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LATTICE POINTS ON CIRCLES
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Abstract

We prove that the lattice points on the circles x2 + y2 = n are well distributed for most circles containing
lattice points.

2000 Mathematics subject classification: primary 11N36.

1. Introduction

The number of lattice points on the circle x2 + y2 = n is denoted by r(n). It is
known that r(n) is an unbounded function and it is a natural question to ask for the
distribution of the r(n) lattice points on the circle x2 + y2 = n.

In order to give a measure of that distribution, we consider the polygon with vertices
at the r(n) lattice points and denote by S(n) the area of such a polygon. If the lattice
points are well distributed, the area of the polygon must be close to the area of the
circle, that is, S{n)/nn ~ 1.

Ifr(n) > 0, trivially 2/n < S(n)/nn < 1. In[l] we proved that the set {S(n)/nn :
r{n) > 0} is dense in the interval [2/n, 1]. We also proved that \S{n)/nn — 1| <$C
(log log n/ log n)2 for infinitely many integers.

In this paper we prove that, in fact, for most integers n such that r(n) > 0, the
quantity S(n)/nn is close to 1.

(11)

THEOREM 1.1. For any n < x with r{n) > 0,

11 log log logx\2

- (nn \ log log* /

I am indebted to Laura Fainsilber for calling my attention to this problem.
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with at most

(1.2) o(V(logx)l/2 log logx log log logx

exceptions.

It should be noted that if we call Bx = [n < x : r(n) > 0}, then \BX\ ~ cx/(logx)m.

2. Background

In the proof of Theorem 1.1 we will use the prime number theorem for Gaussian
primes on angular sectors, and Selberg's sieve. We present them in a suitable form in
this section.

THEOREM 2.1. Let D be an angular sector of the circle x2 + y2 < R2 with angle 6.
Then

where p = a + bi are primes in Z[i] and the constant in the error term does not
depend on 0.

PROOF. Stronger versions of this result can be found in [2] and [3]. •

The sieving function S(si, P, z) denotes the number of terms of the sequence si
that are not divisible by any prime p e P, p < z. We denote by nP(x) the counting
function of the sequence P.

THEOREM 2.2. If P is an infinite subset of primes such that

(2.2) 7TP(x) = ax/logx + O(x/log2x) and si = { 1 , . . . ,x], then

(2.3) S«P,;t)«
(log*)"

PROOF. It will be a consequence of Selberg's sieve. For every square-free positive
integer d, let \Ad\ denote the number of terms of the sequence si which are divisible
by d. Then \Ad\ = x/d + rd, with \rd\ < 1. Let

G(z) =
m<z,p\m implies per
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Selberg's sieve [4, page 180] implies that

e-rree

Observe that

and

n (i+l+^+-••)= n ^ T ^ n ^ r n
p<z,piP " " ' p<z,p#P " p " p<z,p#P

The first product is a constant and the second product can be estimated by taking
logarithms:

p<z r p<z,peP r

The two sums can be handled using Abel's summation together with the formula

+ o ( r ) , nP{x) = a + 0 ( ) .
l ogx V l o g ^ x / l o g * \ l o g xj

Then

Y-- J2 - = (l-a)loglogz+O(l),z-~' p '~~l p
P<z r p<z,peP c

which yields

(logz)a ^ ^
m<z2,m square -free

Observe that

m<z2,m square-free m<j2,m square-free m<z2,m square-free

Now if we choose z = [xl/3], we obtain S(&/, P,x) < S{s/, P,z) «C x/(\ogx)a. D

Next, we will present two proposition needed to prove Theorem 1.1.

PROPOSITION 2.3. Let {xj }21, be a set of real numbers such that

• ^ - , ^ - 1 , j=l,...,2k

and for any real <p let S = [<j> + Y?j=\ €jxj > €j — "^ }• 77i«w, for any j = 1 , . . . it,
there exists s e S such that {s/2} 6 Jj — ((j — l)/k,j/k], where {s/2} denotes the
fractional part of s/2.
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PROOF. Let a = (f> — YlfLi XJ • Then we can write

s= U + f^YjXj, Yj e{0,2)\.

The numbers s,/2 = a/2 + *,, satisfy si+l/2 - s,/2 < 1/jfc for i = 1 , . . . , 2k - 1
and s\/2 + 1 — s2t/2 < l/k. Then, for each interval Jj, there exists st e S such that
{si/2}eJj. •

PROPOSITION 2.4. Let n = nxn2 such that n, = xj + yj, Xj + iyj = ^/njei<t>',
j = 1,2. Then, the angles ±0i ± <f>2 correspond to lattice points on the circle
x2 + y2 = n.

PROOF. See [1] for more details. •

3. Proof of Theorem 1.1

For each prime p = 2 or p = 1 (mod 4) let <j>p = (4/TT) tan"1 (a/b), where a, b
are the only integers such that a2 + b2 = p , 0 < a < b. Then 4>p € (0,1].

We split the interval (0, 1] in the 2k intervals/, = ((j-l)/2k,j/2k],j = I,...,2k
and we define the good numbers as

(3.1) G* = {n € Bx; n = px • • • p l k m , with <f>p. e / , } ,

where we recall Bx = {n < x : r(n) > 0}.
In Proposition 3.1 we will prove that if n e G*, the lattice points on the circle

x2 + v2 = n are well distributed, and in Proposition 3.2 we will estimate the cardinality
of the bad numbers, B* = Bx \ Gk

x. Theorem 1.1 will be a consequence of these
propositions for a suitable value of k.

PROPOSITION 3.1. Ifn e G*, then

(3.2) S(n)/nn > 1 - n2/6k2.

PROOF. We can write n = pi •
Obviously, m has, at least, a representation as a sum of two squares, m = a2 + b2,

a + ib = y/rnexp {i{n/A)<f>).
Proposition 2.4 implies that the angles (7r/4)(</> + Y^Z\ ey0Pj). €j = ±1 corre-

spond to lattice points on the circle x2 + y2 = n.
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Suppose that (n/4)s is one of these angles. Then, due to the symmetry of the
lattice, the angle {n/4)s — (n/2)[s/2] = (n/2)[s/2] also corresponds to a lattice
point.

Now we apply Proposition 2.3 to conclude that for every j = 1 , . . . , k there exists
an angle 5 such that {5/2} € Jj = ((/ — l)/k,j/k]. In other words, for every
j = I,... ,k there exists a lattice point on the arc *fn exp (n6i/2), 9 e Jj.

Again, due to the symmetry of the lattice we can find, for every j = 1 , . . . , k and
for r = 0, 1, 2, 3, a lattice point on the arc y/nexp (n(9 + r)i/2), 9 € Jj.

Now let us choose a lattice point for each arc. Let Po be the polygon with vertices
in these 4k lattice points. Obviously, S0(n) < S(n), where S0(n) = Area(P0)- Now
we denote by 9{,... 94k the angles between each pair of two consecutive lattice points.

If we consider a sector with angle 9j and radius jn, an easy geometric argument
prove that the area of the part of the sector outside the triangle is n (9j — sin 0j )/2 <
H0//12. Then nn - S0(n) < (n/12) £ £ , 9). We know that 0, < n/k and that
Y^jti 9j = 2n. Therefore, the maximum happens when the half of the angles are 0
and the other half are n/k. That is, nn — S(n) <nn — S0(n) < nn3/6k2. •

PROPOSITION3.2. \Bk
x\ «)kx/(log1/2+1/4*x) + kxv\

PROOF. If we apply Theorem 2.1 to the region

Dj, = {(a, b) : a2 + b2 < x, 0 < a < b, (4/TT) tan~l(a/b) e Ij}

we obtain

(3.3) nPj (x) = —?— + O
' 4fclog;t

where P} = [p # 3 (mod 4) : </>p € / ;} .
On the other hand, if we denote by Q = [q = 3 (mod 4) : q primes}, the

prime number theorem for arithmetic progressions says that nQ(x) = x/(2\ogx) +
2 ) . Then, if £>, = Q U P; we obtain

(3.4) nQi (X)=

We define, for any 1 < / < Jx, tf, = [m < x/l2} and s4? = [m < x/l2 :
m square free}. Now, suppose that n € Bk

x with n = l2m, m square free. Because
r{n) > 0, then m has not prime divisors q = 3 (mod 4). Since n g Gk

x, then there
exists an integer j such that m has no prime divisors p with <f>p € /,•. Then, that
integer n is shifted in 5(J^*, (?,, x//2) . Thus,

Ik 2k

(3.5) |B*|< £

https://doi.org/10.1017/S1446788700003864 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700003864


222 Javier Cilleruelo [6]

For / < xl/* we apply Theorem 2.2 to each S(s/t, Qj, x/l2),

. .->. x x

and then
2/t

2 ^X

1 <;<*'/« ; = l

For / > xl/4 we use the trivial estimate 5 ( ^ , Qj,x/l2) < x/l2 and we obtain

£*./<<,£?=, s&i> QJ- */ <2 )« **3/4- D

To conclude Theorem 1.1 we apply Proposition 3.1 and Proposition 3.2 with k =

[log log x/(8 log log log x)]. Observe that if x is large enough, then

k = [log logx/(8 log log log x)] > loglog;c/((8.5)logloglogx).

Thus, for n € G* and x large enough,

( 3 6 )
 5 ( n ) ;. i 7T2 /(85)logloglog*V j /11 log log log* \ 2

nn 6 V log logx ) \ loglogx /

On the other hand,

log log x x
(3.7) \Bk(x)\ «

logloglogx
X

(logjc)1/2loglogj:logloglogjc'
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