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LATTICE POINTS ON CIRCLES
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Abstract

We prove that the lattice points on the circles x? 4 y? = n are well distributed for most circles containing
lattice points.

2000 Mathematics subject classification: primary 11N36.

1. Introduction

The number of lattice points on the circle x2 + y? = n is denoted by r(n). It is
known that r(n) is an unbounded function and it is a natural question to ask for the
distribution of the r(n) lattice points on the circle x2 + y? = n.

In order to give a measure of that distribution, we consider the polygon with vertices
at the r(n) lattice points and denote by S(n) the area of such a polygon. If the lattice
points are well distributed, the area of the polygon must be close to the area of the
circle, that is, S(n)/an ~ 1.

If r(n) > O, trivially 2/m < S(n)/mn < 1. In[1] we proved that the set {S(n)/7n :
r(n) > 0} is dense in the interval [2/m, 1]. We also proved that |S(n)/7n — 1|
(log log n/ log n)? for infinitely many integers.

In this paper we prove that, in fact, for most integers n such that r(n) > O, the
quantity S(n)/mn is close to 1.

THEOREM 1.1. For any n < x withr(n) > 0,

S(n) | 11logloglogx \?
— > — e rr———
mn loglog x

(1.1)

I am indebted to Laura Fainsilber for calling my attention to this problem.
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with at most

x
1.2 o
(1.2 ((logx)‘/2 loglogx Iogloglogx)
exceptions.

It should be noted that if we call B, = {n < x : r(n) > 0}, then |B,| ~ cx/(logx)'/2.

2. Background

In the proof of Theorem 1.1 we will use the prime number theorem for Gaussian
primes on angular sectors, and Selberg’s sieve. We present them in a suitable form in
this section.

THEOREM 2.1. Let D be an angular sector of the circle x* + y? < R? with angle 6.

Then
OR? R?
@.1) Y= +0(—2),
pors mlogR log° R
where p = a + bi are primes in Z[i] and the constant in the error term does not
depend on 6.
PROOF. Stronger versions of this result can be found in [2] and [3]. O

The sieving function S(&, P, z) denotes the number of terms of the sequence &
that are not divisible by any prime p € P, p < z. We denote by mp(x) the counting
function of the sequence P.

THEOREM 2.2. If P is an infinite subset of primes such that

2.2 mp(x) = ax/logx + O (x/log’x) and & = {1, ..., x}, then
2.3) S, P,x) K

(logx)*

PROOF. It will be a consequence of Selberg’s sieve. For every square-free positive
integer d, let |A ;] denote the number of terms of the sequence & which are divisible
by d. Then |A4| = x/d + rg, with |ry] < 1. Let

Gy= ) ;nl-

m<z,plm implies pe P
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Selberg’s sieve [4, page 180] implies that

A w{d)
S(APz)sG()+ > 3

d<z2,d square-free

G [] (1+ +i+ ) Z%»logz

pP<ZpgP m<z

Observe that

and

I (1+%+{%+---) I1 n L& - T1 <1+l).

p<z.pgP p<z.péP p— p<z‘p¢P p

The first product is a constant and the second product can be estimated by taking
logarithms:

<(IL0)= LT

p<z, pﬂ’p p<z p<zpePp

The two sums can be handled using Abel’s summation together with the formula

J'r(x)=—x—+0( x2 ), m:(x):ax +O( x2 )
logx log® x log x log™x
Then

Z_ - Z — =(1—a)loglogz + O(1),

p<z P <z, peP
which yields

x
S(e, P,2) < + 3.
(loge = 2 f
m<z2,m square -free
Observe that
Z Fom) _ Z (2@(mylog3/log2 < Z d*(m) < z*log’ z.

m<z2,m square-free m<z2?,m square-free m<z2,m square-free

Now if we choose z = [x!/*], we obtain S(&, P, x) < S(&, P,z) € x/(logx)*. O

Next, we will present two proposition needed to prove Theorem 1.1.

PROPOSITION 2.3. Let {x; )}, be a set of real numbers such that

J—=1 .
Xj€1j=<—2k—,ﬂj|, _]=1,,2k

and for any real ¢ let S = {¢ + Z €%, € = x1}. Then, foranyj =1,...k,
there exists s € S such that {s/2} € J;, = ((j — 1)/ k, j / k], where {s/2} denotes the
Jractional part of s /2.
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PROOF. Leta = ¢ — 212":1 x;. Then we can write

2%
S = ’a+2)/jxj, Vi e{0,2}}.

j=1

The numbers s;/2 = /2 + x;, satisfy s;11/2 — 5;/2 < l/kfori=1,...,2k -1
and 5;/2 + 1 — 554/2 < 1/k. Then, for each interval J;, there exists s; € S such that

{si/2} € J,. ]
PROPOSITION 2.4. Let n = myny such that n; = x} + y2, x; + iy; = /n;e?,
j = 1,2. Then, the angles £¢, * ¢, correspond to lattice points on the circle
x2+y’=n.
PROOFE. See [1] for more details. O

3. Proof of Theorem 1.1

For each prime p =2 or p = 1 (mod 4) let ¢, = (4/7) tan"'(a/b), where a, b
are the only integers such that a®> + b* = p,0 < a < b. Then ¢, € (0, 1].

We split the interval (0, 1] inthe 2k intervals I; = ((j ~1)/2k, j/2k],j = 1,...,2k
and we define the good numbers as

3.1) Gt ={neBin=p, - pum, with¢, € I;},

where werecall B, ={n <x: r(n) > 0)}.

In Proposition 3.1 we will prove that if n € G*, the lattice points on the circle
x2+y? = n are well distributed, and in Proposition 3.2 we will estimate the cardinality
of the bad numbers, B! = B, \ G*. Theorem 1.1 will be a consequence of these
propositions for a suitable value of k.

PROPOSITION 3.1. If n € G, then
(3.2) S(n)/an > 1—n?/6k%.

PROOF. We can write n = py - - - pym.

Obviously, m has, at least, a representation as a sum of two squares, m = a® + b?,
a+ib=./mexp(i(w/4)p).

Proposition 2.4 implies that the angles (r/4)(¢ + Ejz':,l €; ¢,,j), €; = %1 corre-
spond to lattice points on the circle x? + y? = n.
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Suppose that (;r/4)s is one of these angles. Then, due to the symmetry of the
lattice, the angle (w/4)s — (w/2)[s/2] = (r/2){s/2} also corresponds to a lattice
point.

Now we apply Proposition 2.3 to conclude that for every j =1, ..., k there exists
an angle s such that {s/2} € J; = ((j — 1)/k,j/k]. In other words, for every
J =1,..., k there exists a lattice point on the arc \/nexp (70i/2),0 € J;.

Again, due to the symmetry of the lattice we can find, foreveryj = 1,...,k and
for r =0, 1, 2, 3, a lattice point on the arc \/nexp (w0 + r)i/2),0 € Jj.

Now let us choose a lattice point for each arc. Let P, be the polygon with vertices
in these 4k lattice points. Obviously, Sy(n) < S(n), where So(n) = Area(P,). Now
we denote by 6y, . . . 64, the angles between each pair of two consecutive lattice points.

If we consider a sector with angle 6; and radius /n, an easy geometric argument
prove that the area of the part of the sector outside the triangle is n(§; — sin6;)/2 <
n6}/12. Then mn — So(n) < (n/12)3_}%,67. We know that 6, < 7/k and that
Z;”‘:l 6; = 2m. Therefore, the maximum happens when the half of the angles are 0
and the other half are 7/ k. Thatis, rn — S(n) < wn — So(n) < nw3/6k%. ]

PROPOSITION 3.2. |B¥| « kx /(log'/**'/* x) + kx3/.

PROOF. If we apply Theorem 2.1 to the region
D;={(a,b):a>+b <x,0<a<b, 4/m)tan”'(a/b) € I;}

we obtain

x x
3.3 2 = O ’
(3-3) e, (%) 4k log x + (log2x>
where P, = {p #3 (mod 4) : ¢, € I;}.
On the other hand, if we denote by Q = {g = 3 (mod 4) : q primes}, the
prime number theorem for arithmetic progressions says that my(x) = x/(2logx) +
O(x/log? x). Then, if Q; = Q U P; we obtain

1 1 x x
34 @=lz+—=)——+0 .
34 7o, (x) (2 + 4k) log x + <log2x)

We define, forany 1 < < /x, & ={m < x/P*}and &* = {m < x/I*:
m square free}. Now, suppose that n € B¥ with n = I?’m, m square free. Because
r(n) > 0, then m has not prime divisors ¢ = 3 (mod 4). Since n ¢ Gf , then there
exists an integer j such that m has no prime divisors p with ¢, € I;. Then, that
integer n is shifted in S(&*, Q;, x/1?). Thus,

2k 2k
3.5 B DY S QxS Y D) S, 0, x/ D).

I<isyx j=1 1=igsyx j=1
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For I < x'/* we apply Theorem 2.2 to each S(#, Q;,x/1?),

X x
12(log(x / 12))\/2+1/3 < I2(log x ) L/2+1/4

S, Qj, x/ 1) K

and then

2k
kx
Z ZS(&(, Q;.x/P) <« (log x) /217"

1<i<x!/ j=1

For I > x'* we use the trivial estimate S(#, Q;,x/1*) < x/I* and we obtain
Tong e S(, 0, x/ ) & kx4, O

To conclude Theorem 1.1 we apply Proposition 3.1 and Proposition 3.2 with k =
[loglog x /(8 log log log x)]. Observe that if x is large enough, then

k = [loglogx/(8logloglogx)] > loglogx/((8.5) logloglogx).

Thus, for n € G* and x large enough,

S(n) 7? ((8.5)logloglogx\’ 11 logloglog x \?
3.6) —>1-— >1-|—].

mn 6 loglogx loglogx
On the other hand,

loglog x x
3.7 B
3.7 [Be(x)| < log loglog x (log x)"/2(log x )@gloglogx)/(oglogx)
X

< (logx)'2loglog x log log log x
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