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STRONG AND UNIFORM CONTINUITY –
THE UNIFORM SPACE CASE

DOUGLAS BRIDGES and LUMINIŢA VÎŢĂ

Abstract

It is proved, within the constructive theory of apartness spaces, that
a strongly continuous mapping from a totally bounded uniform
space with a countable base of entourages to a uniform space is uni-
formly continuous. This lifts a result of Ishihara and Schuster from
metric to uniform apartness spaces. The paper is part of a systematic
development of computable topology using apartness as the
fundamental notion.

To every uniform structure U on a set X there corresponds a relation �� of apartness between
subsets S and T of X, defined by

S �� T ⇐⇒ ∃U ∈ U (S × T ⊂ ∼U) .

In turn, this provides us with a notion of strong continuity for a function f : X −→ Y

between uniform spaces, defined by

∀S, T ⊂ X (f (S) �� f (T ) =⇒ S �� T ) .

It is easy to show that a uniformly continuous map is strongly continuous. Our aim in this
paper is to produce a proof of the following partial converse.

Theorem 1. Let X be a totally bounded uniform space with a countable base of entourages.
Then every strongly continuous mapping from X into a uniform space is uniformly contin-
uous.

Our proof is entirely constructive in the sense of Errett Bishop: given a strongly contin-
uous map f : X −→ Y between uniform spaces, and an entourage V of Y , we show (at
least in principle) how to find an entourage U of X such that

∀x, y ∈ X ((x, y) ∈ U =⇒ (f (x), f (y)) ∈ V ).

To do this, instead of working with classical logic and a clearly specified notion of algorithm,
such as a recursive one, we work with intuitionistic logic and an appropriate informal set
theory. It follows that all our results and proofs can easily be translated into any formalism
for computable mathematics, such as recursion theory [1, 14] and Weihrauch’s type II
effectivity theory [19]. They also hold in Brouwer’s intuitionistic mathematics [17].

Our paper can be regarded as a contribution to computable topology based on a notion
of apartness between subsets of the ambient space. In the general theory [8], strongly
continuous mappings are important as the morphisms in the category of sets with apartness.
Our result shows that in the subcategory of totally bounded uniform spaces with a countable
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Strong and uniform continuity – the uniform space case

base of entourages, these maps coincide with the usual morphisms. For related work see
[18, 8, 12, 16].

Classically, every uniform space with a countable base of entourages is pseudometrisable
(see [5, p. 142, Proposition 2]). It is not known whether (and it seems extremely unlikely
that) this theorem, with its highly nonconstructive proof, holds constructively. Ishihara
and Schuster have shown constructively that every strongly continuous mapping from a
totally bounded metric space to a metric space is uniformly continuous [13]. Even if the
foregoing pseudometrisation theorem turns out to be constructive, the Ishihara–Schuster
result is extended by our Theorem 1, since the latter does not require that the codomain of
the strongly continuous function be metrisable.

To read this paper you do not need any deep understanding of constructive mathematics
(mathematics with intuitionistic logic – see [2, 3, 4, 6, 17]), but some intuitive feel for what
is, and what is not, constructive will help. Nor do you need much background knowledge
about uniform spaces. However, for the sake of clarity we now present some fundamental
definitions in the theory of sets and uniform spaces.

By an inequality on a set X, we mean a binary relation �= that satisfies the following
conditions:

x �= y =⇒ y �= x;
x �= y =⇒ ¬ (x = y) .

Note that this notion of inequality is more general than the common classical one (denial
of equality).

In the presence of an inequality, we define the complement of a subset S of X to be

∼S = {x ∈ X : ∀s ∈ S (x �= s)} .

Let X be a nonempty set, and let U and V be subsets of the Cartesian product X × X. We
define certain associated subsets as follows:

U1 = U,

U−1 = {(x, y) : (y, x) ∈ U},
Un+1 = U ◦ Un (n = 1, 2, . . .),

U ◦ V = {(x, y) : ∃z ∈ X ((x, z) ∈ U ∧ (z, y) ∈ V )}.
We say that U is symmetric if U = U−1. The diagonal of X × X is the set

� = {(x, x) : x ∈ X}.
A family U of subsets of X × X is called a uniform structure, or uniformity, on X if

the following conditions hold. (Note that condition U1, and the fact that – by U2 – each
element of U is nonempty, show that U is a filter on X × X.)

U1 (i) Every finite intersection of sets in U belongs to U.

(ii) Every subset of X × X that contains a member of U is in U.

U2 Every member of U contains both the diagonal � and a symmetric member of U.

U3 For each U ∈ U there exists V ∈ U such that V 2 ⊂ U .

U4 For each U ∈ U there exists V ∈ U such that

∀x ∈ X × X (x ∈ U ∨ x /∈ V ) .
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The elements of U are called the entourages of (the uniform structure on) X. A subfamily
B of U is called a base of entourages if each element of U contains an element of B.

Metric spaces and locally convex linear spaces are uniform spaces according to this
definition.

The uniform topology on a uniform space (X, U) is the topology τU in which for each
x ∈ X, the sets

U [x] = {y ∈ X : (x, y) ∈ U} (U ∈ U)

form a base of neighbourhoods of x.
We define the canonical inequality on a uniform space (X, U) by

x �= y ⇐⇒ ∃U ∈ U ((x, y) /∈ U) .

Note that, by axioms U1(ii) and U2, if U ∈ U, then U−1 ∈ U. It follows that if x �= y,
then y �= x. Moreover, since U contains �, if x �= y, then ¬(x = y). Thus �= is indeed
an inequality relation on X. In turn, we define an associated inequality on X × X in the
obvious way:

(x, y) �= (x′, y′) ⇐⇒ (x �= x′ ∨ y �= y′).

It then follows from the axioms that for each U ∈ U there exists V ∈ U such that V 2 ⊂ U

and

∀x ∈ X × X (x ∈ U ∨ x ∈ ∼V ).

Even for the metric apartness space R, the statements ‘x �= y’ and ‘¬(x = y)’ are not
constructively equivalent unless we accept the following principle of unbounded search,
known as Markov’s principle.

For each binary sequence (an)
∞
n=1, if it is impossible that an = 0 for all n,

then there exists n such that an = 1.

See [6, Chapter 1].
A mapping f of a uniform space (X, U) into a uniform space (Y, V) is said to be

uniformly continuous if

∀V ∈ V ∃U ∈ U ∀x, x′ ∈ X ((x, x′) ∈ U =⇒ (f (x), f (x′)) ∈ V ).

A uniform space (X, U) is totally bounded if, for each U ∈ U, there exists a finitely
enumerable subset {x1, . . . , xn} of X such that X = ⋃n

k=1 U [xk]. (A set S is finitely
enumerable if, for some natural number n, there exists a mapping of the set of positive
integers less than or equal to n onto S.)

Lemma 2. A totally bounded uniform space with a countable base of entourages is
separable.

Proof. Let (Un)
∞
n=1 be a countable base of entourages for a totally bounded uniform

space (X, U). For each n there exists a finitely enumerable subset Fn of X such that
X = ⋃

x∈Fn
Un[x]. Let C be the countable set

⋃∞
n=1 Fn. Given x ∈ X and U ∈ U, find n

such that Un ⊂ U . Then there exists y ∈ Fn ⊂ C such that (x, y) ∈ Un ⊂ U , so y ∈ U [x].
It follows by the definition of the topology on X that C is dense in X.

For convenience below, we define, for each positive integer n, an n-chain of entourages
of X to be an n-tuple (U1, . . . , Un) of entourages such that for each k (where 1 < k � n),
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we have Uk symmetric, U2
k ⊂ Uk−1, and

∀x ∈ X × X (x ∈ Uk−1 ∨ x ∈ ∼Uk) .

Axiom U3 ensures that for each U ∈ U and each positive integer n there exists an n-chain
(U1, . . . , Un) of entourages with U1 = U .

The following lemma is crucial to the development of our argument, and is proved in
[9, Lemma 1]. It is designed to take the sting out of a number of the succeeding proofs,
and is necessitated by the constructive failure of what Bishop called the limited principle
of omniscience (LPO):

for each binary sequence (λn)
∞
n=1 either λn = 0 for all n,

or else there exists n such that λn = 1.

In its recursive interpretation, the limited principle of omniscience entails the decidability
of the halting problem [6, Chapter 3].

Lemma 3. Let X and Y be uniform spaces, let f : X −→ Y be a strongly continuous
function, and let V be an entourage of Y . Let (λn)

∞
n=1 be an nondecreasing binary sequence,

and let (An)
∞
n=1 and (Sn)

∞
n=1 be sequences of subsets of X such that:

• for each entourage U of X there exists ν such that for each n � ν, either An ×Sn = ∅
or else An × Sn intersects U ;

• if λn = 0, then An = ∅; and

• if λn = 1 − λn−1, then An �= ∅, Sn �= ∅, f (An) × f (Sn) ⊂ ∼V , and Aj = ∅ for all
j > n.

Then there exists N such that λn = λN for all n � N .

Two sequences (xn)
∞
n=1 and (x′

n)
∞
n=1 in a uniform space (X, U) are said to be eventually

close if

∀U ∈ U∃N∀n � N ((xn, x
′
n) ∈ U).

A mapping f of X into a uniform space Y is uniformly sequentially continuous if the
sequences (f (xn))

∞
n=1 and (f (x′

n))
∞
n=1 are eventually close in Y whenever (xn)

∞
n=1 and

(x′
n)

∞
n=1 are eventually close in X.

A major step towards our main result is the following weak converse to the proposition
that uniform continuity implies strong continuity.

Proposition 4 (see [9, Proposition 6]). A strongly continuous mapping f : X −→ Y

between uniform spaces is uniformly sequentially continuous.

We now establish a number of technical lemmas needed for the proof of our main result,
Theorem 1.

Lemma 5. Let X be a totally bounded uniform space with a countable base of entourages,
and f a strongly continuous mapping of X into a uniform space Y . Let (xn)

∞
n=1 be a dense

sequence in X (which exists by Lemma 2), and V any entourage of Y . Let (λn)
∞
n=1 be an

nondecreasing binary sequence, and let (An)
∞
n=1 and (Bn)

∞
n=1 be sequences of subsets of

X, such that:

• if λn = 0, then An = ∅, and

• if λn = 1 − λn−1, then An �= ∅, {x1, . . . , xn−1} ⊂ Bn, f (An) × f (Bn) ⊂ ∼V , and
Aj = ∅ for all j > n.

Then there exists N such that λn = λN for all n � N .
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Proof. Take Sn = {x1, . . . , xn−1}. Given an entourage U of X, compute N such that
X = ⋃N−1

i=1 U [xi], and consider any n � N . If either λn = 0 or λn−1 = 1, then An×Sn = ∅.
If λn = 1 − λn−1, then An �= ∅ and for each x ∈ An there exists i such that 1 � i �
N −1 < n and x ∈ U [xi]; so An ×Sn intersects U . Hence we can apply Lemma 3 to obtain
the desired result.

Lemma 6. If f : X −→ Y is a strongly continuous mapping between uniform spaces, then
f (S̄) ⊂ f (S) for each S ⊂ X.

Proof. Let y = f (x), where x ∈ S̄, and let V be any entourage of Y . It is enough to show
that f (S) intersects V [y]. To this end, construct a 3-chain (V1, V2, V3) of entourages of Y

with V1 = V . We see from [16, Corollary 16 and Lemma 17] that

y ∈ V3[y] ⊂ − ∼V 2[y] ⊂ V1[y].
In particular, {y} �� ∼V 2[y], so, by the strong continuity of f ,

{x} �� f −1(∼V 2[y]).
Choose a 2-chain (U1, U2) of entourages of X such that

{x} × f −1(∼V 2[y]) ⊂ ∼U1.

By [16, Lemmas 13 and 15], we have U2[x] ⊂ −f −1(∼V 2[y]). Since U2[x] is a neighbour-
hood of x in X, it follows that there exists s in S ∩ −f −1(∼V 2[y]). Then f (s) /∈ ∼V 2[y],
from which it follows that f (s) ∈ V [y].
Lemma 7. Let X be a totally bounded uniform space with a countable base of entourages.
Let f be a strongly continuous mapping of X into a uniform space Y , let (V1, . . . , V5) be
a 5-chain of entourages of X, and let S be a finitely enumerable subset of X. Then:

• either for each x ∈ X there exists s ∈ S such that (f (x), f (s)) ∈ V1; or else

• there exists x ∈ X such that {f (x)} × f (S) ⊂ ∼V 5.

Proof. Write S = {s1, . . . , sM}. By Lemma 2, X is separable. Choosing a dense sequence
(xn)

∞
n=1 in X, construct an nondecreasing binary sequence (λn)

∞
n=1 such that for each n,

λn = 0 =⇒ ∀k � n∃i � M ((f (xk) , f (si)) ∈ V4) ;
λn = 1 − λn−1 =⇒ ∀i � M ((f (xn), f (si)) ∈ ∼V 5) .

We may assume that λ1 = 0. If λn = 0, set Bn = ∅; if λn = 1 − λn−1, set Bn =
{x1, . . . , xn−1} and Bk = ∅ for all k > n. Let B = ⋃∞

n=1 Bn.
Next, construct an nondecreasing binary sequence (µn)

∞
n=1 such that, for each n,

µn = 0 =⇒ ∀k � n∃i � M ((f (xk) , f (si)) ∈ V2) ;
µn = 1 − µn−1 =⇒ ∀i � M ((f (xn), f (si)) ∈ ∼V 3) .

We may assume that µ1 = 0. If µn = 0, set An = ∅; if µn = 1 − µn−1, set An = {xn} and
Ak = ∅ for all k > n. Let A = ⋃∞

n=1 An. We show that

f (A) × f (B) ⊂ ∼V 5. (1)

To this end, let x ∈ A and y ∈ B, and suppose that (f (x), f (y)) ∈ V4. Choosing n such
that y ∈ Bn, we see that λn = 1 − λn−1, B = Bn = {x1, . . . , xn−1}, y = xj for some
j � n − 1, and there exists i � M such that (f (y), f (si)) ∈ V4. Hence

(f (x), f (si)) ∈ V 2
4 ⊂ V3. (2)
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On the other hand, since x ∈ A, there exists k such that µk = 1 − µk−1, x = xk , and
(f (x), f (si)) ∈ ∼V 3, which contradicts inclusion (2). Hence ¬((f (x), f (y)) ∈ V4),
and therefore (f (x), f (y)) ∈ ∼V 5. Since x and y are arbitrary elements of A and B

respectively, we now obtain inclusion (1).
It follows from this and the strong continuity of f that there exists an entourage U

of X such that A × B ⊂ ∼U . Since X is totally bounded, there exists N such that
X = ⋃N

n=1 U [xn]. If λN = 1, then there exists j � N such that {f (xj )} × f (S) ⊂ ∼V 5.
So, without loss of generality, we assume that λN = 0. Suppose that µn = 1−µn−1 for some
n. Then for each i � M , we have (f (xn), f (si)) ∈ ∼V 3, and therefore (f (xn), f (si)) /∈ V4.
Hence λm �= 0, and therefore λm = 1 − λm−1, for some m � n; clearly, N < m. We now
have A = {xn}, B = {x1, . . . , xm−1}, and

{xn} × {x1, . . . , xm−1} ⊂ ∼U,

which is absurd since, by our choice of N , there exists j � N < m such that (xn, xj ) ∈ U .
It follows, for all n, that µn = 0, and therefore there exists an i � M such that we have
(f (xn), f (si)) ∈ V2.

Finally, consider any x ∈ X. Since x is in the closure of the set {xn : n � 1}, we
see from Lemma 6 that f (x) is in the closure of {f (xn) : n � 1}; whence there exists n

such that f (xn) ∈ V2[f (x)]. Choosing i � M such that (f (xn), f (si)) ∈ V2, we have
(f (x), f (si)) ∈ V 2

2 ⊂ V1.

The following proposition, the last link in the chain connecting us to the proof of Theo-
rem 1, is of interest in its own right and also has an important corollary.

Proposition 8. Let X and Y be uniform apartness spaces, and f a strongly continuous
mapping of X into Y such that f (X) is totally bounded. Then f is uniformly continuous.

Proof. Given an entourage V of Y , construct a 5-chain (V1, V2, V3, V4, V5) of entourages
of Y such that V 3

2 ⊂ V1 = V , and V 3
4 ⊂ V3. Choose x1, . . . , xm in X such that Y =

Y1 ∪ · · · ∪ Ym, where Yi = V4[f (xi)]; then set Xi = f −1(Yi). For 1 � i, j � m construct
cij such that

cij = 0 =⇒ (f (xi), f (xj )) ∈ V2;
cij = 1 =⇒ (f (xi), f (xj )) ∈ ∼V 3.

For each (i, j) with cij = 1, we have Yi �� Yj . To see this, consider such i, j and an
element (y, y′) of Yi × Yj , and suppose that (y, y′) ∈ V4. Then (f (xi), y) ∈ V4 and
(y′, f (xj )) ∈ V4, so (f (xi), f (xj )) ∈ V 3

4 ⊂ V3, a contradiction. Hence (y, y′) ∈ ∼V 5. It
follows that Yi × Yj ⊂ ∼V 5, and therefore that Yi �� Yj . By the strong continuity of f ,
Xi �� Xj , and therefore there exists an entourage Eij of X such that Xi × Xj ⊂ ∼Eij . Let

E =
⋂

{Eij : cij = 1},
which also is an entourage of X. Consider points x and y of X with (x, y) ∈ E. Choose
i and j such that f (x) ∈ Yi and f (y) ∈ Yj . If cij = 1, then

(x, y) ∈ Xi × Xj ⊂ ∼Eij ⊂ ∼E,

a contradiction.
Hence cij = 0, and so (f (xi), f (xj )) ∈ V2. Since (f (x), f (xi)) ∈ V4 ⊂ V2 and

(f (y), f (xj )) ∈ V4 ⊂ V2, it follows that (f (x), f (y)) ∈ V 3
2 and therefore that

(f (x), f (y)) ∈ V .
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For those readers prepared to explore the general constructive theory of apartness spaces,
we digress briefly to introduce a corollary of Proposition 8.

Let X be any apartness space – that is, a set equipped with a binary relation �� between
subsets, for which the axioms in [10] hold. We say that a uniformity U on X is compatible
with the given apartness �� if

S �� T ⇐⇒ ∃U ∈ U (S × T ⊂ ∼U).

Corollary 9. A given apartness space has at most one compatible uniformity that is totally
bounded.

Proof. Let (X, ��) be an apartness space, and suppose that there are two totally bounded
uniformities U and U′ that are compatible with the apartness on X. Denote the apartness
relations corresponding to U and U′ by ��U and ��U′ respectively. Then the identity
mapping from (X, ��) onto (X, ��U) is strongly continuous, as is its inverse; likewise, the
identity mapping from (X, ��) onto (X, ��U′) is strongly continuous, as is its inverse. Hence
the identity mapping from (X, ��U) to (X, ��U′) is strongly continuous, as is its inverse. It
follows from Proposition 8 that the uniformities U and U′ are equivalent.

At last we are in a position to give the proof of Theorem 1.

Proof. Let X be a totally bounded uniform space with a countable base (Un)
∞
n=1 of

entourages. We may assume that U1 ⊃ U2 ⊃ · · · . Let (xk)
∞
k=1 be a dense sequence in X.

Then there exists a strictly increasing sequence (kn)
∞
n=1 of positive integers such that

X =
kn⋃

j=1

Un[xj ]

for each n. Let Fn = {x1, . . . , xkn}. Consider a strongly continuous mapping f of X into a
uniform space Y . In view of Proposition 8, it is enough to prove that f (X) is totally bounded.
Accordingly, given an entourage V of Y , construct a 5-chain (V1, . . . , V5) of entourages of
Y with V1 = V . Using Lemma 7, construct a nondecreasing binary sequence (λn)

∞
n=1 such

that

λn = 0 =⇒ ∃x ∈ X∀k � kn ((f (x), f (xk)) ∈ ∼V 5);
λn = 1 − λn−1 =⇒ ∀x ∈ X∃k � kn ((f (x), f (xk)) ∈ V1).

We may assume that λ1 = 0. If λn = 0, set An = Bn = ∅. If λn = 1 − λn−1, then,
as λn−1 = 0, there exists ζ ∈ X such that (f (ζ ), f (xk)) ∈ ∼V 5 for all k � kn−1; set
An = {ζ }, Bn = Fn−1, and Aj = Bj = ∅ for all j � n; then f (An) × f (Bn) ⊂ ∼V 5. We
can now apply Lemma 5 to find N such that if λn = λN for all n � N .

Assume that λN = 0. Then for each n, λn = 0 and so there exists zn ∈ X such that

f (zn) × f (Fn) ⊂ ∼V 5. (3)

On the other hand, for each n there exists ζn ∈ Fn such that (zn, ζn) ∈ Un. It follows that
the sequences (zn)

∞
n=1 and (ζn)

∞
n=1 are eventually close: for if U is any entourage of X and

we choose m such that Um ⊂ U , then we have (zn, ζn) ∈ Un ⊂ Um ⊂ U for all n � m.
By Proposition 4, the sequences (f (zn))

∞
n=1 and (f (ζn))

∞
n=1 are eventually close, so there

exists n such that (f (zn), f (ζn)) ∈ V5. However, since ζn ∈ Fn, this contradicts (3). Thus
λN �= 0, so λN = 1 and therefore f (X) = ⋃kN

j=1 V [xj ]. Since V is an arbitrary entourage
of Y , we conclude that f (X) is totally bounded.
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