in equation (2.1). We have

r∑
i=1

wihμi (Ti , C (i))+ w1

∫
X1

f dμ

= lim
N→∞

1
N

{
Hμr (C

(r)
N )+ a1a2 · · · ar−1N

∫
X1

f dμ

+
r−1∑
i=1

aiai+1 · · · ar−1

(
Hμi (C

(i)
N )−Hμi+1(C

(i+1)
N )

)}
= lim
N→∞

1
N

{
Hμr (C

(r)
N )+ a1a2 · · · ar−1

∫
X1

SNf dμ

+
r−1∑
i=1

aiai+1 · · · ar−1Hμi (C
(i)
N |π−1

i (C (i+1)
N ))

}
.

Here, we used the relation

Hμi (C
(i)
N )−Hμi+1(C

(i+1)
N ) = Hμi (C

(i)
N )−Hμi (π

−1
i (C (i+1)

N ))

= Hμi (C
(i)
N |π−1

i (C (i+1)
N )).

We fix N and evaluate from above the following terms using backward induction:

Hμr (C
(r)
N )+ a1a2 · · · ar−1

∫
X1

SNf dμ+
r−1∑
i=1

aiai+1 · · · ar−1Hμi (C
(i)
N |π−1

i (C (i+1)
N )).

(5.2)

First, consider the term

a1a2 · · · ar−1

(
Hμ(C

(1)
N |π−1

1 (C (2)
N ))+

∫
X1

SNf dμ

)
.

For C ∈ C (i+1)
N , let C (i)

N (C) = {D ∈ C (i)
N |πi(D) ⊂ C}, then by Lemma 3.4,

Hμ(C
(1)
N |π−1

1 (C (2)
N ))+

∫
X1

SNf dμ

≤
∑

C∈C (2)
N

μ2(C)�=0

μ2(C)

{ ∑
D∈C (1)

N (C)

(
− μ(D)

μ2(C)
log

μ(D)

μ2(C)
+ μ(D)

μ2(C)
sup
D

SNf

)}

≤
∑

C∈C (2)
N

μ2(C) log
∑

D∈C (1)
N (C)

esupD SNf .

Applying this inequality to equation (5.2), the following term appears:

a2a3 · · · ar−1

(
Hμ2(C

(2)
N |π−1

2 (C (3)
N ))+ a1

∑
C∈C (2)

N

μ2(C) log
∑

D∈C (1)
N (C)

esupD SNf
)

. (5.3)
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This can be evaluated similarly using Lemma 3.4 as

Hμ2(C
(2)
N

|π−1
2 (C

(3)
N
))+ a1

∑
C∈C (2)

N

μ2(C) log
∑

D∈C (1)
N (C)

esupD SNf

=
∑

C∈C (3)
N

μ3(C) �=0

μ3(C)

{ ∑
D∈C (2)

N (C)

(
− μ2(D)

μ3(C)
log

μ2(D)

μ3(C)
+μ2(D)

μ3(C)
log

( ∑
E∈C (1)

N (D)

esupE SNf
)a1

)}

≤
∑

C∈C (3)
N

μ3(C) log
∑

D∈C (2)
N (C)

( ∑
E∈C (1)

N (D)

esupE SNf
)a1

.

Continue likewise and obtain the following upper bound for equation (5.2):

log
∑

C(r)∈C (r)
N

( ∑
C(r−1)∈C (r−1)

N (C(r))

(
· · ·

( ∑
C(1)∈C (1)

N (C(2))

esup
C(1) SNf

)a1

· · ·
)ar−2

)ar−1

.

(5.4)

For 1 ≤ i ≤ r , let C (i)
c = {C ∈ C (i)|C is compact}. There is a positive number εi such

that d(i)(y1, y2) > εi for any C1, C2 ∈ C (i)
c and y1 ∈ C1, y2 ∈ C2. Fix a positive number

ε with

ε < min
1≤i≤r εi . (5.5)

Let F (i) be a chain of open (N, ε)-covers of Xi (see Definition 3.1). Consider

log Pa(f , N , ε, (F (i))i )

= log
∑

U(r)∈F (r)

( ∑
U(r−1)∈F (r−1)(U(r))

(
· · ·

( ∑
U(1)∈F (1)(U(2))

esup
U(1) SNf

)a1

· · ·
)ar−2

)ar−1

.

(5.6)

We will evaluate equation (5.4) from above by equation (5.6) up to a constant. We need the
next lemma.

LEMMA 5.3
(1) For any V ⊂ Xr with diam(V , d(r)N ) < ε,

|{D ∈ C (r)
N |D ∩ V �= ∅}| ≤ 2N .

(2) Let 1 ≤ i ≤ r − 1 and C ∈ C (i+1)
N . For any V ⊂ Xi with diam(V , d(i)N ) < ε,

|{D ∈ C (i)
N (C)|D ∩ V �= ∅}| ≤ 2N .

Proof. (1) D ∈ C (r)
N can be expressed using C(r)ks ∈ C (r) (s = 0, 1, . . . , N − 1) as

D = C
(r)
k0

∩ T −1
r C

(r)
k1

∩ T −2
r C

(r)
k2

∩ · · · ∩ T −N+1
r C

(r)
k
N−1

.
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If D ∩ V �= ∅, we have T −s
r (C

(r)
ks
) ∩ V �= ∅ for every 0 ≤ s ≤ N − 1. Then for each s,

∅ �= T sr

(
T −s
r (C

(r)
ks
) ∩ V

)
⊂ C

(r)
ks

∩ T sr (V ).

By equation (5.5), each ks is either 0 or one of the elements in {1, 2, . . . , mr}. Therefore,
there are at most 2N such sets.

(2) The proof works in the same way as in item (1). C can be written using Jk ∈ �0
i+1

(k = 0, 1, . . . , N − 1) as

C = C
(i+1)
J0

∩ T −1
i+1C

(i+1)
J1

∩ T −2
i+1C

(i+1)
J2

∩ · · · ∩ T −N+1
i+1 C

(i+1)
JN−1

.

Then any D ∈ C (i)
N (C) is of the form

D = C
(i)
J0k0

∩ T −1
i C

(i)
J1k1

∩ T −2
i C

(i)
J2k2

∩ · · · ∩ T −N+1
i C

(i)
JN−1kN−1

with 0 ≤ kl ≤ mi (l = 1, 2, . . . , N − 1). If D ∩ V �= ∅, then each kl is either 0 or one of
the elements in {1, 2, . . . , mi}. Therefore, there are at most 2N such sets.

For any C(1) ∈ C (1)
N , there is V ∈ F (1) with V ∩ C(1) �= ∅ and

esup
C(1) SNf ≤ esupV SNf .

Let C(2) ∈ C (2)
N , then by Lemma 5.3,∑
C(1)∈C (1)

N (C(2))

esup
C(1) SNf ≤

∑
U∈F (2)

U∩C(2) �=∅

2N
∑

V∈F (1)(U)

esupV SNf .

By Lemma 3.4,( ∑
C(1)∈C (1)

N (C(2))

esup
C(1) SNf

)a1

≤ 2a1N
∑

U∈F (2)

U∩C(2) �=∅

( ∑
V∈F (1)(U)

esupV SNf
)a1

.

For C(3) ∈ C (3)
N , we apply Lemmas 5.3 and 3.4 similarly and obtain( ∑
C(2)∈C (2)

N (C(3))

( ∑
C(1)∈C (1)

N (C(2))

esup
C(1) SNf

)a1
)a2

≤ 2a1a2N2a2N
∑

O∈F (3)

O∩C(3) �=∅

( ∑
U∈F (2)(O)

( ∑
V∈F (1)(U)

esupV SNf
)a1

)a2

.

We continue this reasoning and get∑
C(r)∈C

(r)
N

( ∑
C(r−1)∈C

(r−1)
N (C(r))

(
· · ·

( ∑
C(1)∈C

(1)
N (C(2))

esup
C(1) SNf

)a1

· · ·
)ar−2

)ar−1

≤ 2αN
∑

U(r)∈F (r)

( ∑
U(r−1)∈F (r−1)(U(r))

(
· · ·

( ∑
U(1)∈F (1)(U(2))

esup
U(1) SNf

)a1

· · ·
)ar−2

)ar−1

.
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Here, α stands for
∑r−1
i=1 aiai+1 · · · ar−1. We take the logarithm of both sides; the

left-hand side equals equation (5.4), which is an upper bound for equation (5.2). Further-
more, consider the infimum over the chain of open (N, ε)-covers (F (i))i on the right-hand
side. By Remark 3.2, this yields

Hμr (C
(r)
N )+ a1a2 · · · ar−1

∫
X1

SNf dμ+
r−1∑
i=1

aiai+1 · · · ar−1Hμi (C
(i)
N |π−1

i (C (i+1)
N ))

≤ log P a
r (Xr , f , N , ε)+ αN log 2.

Divide by N, then let N → ∞ and ε → 0. We obtain
r∑
i=1

wihμi (Ti , C (i))+ w1

∫
X1

f dμ ≤ P a(f , T )+ α log 2.

Lemma 5.2 yields
r∑
i=1

wihμi (Ti , A (i))+ w1

∫
X1

f dμ ≤ P a(f , T )+ α log 2 + r .

We take the supremum over the partitions (A (i))i :
r∑
i=1

wihμi (Ti)+ w1

∫
X1

f dμ ≤ P a(f , T )+ α log 2 + r .

By the argument at the beginning of this proof, we conclude that
r∑
i=1

wihμi (Ti)+ w1

∫
X1

f dμ ≤ P a(f , T ).

6. Example: sofic sets
Kenyon and Peres [KP96-2] calculated the Hausdorff dimension of sofic sets in T

2. In this
section, we will see that we can calculate the Hausdorff dimension of certain sofic sets in
T
d with arbitrary d. We give an example for the case d = 3.

6.1. Definition of sofic sets. This subsection is referred to [KP96-2]. Weiss [We82]
defined sofic systems as subshifts which are factors of shifts of finite type. Boyle, Kitchens,
and Marcus proved in [BKM85] that this is equivalent to the following definition.

Definition 6.1. [KP96-2, Proposition 3.6] Consider a finite directed graph G = 〈V , E〉 in
which loops and multiple edges are allowed. Suppose its edges are colored in l colors in a
‘right-resolving’ fashion: every two edges emanating from the same vertex have different
colors. Then the set of color sequences that arise from infinite paths in G is called the sofic
system.

Let m1 ≤ m2 ≤ · · · ≤ mr be natural numbers, T an endomorphism on
T
r = R

r/Zr represented by the diagonal matrix A = diag(m1, m2, . . . , mr), and
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FIGURE 2. Directed graph G.

D = ∏r
i=1{0, 1, . . . , mi − 1}. Define a map Rr : DN → T

r by

Rr((e
(n))∞n=1) =

( ∞∑
k=0

e
(k)
1
m1k

, . . . ,
∞∑
k=0

e
(k)
r

mrk

)
,

where e(k) = (e
(k)
1 , . . . , e(k)r ) ∈ D for each k. Suppose the edges in some finite directed

graph are labeled by the elements in D in the right-resolving fashion, and let S ⊂ DN be
the resulting sofic system. The image of S under Rr is called a sofic set.

6.2. An example of a sofic set. Here we will look at an example of a sofic set and
calculate its Hausdorff dimension via its weighted topological entropy. Let D = {0, 1} ×
{0, 1, 2} × {0, 1, 2, 3}, and consider the directed graphG = 〈V , E〉 with V = {1, 2, 3} and
D-labeled edges E in Figure 2.

Let Y1 ⊂ DN be the resulting sofic system. Let C = {0, 1} × {0, 1, 2} and B = {0, 1}.
Define p1 : D → C and p2 : C → B by

p1(i, j , k) = (i, j), p2(i, j) = i.

Let pN1 : DN → CN and pN2 : CN → BN be the product map of p1 and p2, respec-
tively. Set Y2 = pN1 (Y1) and Y3 = pN2 (Y2). Note that Y2 = {(0, 0), (1, 0), (0, 1)}N and
Y3 = {0, 1}N, meaning they are full shifts.
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The sets Xi = Ri(Yi)(i = 1, 2, 3) are sofic sets. Define π1 : X1 → X2 and
π2 : X2 → X3 by

π1(x, y, z) = (x, y), π2(x, y) = x.

Furthermore, let T1, T2, and T3 be the endomorphism on X1, X2, and X3 represented by
the matrices diag(2, 3, 4), diag(2, 3), and diag(2), respectively. Then (Xi , Ti)i and (πi)i
form a sequence of dynamical systems.

For a natural number N, denote by Yi |N the restriction of Yi to its first N coordinates,
and let pi,N : Yi |N → Yi+1|N be the projections for i = 1, 2. As in Example 1.4, we have
for any exponent a = (a1, a2) ∈ [0, 1]2,

ha(T ) = lim
N→∞

1
N

log
∑

u∈{0,1}N

( ∑
v∈p2,N−1(u)

|p1,N
−1(v)|a1

)a2

.

Now, let us evaluate |p1,N
−1(v)| using matrix products. This idea of using matrix

products is due to Kenyon and Peres [KP96-2]. Fix (a, b) ∈ {0, 1}2 and let

aij = |{e ∈ E|e is from j to i and the first two coordinates of its label are (a, b)}|.
Define a 3 × 3 matrix by A(a,b) = (aij )ij . Then we have

A(0,0) =
⎛⎝0 1 1

0 0 1
1 1 0

⎞⎠ , A(0,1) =
⎛⎝1 1 1

1 1 0
0 1 2

⎞⎠ , A(1,0) =
⎛⎝1 2 2

0 1 2
2 2 1

⎞⎠ , A(1,1) = O.

Note that A(0,0)
2 = A(0,1) and A(0,0)

3 = A(1,0). For v = (v1, . . . , vN) ∈ Y2|N , we have

|p1,N
−1(v)| � ‖Av1Av2 · · · AvN ‖.

Here, A � B means there is a constant c > 0 independent of N with c−1B ≤ A ≤ cB. For
α = (1 + √

5)/2, we have α2 = α + 1 and

A(0,0)

⎛⎝α1
α

⎞⎠ =
⎛⎝1 + α

α

1 + α

⎞⎠ = α

⎛⎝α1
α

⎞⎠, A(0,1)

⎛⎝α1
α

⎞⎠ = α2

⎛⎝α1
α

⎞⎠, A(1,0)

⎛⎝α1
α

⎞⎠ = α3

⎛⎝α1
α

⎞⎠.

Therefore,

‖Av1Av2 · · · AvN ‖ �
∥∥∥∥∥∥Av1Av2 · · · AvN

⎛⎝α1
α

⎞⎠∥∥∥∥∥∥ � λv1λv2 · · · λvN ,

where λ(0,0) = α, λ(0,1) = α2, λ(1,0) = α3.
Take u ∈ Y3 = {0, 1}N and suppose there are n numbers of zeros in u. Also, if there are

k numbers of (0, 0) terms in v = (v1, . . . , vN) ∈ p2,N
−1(u), there are n− k numbers of

(0, 1) terms and N − n numbers of (1, 0) terms in v. Then,

λv1
a1 · · · λvN a1 = αa1kα2a1(n−k)α3a1(N−n).
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Therefore (recall that Y2 = {(0, 0), (1, 0), (0, 1)}N),∑
v∈p2,N−1(u)

|p1,N
−1(v)|a1 �

∑
(v1,...,vN )∈p2,N−1(u)

λv1
a1 · · · λvN a1

=
n∑
k=0

(
n

k

)
αa1kα2a1(n−k)α3a1(N−n) = (αa1 + α2a1)

n
α3a1(N−n).

This implies

∑
u∈{0,1}N

( ∑
v∈p2,N−1(u)

|p1,N
−1(v)|a1

)a2

�
N∑
n=0

(
N

n

)
(αa1 + α2a1)

a2n
α3a1a2(N−n)

= {(αa1 + α2a1)
a2 + α3a1a2}N .

We conclude that

ha(T ) = lim
N→∞

1
N

log {(αa1 + α2a1)
a2 + α3a1a2}N

= log
{((

1 + √
5

2

)a1

+
(

3 + √
5

2

)a1)a2

+ (2 + √
5)
a1a2

}
.

As in Example 1.4, the Hausdorff dimension of X1 is obtained by letting a1 = log4 3
and a2 = log3 2:

dimH (X1) = ha(T )

log 2
= log2

{((
1 + √

5
2

)log4 3

+
(

3 + √
5

2

)log4 3)log3 2

+
√
(2 + √

5)
}

= 2.1061 · · · .
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