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We derive leading-order governing equations and boundary conditions for a sheet of
viscous fluid retracting freely under surface tension. We show that small thickness
perturbations about a flat base state can lead to regions of compression, where one or both
of the principal tensions in the sheet becomes negative, and thus drive transient buckling
of the sheet centre-surface. The general theory is applied to the simple model problem
of a retracting viscous disc with small axisymmetric thickness variations. Transient
growth in the centre-surface is found to be possible generically, with the dominant mode
selected depending on the imposed initial thickness and centre-surface perturbations. An
asymptotic reduction of the boundary conditions at the edge of the disc, valid in the limit of
large normalised thickness perturbations, reduces the centre-surface evolution equation to
an ordinary differentional equation (ODE) eigenvalue problem. Analysis of this eigenvalue
problem leads to insights such as how the degree of transient buckling depends on the
imposed thickness perturbation and which thickness perturbation gives rise to the largest
transient buckling.

Key words: thin films

1. Introduction
There are multiple methods to manufacture thin glass sheets (Shelby 2005). The float glass
process (Pilkington 1969; Pop 2005; Berenjian & Whittleston 2017), in which molten glass
is fed onto a bath of molten tin and drawn through rollers, gives exceptionally smooth, high
quality glass sheets with thickness typically ranging from 2 to 20 mm. Thinner glass sheets
can be produced using the down-draw method (Overton 2012), in which a ribbon of molten
glass is drawn through an annealing furnace before being cooled and removed, resulting
in sheet thickness ranging from 20 µm to 1.1 mm. Despite the long history of glass
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sheet manufacture, and the progressive refinement of manufacturing processes, ripples
(i.e. sinuous deformations) can still form in the molten glass during production,
compromising quality and adding cost. Real-time analysis of the ripple formation is
difficult due to the high working temperature of molten glass, and so mathematical
modelling is invaluable in the analysis of problems in production.

In principle, the origin of the observed ripples is understood. In the industrially relevant
limit where the sheet thickness is much smaller than its typical in-plane dimensions,
perturbation methods can be used to reduce the governing Navier–Stokes equations and
free boundary conditions to a simplified quasi-two-dimensional model that depends on
integrated tensions and bending moments (e.g. Howell 1996). As shown by Filippov &
Zheng (2010), in a down-drawn viscous sheet, regions naturally form in which one of
the principal in-plane tensions changes sign, causing a change of type from elliptic to
hyperbolic in the underlying partial differential equation governing the sheet centre-
surface. The ‘hyperbolic zones’ correspond to regions under compression and are
associated with transverse buckling. Srinivasan, Wei & Mahadevan (2017) find the fastest
growing out-of-plane eigenmodes for the early-time growth of ripples in the sheet.
Perdigou & Audoly (2016) consider a sheet falling under gravity into a bath of fluid
and calculate the buckling modes by solving a two-dimensional eigenvalue problem using
finite element methods.

The coupled heat transfer and fluid flow for the drawing of a viscous sheet are considered
by Scheid et al. (2009), who find that cooling has a destabilising effect when heat transfer
with the air dominates, but has a stabilising effect when both advection and heat transfer
with air are important. Thermal effects are also often incorporated simply by treating the
viscosity as a function of position, as opposed to solving the coupled energy problem
(e.g. Pfingstag, Audoly & Boudaoud 2011; Srinivasan et al. 2017).

In the present paper, we consider the simple model problem of a thin isothermal sheet of
viscous fluid retracting freely under surface tension. Despite the absence of any external
forcing whatsoever, we show that compressive tensions form generically, and that they can
be sufficiently strong to drive growth in sinuous perturbations of the sheet centre-surface.
The linear stability analyses performed in previous studies leave open the question of how
the amplitude of any transverse ripples is determined in practice. There seem to be two
possible mechanisms: either geometrically nonlinear effects cause the growth to saturate
(see, e.g., O’Kiely et al. 2019), or convection through the compressive regions, where the
centre-surface is predicted to be unstable, limits the exponential growth. In this paper,
we neglect nonlinearity, but include convection by the underlying flow, and find transient
rather than exponential growth in the centre-surface displacement.

The surface-tension-driven retraction of a thin viscous sheet has been well studied.
In the inertial limit, fluid collects in a rim at the edge of the sheet. However, when the
Reynolds number is sufficiently small, simulations and experiments show that the sheet
instead retracts uniformly (Debrégeas et al. 1995; Brenner & Gueyffier 1999; Sünderhauf
et al. 2002; Savva 2007; Savva & Bush 2009). If the sheet thickness is constant initially, it
will therefore remain spatially uniform, and any small initial fluctuations in the thickness
are preserved as the sheet retracts. As we will show, it is these thickness fluctuations that
can give rise to compressive tensions in the sheet and thus drive transient buckling.

We begin in § 2 by deriving exact integrated conservation equations for a general viscous
sheet with no external forcing other than surface tension acting at the free surface. In § 3,
we derive effective boundary conditions via a boundary-layer analysis of the region of
high curvature at the edge of the sheet, where the in-plane and transverse length-scales
are comparable. With this set-up in place, in § 4, we use perturbation methods to derive
a simplified model for the retraction of a thin approximately uniform sheet under surface
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z

ỹ

x̃˜ ˜z = H (x, t) – h (x, t)/2

˜ ˜z = H (x, t) + h (x, t)/2

˜z = H (x, t)

Figure 1. A sketch of a general, viscous sheet, with the in-plane position vector given by x̃ = (x̃, ỹ).

tension. The leading-order equations and boundary conditions are first derived in a general
form before being applied to the simple model problem of a disc of viscous fluid, subject to
small axisymmetric fluctuations in the thickness. Numerical solutions to these governing
equations are presented in § 5, where we find that transient buckling is possible, with
selection of the dominant mode determined by a delicate interaction between the imposed
initial thickness and centre-surface perturbations. A further asymptotic approximation in
§ 6, in the limit of large normalised thickness perturbations, allows us to explain this
interaction and to predict the thickness and centre-surface perturbations that lead to the
greatest transient growth. Finally, in § 7, we discuss our findings and draw our conclusions.

2. Net balance equations
We start by deriving exact balance equations representing conservation of mass, linear
momentum and angular momentum for a thin sheet of incompressible viscous fluid. To
this end, we use a tilde to represent in-plane components; for example, let x̃ denote the in-
plane position vector so that, with the transverse unit vector being given by k, the position
of any point in the sheet may be expressed in the form x = x̃ + zk. We likewise decompose
the velocity u and the stress tensor σ into in-plane and transverse components, i.e.

u = ũ +wk, σ =
⎛
⎝ σ̃ σ̂

σ̂
t
σzz

⎞
⎠ . (2.1a,b)

Here, σ̃ ∈R
2×2 is the in-plane stress tensor, σ̂∈R

2 is the vector of transverse stresses
and σ̂

t is its transpose. The fluid is assumed to lie between two free surfaces, denoted
by z = H±(x̃, t) := H(x̃, t)± h(x̃, t)/2, where h > 0 and H represent the thickness of
the sheet and the position of the centre-surface, respectively, as shown in figure 1. To keep
this derivation as general as possible, we do not yet make any assumptions about the lateral
extent of the sheet. We assume that any external body forces are negligible, so the flow is
driven entirely by the constant surface tension γ acting at the free surfaces.

Now, when we express the governing equations and boundary conditions in
dimensionless form, the assumed thinness of the sheet is captured by applying differential
scalings to in-plane and transverse components of the variables. We denote a typical in-
plane lengthscale of the sheet by L and a typical transverse lengthscale by εL , where
ε� 1. By balancing surface tension with viscous effects, a suitable scaling for the in-plane
velocity is found to be γ /εη, where η is the constant dynamic viscosity. This velocity scale
is the typical speed at which a thin inertia-free sheet would retract under surface tension
(Debrégeas et al. 1995; Griffiths & Howell 2007). We use the corresponding convective
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timescale, and scale the transverse velocity and stress components to obtain balances in
the Stokes equations (see below). Thus, we arrive at the scalings

x̃ = L x̃′, z = εLz′, t = εLη

γ
t ′ (2.2a)

ũ = γ

εη
ũ′, w= γ

η
w′,

(
H, h, H±)= εL

(
H ′, h′, H±′) , (2.2b)

σ̃ = γ

εL
σ̃ ′, σ̂ = γ

L
σ̂ ′, σzz = εγ

L
σzz

′. (2.2c)

In the dimensionless equations presented below, the prime decoration is dropped.
We assume that inertia and any body forces are negligible, so the flow is governed by

the dimensionless incompressible Stokes equations, which take the forms

∇̃ · ũ + ∂w

∂z
= 0, ∇̃ · σ̃ + ∂ σ̂

∂z
= 0, ∇̃ · σ̂ + ∂σzz

∂z
= 0, (2.3a–c)

following our decompositions, where ∇̃ denotes the in-plane gradient operator. At the two
free surfaces z = H±, we apply the kinematic boundary condition

w= ∂H±

∂t
+ ũ · ∇̃H±, (2.4)

and the dynamic boundary condition, which may be decomposed into

σ̃ · ∇̃H± + ε2κ±∇̃H± = σ̂ , (2.5a)

σzz + κ± = σ̂ · ∇̃H±. (2.5b)

Without loss of generality, the constant external pressure has been set to zero. The free-
surface curvatures are given by

κ± = ∓ ∇̃ ·
(

∇̃H±

�±

)
, where �± =

√
1 + ε2

∣∣∣∇̃H±
∣∣∣2. (2.6)

Integrating the continuity equation (2.3a) across the thickness and applying the
kinematic boundary condition (2.4), we obtain the net mass conservation equation

∂h

∂t
+ ∇̃ · (hū)= 0, (2.7)

where

ū = 1
h

∫ H+

H−
ũ dz (2.8)

is the average in-plane velocity.
Integrating the in-plane component of the momentum equation (2.3b) and applying the

dynamic boundary condition (2.5a) gives

∇̃ · T = 0, (2.9)

where we define the in-plane tension tensor by

T =
∫ H+

H−
σ̃ dz +

[
(�+ + �−)I − ε2(∇̃H+)(∇̃H+)t

�+ − ε2(∇̃H−)(∇̃H−)t

�−

]
. (2.10)
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The first integral term on the right-hand side of (2.10) is the viscous contribution to the
tension, while the term in square brackets is the contribution due to surface tension.
Similarly, by integrating the out-of-plane component of the momentum equation (2.3c)
and applying the dynamic boundary condition (2.5b), we obtain

∇̃ · N = 0, (2.11)

where we define the total shear stress by

N =
∫ H+

H−
σ̂ dz +

[
∇̃H+

�+ + ∇̃H−

�−

]
. (2.12)

Finally, by multiplying the in-plane component of the momentum equation (2.3b) by
(z − H) before integrating over the thickness, we derive the torque balance equation

∇̃ · M + T · ∇̃H = N, (2.13)

where the bending-moment tensor is defined by

M =
∫ H+

H−
(z − H)σ̃ dz + h

2

[
(�+ − �−)I − ε2(∇̃H+)(∇̃H+)t

�+ + ε2(∇̃H−)(∇̃H−)t

�−

]
.

(2.14)
The basic governing equations for the evolution of a thin sheet of viscous fluid under

surface tension are (2.7), (2.9), (2.11) and (2.13). We emphasise that no approximations
have been made yet, so these net balance equations are exact, and that the contributions
from surface tension have been incorporated into the definitions of the integrated stress and
moment tensors. This approach was found to be beneficial by Griffiths & Howell (2007)
when studying the surface-tension-driven evolution of a tube of viscous fluid, and we will
show in the next section how it pays off when deriving the effective boundary conditions
at a sheet edge.

To close the problem (2.7), (2.9), (2.11) and (2.13), it remains to derive constitutive
relations for T and M in terms of ū, h and H , by exploiting the assumed smallness
of ε. In previous studies of viscous buckling (e.g. Buckmaster, Nachman & Ting 1975;
Howell 1996; Ribe 2002), two possible dominant balances have been identified. The sheet
thickness h evolves over an O(1) ‘stretching’ timescale, while transverse sheet motion
occurs over an O(ε2) ‘bending’ timescale. In contrast with these previous studies, we
will show that, when the leading-order sheet thickness is spatially uniform, bending and
stretching occur on the same O(1) timescale.

3. Edge boundary layer

3.1. Motivation and local coordinate system
In § 2, we derived the general net balance equations for a thin sheet of viscous fluid.
Now, we show how to supplement these equations with effective boundary conditions
that apply at a free edge of the sheet. Near such an edge, there is a boundary layer in which
the in-plane and transverse dimensions of the sheet become comparable, as illustrated
in figure 2(a). We note that the solution for the flow in this inner region was found
numerically by Munro & Lister (2018), but we show that the effective boundary conditions
for the bulk flow can be obtained just using asymptotic matching. In this derivation,
we consider the general situation where the edge of the sheet can be arbitrarily curved,
though, for simplicity, we assume that it remains approximately planar. We use intrinsic
curvilinear coordinates embedded in the sheet edge; a similar derivation is presented by
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z
O(  )

O (  )

n

z = H (s, n, t)

x
t

˜
˜

ñ

ỹ

s

(a) (b)

Figure 2. (a) Sketch of the inner region at the edge of a thin sheet. (b) Sketch of the curvilinear coordinate
system employed at the edge of the sheet.

O’Kiely (2017), though without the inclusion of surface tension. Since the problem is
quasi-steady, we can focus on determining the instantaneous boundary conditions and, for
the moment, suppress the dependence on time t .

An edge of the sheet is identified as a curve on which h = 0. As illustrated in figure 2(b),
we parametrise the projection of this curve onto the x̃ = (x̃, ỹ)-plane using arc-length s,
and denote the corresponding planar tangent vector as t̃(s). We fix the orientation such
that the planar normal pointing outwards from the sheet edge is given by ñ = k × t̃ , where
we recall that k denotes the unit vector in the z-direction. The normal and tangent vectors
are related by the Serret–Frenet formulae (Kreyszig 1959)

d t̃
ds

= κ ñ,
dñ
ds

= −κ t̃, (3.1a,b)

where κ(s) is the curvature of the edge (projected onto the (x̃, ỹ)-plane). The position of
any point in the sheet can be expressed in the form

r(s, n, z)= x̃ + zk =
∫ s

0
t̃(s′) ds′ + nñ + zk, (3.2)

where n < 0 and H−(s, n) < z < H+(s, n). The edge of the sheet is defined to be at n = 0,
where we have H−(s, 0)= H+(s, 0)= H(s, 0).

Now, our strategy is to express the integrated governing equations (2.9), (2.11) and (2.13)
using the local coordinates (s, n). Then, at the edge of the sheet, since h(s, 0)= 0, we
seemingly have five boundary conditions

Tnn = Tsn = Nn = Mnn = Msn = 0 at n = 0, (3.3)

where subscripts denote components of the tensor or vector. However, this is one too many
boundary conditions for the outer problem. This issue was first addressed in the context
of thin elastic plates (see, for example, Love 1927; Timoshenko & Woinowsky-Krieger
1959). We resolve the difficulty by rescaling into the boundary layer at the edge and thus
deriving the appropriate effective boundary conditions to apply to the outer problem.
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3.2. Edge boundary layer
We examine the boundary layer by defining

n = εn̂, Tss = T̂ss, Tsn = εT̂sn, Tnn = εT̂nn, (3.4a–d)

Mss = M̂ss, Msn = M̂sn, Mnn = εM̂nn, Ns = N̂s

ε
, Nn = N̂n,

(3.4e–i)

where we denote variables in the boundary layer by hats (not to be confused with the
transverse stress components as in § 2). The different scalings of the tensions, shears and
bending moments are made to obtain non-trivial balances in the dimensionless integrated
Stokes equations, (2.9), (2.11) and (2.13), which become (see, for example, van de Fliert,
Howell & Ockendon 1995)

∂ T̂ss

∂s
+ ∂

∂ n̂
(�̂T̂sn)− εκ T̂sn = 0, (3.5a)

ε
∂ T̂sn

∂s
+ ∂

∂ n̂
(�̂T̂nn)+ κ T̂ss = 0, (3.5b)

∂ N̂s

∂s
+ ∂

∂ n̂
(�̂N̂n)= 0, (3.5c)

ε
∂

∂s

(
M̂ss + Ĥ T̂ss

)
+ ∂

∂ n̂

[
�̂
(

M̂sn + ε Ĥ T̂sn

)]
− εκ

(
M̂sn + εĤ T̂sn

)
= �̂N̂s,

(3.5d)
∂

∂s

(
M̂sn + ε Ĥ T̂sn

)
+ ∂

∂ n̂

[
�̂
(

M̂nn + Ĥ T̂nn

)]
+ κ

(
M̂ss + Ĥ T̂ss

)
= �̂N̂n,

(3.5e)

where �̂= 1 − εκ n̂ is the metric coefficient. The boundary conditions (3.3) at the edge of
the sheet are transformed to

T̂nn = T̂sn = N̂n = M̂nn = M̂sn = 0 at n̂ = 0. (3.6)

We now expand our variables as asymptotic series in powers of ε, i.e. T̂ss ∼ T̂ss0 +
εT̂ss1 + · · · as ε→ 0. Note that the scalings (3.4) already assume the leading-order
matching conditions

Tsn0, Tnn0, Mnn0 → 0 as n → 0, N̂s0 → 0 as n̂ → −∞. (3.7)

As anticipated above and suggested by the sketch in figure 2(a), we also assume that,
although the sheet thickness h varies significantly in the edge layer, the centre-surface H
does not, so that Ĥ(s, n)∼ Ĥ0(s)+ O(ε).

At leading order, we find from (3.5d) that

N̂s0 = ∂ M̂sn0

∂ n̂
. (3.8)

Substituting this result into (3.5c) gives, at leading order,

∂

∂ n̂

(
N̂n0 + ∂ M̂sn0

∂s

)
= 0. (3.9)
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By applying the boundary conditions (3.6), we deduce that

N̂n0 + ∂ M̂sn0

∂s
= 0, (3.10)

and, by matching to the outer region, we deduce the leading-order effective boundary
condition

N̂n0 + ∂Msn0

∂s
= 0 at n = 0. (3.11)

However, by combining (3.5b) and (3.5e) at leading order, we obtain

N̂n0 = ∂ M̂sn0

∂s
+ ∂ M̂nn0

∂ n̂
+ κ M̂ss0, (3.12)

which can be used to eliminate the shear stress and express (3.11) purely in terms of the
bending-moment tensor. In summary, we can express the leading-order effective boundary
conditions for the outer problem as

Tsn = Tnn = Mnn = 2
∂Msn

∂s
+ ∂Mnn

∂n
+ κMss = 0 at n = 0. (3.13)

A benefit of this method, when compared with similar derivations carried out by Howell,
Kozyreff & Ockendon (2009)and O’Kiely (2017), for example, is that we did not need
to calculate any velocity components of the fluid; instead, we worked with the tensions
and bending moments. Moreover, incorporating surface tension contributions into the
definitions of the net tensions and bending moments made it straightforward to generalise
the boundary conditions found by O’Kiely (2017) to include surface tension effects. We
note that an alternative derivation of the effective boundary conditions based on a virtual
work argument is presented by Srinivasan et al. (2017), though there appear to be some
sign inconsistencies in their formulation.

Armed with the boundary conditions (3.13), we are ready to tackle the outer governing
equations (2.7), (2.9), (2.11) and (2.13). As noted in § 2, we must first derive constitutive
relations for the integrated tensions and bending moments by analysing the asymptotic
limit as ε→ 0. In doing so, we choose to focus on a model geometrical set-up in which a
disc of viscous fluid retracts under surface tension, and then examine the response of the
system to small transverse perturbations.

4. Model for an approximately uniform viscous sheet

4.1. Leading-order solution
Now, we invoke the dimensionless Newtonian constitutive relations, namely

σ̃ = −p Ĩ + ∇̃ũ + ∇̃ũ
t
, ε2σzz = −p − 2∇̃ · ũ, ε2σ̂ = ∂ ũ

∂z
+ ε2∇̃w, (4.1a–c)

where the pressure p has been made dimensionless with γ /εL , the same scaling as the in-
plane stress. Here, we have assumed that the viscosity η is constant; the theory developed
below is generalised to include small viscosity variations in Appendix A. When we express
the dependent variables as asymptotic expansions of the form ũ ∼ ũ0 + ε2ũ1 + · · · , we
immediately see from (4.1c) that the flow is extensional to leading order, with the in-plane
velocity ũ0 independent of z, i.e.

ũ0 = ũ0 (x̃, t) . (4.2)
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The net mass-conservation equation (2.7) thus reduces to

∂h0

∂t
+ ∇̃ · (h0ũ0)= 0. (4.3)

Next, we use the constitutive relation (4.1a) to evaluate the leading-order in-plane stress
σ̃ 0 and thus from (2.10), the in-plane tension tensor, namely

T0 =
(

2 + 2h0∇̃ · ũ0

)
Ĩ + h0

(
∇̃ũ0 + ∇̃ũt

0

)
. (4.4)

In this expression, the first factor of 2 is the contribution due to surface tension, and
the remaining terms (proportional to h0) are the viscous contributions. Let us denote the
region of the x̃-plane occupied by the sheet byΩ , with boundary ∂Ω . Then, the governing
equation and boundary condition for T0, namely

∇̃ · T0 = 0 in Ω, T0 · ñ = 0 on ∂Ω, (4.5a,b)

follow from (2.9) and (3.13), respectively. In principle, given h0, the boundary-value
problem (4.4) and (4.5) determines both T0 and ũ0 (up to an irrelevant rigid-body motion),
and then h0 can be stepped forward in time using (4.3).

In this paper, we focus on the behaviour of a sheet whose thickness is spatially uniform
to leading order, i.e. for which

h0 (x̃, t)=ψ(t). (4.6)

In this case, the problem (4.4) and (4.5) implies that

T0 (x̃, t)= 0. (4.7)

Although the flow is extensional at leading order, the viscous and surface tension terms in
(2.10) exactly balance, so the leading-order tension in the sheet is identically zero. Up to
an arbitrary rigid-body translation and rotation, the corresponding leading-order velocity
is found from (4.4) to be given by

ũ0 (x̃, t)= − x̃
3ψ(t)

. (4.8)

Then, the mass-conservation equation (4.3) reduces to ψ̇ − 2/3 = 0 (with the dot denoting
differentiation) and, therefore,

h0(x̃, t)=ψ(t)= 1 + 2t

3
. (4.9)

In this leading-order solution, the initially uniform sheet thickness remains uniform and
grows linearly with t , as the sheet retracts under surface tension. If we define in-plane
Lagrangian variables X̃ by

x̃ = X̃√
ψ(t)

, (4.10)

then, with respect to X̃ , the sheet domain, which we will now denote byΩX , remains fixed
for all time. Of course, this result is subject to the caveat that the aspect ratio of the sheet
must remain small, which requires that ψ(t)� ε−2/3.

4.2. Small thickness perturbations
We have seen that the leading-order tension in the sheet is identically zero when the sheet
thickness is spatially uniform. We now introduce small thickness perturbations of order ε2
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which, as we will demonstrate, are sufficient to induce regions of compression and thus
the possibility of buckling. To simplify the analysis, we make the change of variables from
(x̃, z, t) to (X̃, z, t), where X̃ are the Lagrangian in-plane variables introduced in (4.10).
We then perturb about the above leading-order solution as follows:

h
(

X̃, t
)

∼ψ(t)+ ε2h1

(
X̃, t

)
+ O

(
ε4), (4.11a)

ū
(

X̃, t
)

∼ − X̃
3ψ(t)3/2

+ ε2ū1

(
X̃, t

)
+ O

(
ε4), (4.11b)

where the initial thickness perturbation h1(X̃, 0) is assumed to be specified. We impose
the constraint ∫∫

ΩX

h1

(
X̃, 0

)
dX̃ = 0, (4.12)

so that the mass of the sheet is accounted for entirely by the leading-order solution.
We also make small perturbations to the centre-surface H , so that

H
(

X̃, t
)

∼ δH1

(
X̃, t

)
, (4.13)

where 0< δ� 1. The initial centre-surface displacement δH1(X̃, 0) is again assumed to
be specified and small. The restriction to small centre-surface perturbations allows us to
linearise about the base state H = 0, and the size of δ in relation to ε is irrelevant. The
resulting theory models the onset of buckling, should it occur, and remains valid so long
as H1 remains smaller than O(δ−1).

We recall that the in-plane tension tensor T is zero at leading order, and its asymptotic
expansion thus takes the form

T
(

X̃, t
)

∼ ε2T1

(
X̃, t

)
+ O

(
ε4, ε2δ2

)
. (4.14)

The first-order in-plane stress σ̃ 1 is found by substituting the expansions (4.11)–(4.13)
into the governing equations (2.3)–(2.5) and constitutive relations (4.1). The first non-zero
contribution T1 to the tension is then found from (2.10), which produces

T1 = 2
(
ψ3/2∇̃ · ū1 − h1

ψ

)
Ĩ +ψ3/2

(
∇̃ū1 + ∇̃ūt

1

)
, (4.15)

where, now, the gradient operator ∇̃ is performed with respect to the new in-plane
variables X̃ .

The first-order tension satisfies a boundary-value problem analogous to (4.5), that is,

∇̃ · T1 = 0 in ΩX , T1 · ñ = 0 on ∂ΩX (4.16a,b)

(with no contributions due to perturbations in ∂ΩX because T0 is identically zero). As in
§ 4.1, if h1 is known, then the problem (4.16) and constitutive relation (4.15) in principle
determine both T1 and ū1, up to an arbitrary rigid-body motion. The evolution of h1 is
then determined from the first-order mass conservation equation (2.7), namely

∂h1

∂t
− 2h1

3ψ
+ψ3/2∇̃ · ū1 = 0. (4.17)
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We can simplify the problem (4.15)–(4.17) by introducing a scaled Airy stress function
A(X̃, t) such that

T1 =ψ−3/4Hc[A] =ψ−3/4

⎛
⎝ ∂2A

∂Y 2 − ∂2A
∂X∂Y

− ∂2A
∂X∂Y

∂2A
∂X2

⎞
⎠, (4.18)

which satisfies (4.16a) identically. Here, we have introduced the notation H[·] for the two-
dimensional Hessian matrix and Hc for the corresponding cofactor matrix. By eliminating
ū1 from (4.15), we find thatA satisfies the forced biharmonic equation

∇̃4A+ψ−1/4∇̃2h1 = 0, (4.19)

and the mass-conservation equation (4.17) can be expressed as

6
∂h1

∂t
+ψ−3/4∇̃2A= 0. (4.20)

By eliminatingA from (4.19) and (4.20), we find that h1 satisfies

∂∇̃2h1

∂t
= ψ̇

4ψ
∇̃2h1, (4.21)

and hence

∇̃2h1

(
X̃, t

)
=ψ(t)1/4∇̃2h1

(
X̃, 0

)
. (4.22)

The first-order tension in the sheet is thus given by (4.18), whereA satisfies

∇̃4A+ ∇̃2h1

(
X̃, 0

)
= 0 in ΩX (4.23a)

and (from (4.16b))

A= ∂A
∂n

= 0 on ∂ΩX . (4.23b)

SinceΩX is fixed with respect to the Lagrangian variables X̃ , the scaled stress functionA
is independent of t , and determined once and for all by the boundary-value problem (4.23).
Thus, the spatial form of the stress field (4.18) is likewise fixed, and it simply scales with
ψ(t)−3/4 as time increases. The evolution of the thickness perturbations is then given by

h1

(
X̃, t

)
=
(

1 −ψ(t)1/4
)

∇̃2A
(

X̃
)

+ h1

(
X̃, 0

)
. (4.24)

Note that the mass constraint (4.12) on the initial thickness perturbation holds for all time,
i.e. ∫∫

ΩX

h1

(
X̃, t

)
dX̃ = 0 (4.25)

for all t .

4.3. Evolution of the centre-surface
For consistency with (4.13), we find that the bending moment tensor scales with

M
(

X̃, t
)

∼ ε2δM1

(
X̃, t

)
, (4.26)
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where

M1 = −ψ
4

6
∂

∂t

(
H[H1] + (∇̃2 H1) Ĩ

)
− ψ3

18

(
4H[H1] + (∇̃2 H1) Ĩ

)
. (4.27)

By using (2.11) to eliminate N from (2.13), we thus obtain the moment balance equation
in the form

ψ15/4

3

(
ψ
∂∇̃4 H1

∂t
+ 5

6
∇̃4 H1

)
=Hc[A] :H[H1]. (4.28)

We can slightly simplify this equation by defining the function

J
(

X̃, t
)

=ψ(t)5/4 H1

(
X̃, t

)
, (4.29)

which satisfies

∂∇̃4 J

∂t
= 3ψ(t)−19/4Hc[A] :H[J ]. (4.30)

The effective boundary conditions (3.13) may also be expressed in terms of J in the forms

∂

∂t

(
∂2 J

∂n2 + ∇̃2 J

)
+ 1

2ψ(t)

(
∂2 J

∂n2 − ∇̃2 J

)
= 0 on ∂ΩX ,

(4.31a)

∂

∂t

(
∂3 J

∂n3 − 3
∂∇̃2 J

∂n
+ 3κ0∇̃2 J

)
+ 1

2ψ(t)

(
∂3 J

∂n3 − ∂∇̃2 J

∂n
− κ0∇̃2 J

)
= 0 on ∂ΩX .

(4.31b)

We emphasise that these boundary conditions are again expressed in the Lagrangian frame,
in which ΩX is a fixed domain, with known boundary ∂ΩX , whose curvature κ0(X̃) is
thus independent of time. The curvature κ in the Eulerian domain can be recovered using
κ(x̃, t)= √

ψ(t)κ0(x̃
√
ψ(t)).

To summarise, given the initial thickness perturbation h1(X̃, 0), the scaled Airy stress
functionA(X̃) is fully determined by the boundary-value problem (4.23). The evolution of
the sheet centre-surface is then governed by the partial differential equation (4.30), subject
to the boundary conditions (4.31) and the initial condition

J (X̃, 0)= H1(X̃, 0). (4.32)

Of particular interest is whether certain choices of initial data h1(X̃, 0) and H1(X̃, 0) can
give rise to temporal growth in the centre-surface displacement H1(X̃, t).

From (4.18), we see that the sum of the principal stresses is given by Tr(T1)=
ψ−3/4∇̃2A, and the boundary conditions (4.23b) thus imply that∫∫

ΩX

Tr(T1) dX̃ = 0. (4.33)

It follows that, except for the trivial case where ∇̃2h1(X̃, 0)= 0 and so T1 is identically
zero, there must be a subset of ΩX in which Tr(T1) < 0, i.e. where at least one of the
principal stresses is negative and the sheet is thus locally under compression. In the next
section, we will show that these compressive zones can indeed give rise to transient growth
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in the sheet centre-surface by focusing on the relatively simple special case whereΩX is a
disc.

4.4. Model for a retracting viscous disc
Now let us apply the general theory developed thus far to the particular case where ΩX is
a disc subject to axisymmetric thickness perturbations. The disc is defined by 0 ≤ ζ < 1,
where ζ is the radial Lagrangian variable, related to the usual plane polar variable r by
ζ = r

√
ψ(t). The sheet thickness perturbations are given by h1(ζ, t), for which the net

mass conservation condition (4.25) reduces to∫ 1

0
ζh1(ζ, t) dζ = 0. (4.34)

Given this constraint, we measure the size of the thickness perturbations using a scalar
amplitude A, defined by

A =
[∫ 1

0
ζh1(ζ, 0)2 dζ

]1/2

. (4.35)

From (4.22) with the assumption of axisymmetry, we have

1
ζ

d
dζ

(
ζ

d
dζ

) [
h1(ζ, t)−ψ(t)1/4h1(ζ, 0)

]= 0. (4.36)

Imposing boundedness at the origin and the mass constraint (4.34), we deduce that

h1(ζ, t)=ψ(t)1/4h1(ζ, 0). (4.37)

Similarly, (4.23a) can be integrated directly in this case to give

∇̃2A= 1
ζ

d
dζ

(
ζ

dA
dζ

)
= −h1 (ζ, 0) . (4.38)

The in-plane tension is given by

T1(ζ, t)= diag [T1rr , T1θθ ] =ψ(t)−3/4 diag
[

1
ζ

dA
dζ
,

d2A
dζ 2

]
. (4.39)

By integrating (4.38), we thus obtain

T1rr = −Aψ(t)−3/4 F(ζ )

ζ 2 , (4.40a)

T1θθ = Aψ(t)−3/4 F(ζ )− ζ F ′(ζ )
ζ 2 , (4.40b)

where we have defined the function F such that

AF(ζ )=
∫ ζ

0
sh1(s, 0) ds. (4.41)

By including the factor A in (4.41), we ensure that F satisfies the normalisation condition

∫ 1

0

F ′(ζ )2

ζ
dζ = 1, (4.42)
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along with the boundary conditions

F(0)= F ′(0)= F(1)= 0. (4.43)

Otherwise, F may be chosen freely by varying the initial thickness perturbation h1(ζ, 0).
It follows from (4.40) that

T1rr + T1θθ = −Aψ(t)−3/4 F ′(ζ )
ζ

= −ψ(t)−3/4h1(ζ, 0) (4.44)

and hence, as pointed out in § 4.3, for any non-trivial initial centre-surface perturbation,
there must always be regions of the disc where T1rr + T1θθ < 0 so the sheet is locally under
compression.

Although we have restricted to axisymmetric thickness perturbations, it is possible
for the azimuthal tension T1θθ to be negative. We therefore make no such restriction to
the sheet centre-surface displacement, which may well be unstable to non-axisymmetric
perturbations. As the problem for H1 is linear, we can write the solution as a sum over
azimuthal modes, that is,

H1(ζ, θ, t)=ψ(t)−5/4 J (ζ, θ, t)= b(t)+ c(t)ζeiθ +ψ(t)−5/4
∞∑

m=0

J (m)(ζ, t)eimθ

(4.45)
(real part assumed). The two scalars b and c are included to account for arbitrary rigid-
body motions. They are chosen such that∫ 2π

0

∫ 1

0
H1(ζ, θ, t)ζ dζdθ = 0, (4.46a)∫ 2π

0

∫ 1

0
H1(ζ, θ, t)e−iθ ζ 2 dζdθ = 0, (4.46b)

which eliminate the net transverse displacement and rotation of the sheet, respectively. We
assume that the coordinates are oriented such that the constraints (4.46) are satisfied at
t = 0.

The centre-surface equation (4.30) becomes

∂�2
m J (m)

∂t
+ 3Aψ(t)−19/4

{
1
ζ

∂

∂ζ

(
F(ζ )

ζ

∂ J (m)

∂ζ

)
− m2

ζ 2
d

dζ

(
F(ζ )

ζ

)
J (m)

}
= 0,

(4.47)
where

�m := ∂2

∂ζ 2 + 1
ζ

∂

∂ζ
− m2

ζ 2 (4.48)

is the Laplace operator for mode m. The operator �m is of Cauchy–Euler form and
singular at ζ = 0, and the appropriate conditions to impose on J (m)(ζ, t) as ζ → 0 depend
somewhat on the value of m. For m > 2, bounded solutions for J (m)(ζ, t) are proportional
to ζm or ζm+2 as ζ → 0. For m = 2, the value of J (2)(ζ, 0) must be set to zero to ensure
that �2 J (2) is bounded. For m = 1, the value of ∂ J (1)/∂ζ(ζ, 0) is indeterminate and,
without loss of generality, may be set to zero by choosing c(t) appropriately in (4.45).
Similarly, no generality is lost by setting J (0)(0, t) to zero, by adjusting the function b(t).
Thus, for all mode numbers m, we can select a unique solution for J (m) by imposing the
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boundary conditions

J (m)(0, t)= ∂ J (m)

∂ζ
(0, t)= 0. (4.49)

The parameters b and c are then given by

H1(0, θ, t)= b(t)= −2ψ(t)−5/4
∫ 1

0
J (0)(ζ, t)ζ dζ, (4.50a)

e−iθ ∂H1

∂ζ
(0, θ, t)= c(t)= −3ψ(t)−5/4

∫ 1

0
J (1)(ζ, t)ζ 2 dζ. (4.50b)

The boundary conditions (4.31) at the disc edge are transformed to

∂

∂t

[
2
∂2 J (m)

∂ζ 2 + ∂ J (m)

∂ζ
− m2 J (m)

]
+ 1

2ψ(t)

(
m2 J (m) − ∂ J (m)

∂ζ

)
= 0, (4.51a)

∂

∂t

[
2
∂3 J (m)

∂ζ 3 − 3(m2 + 1)
∂ J (m)

∂ζ
+ 6m2 J (m)

]
+ 1

2ψ(t)

(
1 − m2

) ∂ J (m)

∂ζ
= 0 (4.51b)

at ζ = 1,

and the initial condition for J (m) is given by

J (m)(ζ, 0)= 1
2π

∫ 2π

0
H1(ζ, θ, 0)e−imθ dθ. (4.52)

5. Numerical solution
To calculate the evolution of the centre-surface, we solve (4.47) along with boundary
conditions (4.49)–(4.51) and appropriate initial conditions. We use a Green’s function
to invert the biharmonic operator and isolate ∂ J/∂t , then use the method of lines to
transform the problem into a system of ordinary differential equations which is then
solved numerically. We present this derivation in the simplest case m = 0, noting that the
cases m > 0 follow similarly. In this simpler case, it is possible to integrate the governing
equation (4.47) once to find that the centre-surface is governed by

∂

∂t

(
ζ 2 ∂

3 J (0)

∂ζ 3 + ζ
∂2 J (0)

∂ζ 2 − ∂ J (0)

∂ζ

)
+ 3Aψ(t)−19/4 F(ζ )

∂ J (0)

∂ζ
= 0, (5.1)

subject to the centre-surface being specified initially and boundary conditions

J (0) = 0 at ζ = 0, (5.2a)

∂ J (0)

∂ζ
= 0 at ζ = 0, (5.2b)

2
∂3 J (0)

∂ζ 2∂t
+ ∂2 J (0)

∂ζ ∂t
− 1

2ψ(t)
∂ J (0)

∂ζ
= 0 at ζ = 1. (5.2c)

We can solve the problem (5.1) and (5.2) for ∂ J (0)/∂t in the form

∂ J (0)

∂t
(ζ, t)= −3Aψ(t)−19/4

∫ 1

0
G(ζ, ξ)

∂ J (0)

∂ζ
(ξ, t)F(ξ) dξ + ζ 2

12ψ(t)
∂ J (0)

∂ζ
(1, t),

(5.3)
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h1 (ζ , 0) / A

T1θ θ / A

T1r r / A

0.8 1.0

ζ

Figure 3. The thickness perturbation (5.6) (with B > 0) and the corresponding radial and azimuthal tensions,
given by (4.40).

where the Green’s function G(ζ, ξ) satisfies

ζ 2 ∂
3G

∂ζ 3 + ζ
∂2G

∂ζ 2 − ∂G

∂ζ
= δ(ζ − ξ) 0< ζ < 1, (5.4a)

G = ∂G

∂ζ
= 0 ζ = 0, (5.4b)

2
∂2G

∂ζ 2 + ∂G

∂ζ
= 0 ζ = 1, (5.4c)

and is given by

G(ζ, ξ)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−ζ
2

12

(
1 + 3

ξ2

)
0 ≤ ζ ≤ ξ ≤ 1,

−3 + ζ 2

12
+ 1

2
log

(
ξ

ζ

)
0 ≤ ξ < ζ ≤ 1.

(5.5)

We discretize spatially to transform (5.3) into a system of ordinary differential equations in
t , which is then solved numerically as an initial-value problem, with the initial conditions
given by (4.52). When solving the centre-surface equation (4.47) for a general m, we
employ the same method, using a Green’s function to isolate the time-derivative followed
by the method of lines. We then use (4.50) to determine the functions b(t) and c(t), and
finally reconstruct the centre-surface displacement using (4.45).

To see whether any selection of modes occurs, we prescribe a pseudo-random initial
centre-surface profile, choose an initial thickness profile and analyse whether any modes
are dominant. For this exercise, we use the thickness perturbation

h1(ζ, 0)= AB sin (2πζ) /ζ, (5.6)

where B is chosen to satisfy the normalisation condition (4.35). When B > 0, the thickness
profile (5.6) corresponds to the disc having a thicker centre, and thinner edges. It causes
the radial tension (4.40a) to be negative everywhere and the azimuthal tension (4.40b) to
be negative towards the centre of the disc, as seen in figure 3.

For the initial centre-surface profile, we use a sum of Bessel functions in ζ and a sum
of Fourier modes in θ , with contributions from m = 0, 1, . . . , 10. The coefficients for
this series are then drawn randomly from a uniform distribution between −1 and 1, and a
contour plot of the resulting initial centre-surface is shown in figure 4(a). We then solve the
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Figure 4. (a) Pseudo-random initial centre-surface profile, and (b) the displacement of the edge of the disc,
H1(1, 0, t), when subject to the initial thickness perturbation (5.6) with A = 30 and B > 0. The coloured lines
represent the times at which the contour plots in figure 5 are plotted, namely t = 0, t = 0.5, t = 1.5 and t = 6.
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Figure 5. Contour plots of the centre-surface taken at (a) t = 0.5, (b) t = 1.5 and (c) t = 6. The initial centre-
surface is pseudo-random, shown in figure 4(a), and the thickness perturbation is given by (5.6) with A = 30
and B > 0. Here, panel (a) corresponds to the red dashed line in figure 4(b), panel (b) to the blue line and panel
(c) to the black line.

problem (4.47)–(4.52) for the centre-surface evolution numerically, following the method
described above.

In figure 4(b), we show the time evolution of the centre-surface at the point (ζ, θ)=
(1, 0) on the boundary of the disc, for the solution with B > 0 and A = 30. We observe
transient growth in this case, before decay, with the centre-surface eventually becoming
flat. In figure 5, we show how the centre-surface profile evolves through a sequence of
snapshots, plotted using the Eulerian radial coordinate r = ζ/

√
ψ(t) to emphasise the

radial shrinkage. We see that the axisymmetric mode m = 0 quickly becomes dominant,
though the influence of non-axisymmetric modes remains noticeable until very late in the
process. We hypothesise that radial tension T1rr being negative everywhere (as shown in
figure 3) is responsible for selecting the axisymmetric mode in this example.

Next, we consider an example with the same pseudo-random initial centre-surface
profile (shown in figure 4a) and the same value of A = 30, but now with B < 0, i.e. using
the negative of the thickness perturbation just considered. Changing the sign of B also
reverses the tensions, so that T1rr is now positive everywhere and T1θθ has a region of
compression near the edge of the disc. The centre-surface again exhibits transient growth,
before decaying to zero, as can be seen in figure 6(a). Figure 6(b) shows time snapshots of
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Figure 6. (a) Displacement of the edge of the disc, H1(1, 0, t), with the thickness perturbation given by (5.6)
with A = 30 and B < 0, and a pseudo-random initial centre-surface profile, shown in figure 4(a). The coloured
lines represent the times at which the contour plots in figure 7 are taken. These are t = 0, t = 0.5, t = 1.4
and t = 6. (b) The displacement at the edge of the disc, H1(1, θ, t), for time snapshots, where the colours
correspond to the times in panel (a).
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Figure 7. Contour plots of the centre-surface taken at (a) t = 0.5, (b) t = 1.4 and (c) t = 6, where the initial
centre-surface is random, shown in figure 4(a), and the thickness perturbation is given by (5.6) with A = 30
and B < 0. Panel (a) corresponds to the red dashed line in figure 6(a), panel (b) to the blue line and panel (c)
to the black line.

the displacement at the edge of the disc as a function of θ . We observe that the pseudo-
random initial data (in orange) is quickly swamped by transient growth in the m = 2 mode,
which then slowly decays. The contour plots in figure 7 likewise capture the dominance of
m = 2, though the influence of the other modes is still noticeable, especially in figure 7(a).
By comparing figures 4(b) and 6(a), we observe that, for the same value of A, there is
more growth in the case where m = 2 is dominant compared with the case where m = 0 is
dominant.

We now investigate a different example in which the mode number m is fixed, and H
and h are both combinations of two Gaussian distributions, with means ±μH and ±μh ,
respectively. Specifically, we choose

h1(ζ, 0)= ABh(μh)

{
exp

[−(ζ −μh)
2

2(0.2)2

]
+ exp

[−(ζ +μh)
2

2(0.2)2

]
+ Ch(μh)

}
, (5.7)

where Bh(μh) > 0 and Ch(μh) < 0 are set by the net mass and normalisation constraints
(4.34) and (4.35), and
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H1(ζ, θ, 0)= BH (μH )eimθ
{

exp
[−(ζ −μH )

2

2(0.2)2

]
+ exp

[−(ζ +μH )
2

2(0.2)2

]
(5.8)

+ CH (μH )+ DH (μH )ζ

}
.

The fixing of the normalisation constant BH (μH ) is discussed below. The final two
constants in (5.8) depend on the value of m. We choose CH (μH ) such that the
displacement constraint (4.46a) is satisfied when m = 0 and such that H1(0, θ, 0)= 0 for
m > 0, while DH (μH ) is chosen to satisfy the rotation constraint (4.46b) when m = 1
and otherwise is equal to zero. The Gaussian profiles (5.7) and (5.8), with the four free
parameters m, μH , μh and A, allow us to analyse the effects of simultaneously varying
the initial centre-surface and thickness perturbations on the evolution of the centre-surface.

To quantify the transient growth of the centre-surface, we define the maximum
difference between any two points on the centre-surface at each time, at a fixed angle
θ = 0. We denote this quantity by d(t), where

d(t)= max
ζ

[H1(ζ, 0, t)] − min
ζ

[H1(ζ, 0, t)] , (5.9)

and we infer that transient growth occurs if ever d ′(t) > 0. As we have linearised with
respect to the centre-surface displacement, H , we have the freedom to scale it such that
d(0)= 1 whenever H1 = 0 (this choice fixes the normalisation constant BH (μH ) in (5.8)).
We are also interested in the overall maximum growth, d∗, and the time t∗ at which this
maximum occurs, i.e.

d∗ = max
t≥0

[d(t)] = d(t∗), t∗ = arg maxt≥0[d(t)]. (5.10a,b)

When there is no transient growth, we have d∗ = 1 and t∗ = 0.
With the initial thickness and centre-surface perturbations given by (5.7) and (5.8), the

value of d∗ depends on m, μH , μh and A. We choose to fix A = 30 and, at each value
of (μH , μh), maximise d∗ over the mode number m. The resulting contour plot of d∗ in
the (μH , μh)-plane is shown in figure 8. We see that the plane is divided into distinct
regions, in each of which a different mode is dominant, either m = 0, m = 1 or m = 2.
Furthermore, we observe that the value of d∗ is significantly lower in the regions where
m = 1 is dominant than it is when either of the other two modes is dominant. The overall
maximum occurs with m = 2 and μh close to 1, when the value of d∗ can exceed 500.
Generally, the non-axisymmetric mode m = 2 is dominant when the thickness is greater
at the edge of the disc than at the centre, and m = 0 is dominant when the reverse is
true.

In figure 9, we show the initial centre-surface displacement H1(ζ, 0, 0) and the
normalised maximal displacement H1(ζ, 0, t∗)/d∗ at three particular values of (μH , μh),
indicated by the red crosses in figure 8. In figure 9(a), we show a case where the m = 2
mode dominates; here, the maximal centre-surface profile is monotonic, with its maximum
and minimum roughly coinciding with those of the initial condition. In figure 9(c), we
show a case where the m = 0 mode is dominant; again, we find that the maximal centre-
surface profile at is monotonic and quite well approximated by the initial condition. Finally,
in figure 9(b), we show a rare example where the m = 1 mode dominates; here, the centre-
surface is non-monotonic, with an interior maximum. There is little change between the
initial and maximal centre-surface profiles because here, t∗ is close to zero and d∗ is close
to 1.
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Figure 8. A contour plot of log10 d∗, where d∗ is defined by (5.10), versus the parameters μH and μh
characterising the initial centre-surface and thickness perturbations, given by (5.8) and (5.7) with A = 30,
respectively. The black dashed curves delineate regions where the dominant mode changes. The numbered red
crosses denote where in the (μH , μh)-plane the centre-surface is plotted in figure 9. The faint green dashed
lines indicated by (a), (b) and (c) denote the values of μh for which the stress profiles are plotted in figure 10.
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Figure 9. The initial centre-surface displacement, H1(ζ, 0, 0) (dashed), and normalised maximal
displacement, H1(ζ, 0, t∗)/d∗ (solid), for (a) (m, μH , μh)= (2,0.2,0.9), (b) (m, μH , μh)= (1,0.45,0.2),
(c) (m, μH , μh)= (0,0.8,0.4). These positions are shown by red crosses in figure 8.

To illustrate why different modes are dominant in different regions, we show the
stress profiles for three different thickness perturbations, one in which m = 0 is typically
dominant (figure 10a), an intermediate case where there is not much growth at all
(figure 10b) and a case where m = 2 is typically dominant (figure 10c); the corresponding
values of μh are indicated by green dashed lines in figure 8. In the first case (A), the
radial stress, T1rr is negative throughout, which indeed we would expect to promote
axisymmetric buckling where m = 0 is dominant. However, in case (C), the azimuthal
stress, T1θθ is negative near the edge of the disc, while the radial stress is positive
everywhere, giving rise to non-axisymmetric buckling. In the intermediate case (B), both
stress components change sign and, while there is a band of azimuthal compression, at the
edge and centre of the disc, T1θθ is positive; this stress field does not significantly excite
either axisymmetric or non-axisymmetric modes.
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Figure 10. The initial radial and azimuthal tensions, given by (4.40) with t = 0, where the thickness
perturbation is given by (5.7) with A = 30 and (a) μh = 0.2, (b) μh = 0.6 and (c) μh = 0.9. These positions
are shown by green dashed lines in figure 8.

6. Eigenvalue problem approximation

6.1. Axisymmetric eigenvalue problem
We have seen in § 5 that it is typical for the centre-surface to grow transiently, then decay
for large time. We also see that certain modes can be selected, with either m = 0 or m = 2
appearing to be dominant for most parameter values. We now show that this behaviour
can be quantified by making some approximations to the boundary conditions (4.51) at
the edge of the disc. For simplicity, we begin by considering an axisymmetric centre-
surface, before generalising to a non-axisymmetric centre-surface to understand the mode
selection.

Seeking a separable solution to the axisymmetric centre-surface equation (5.1), we make
the ansatz

H1(ζ, t)=ψ(t)−5/4 J (0)(ζ, t)=ψ(t)−5/4 exp
[

6A

5λ

(
ψ(t)−15/4 − 1

)]
g(ζ ), (6.1)

where λ is an eigenvalue. Then the axisymmetric centre-surface equation and boundary
conditions (5.1) and (5.2) become

ζg′′′(ζ )+ g′′(ζ )− 1
ζ

g′(ζ )= λ F(ζ )

ζ
g′(ζ ), (6.2)

and

g(0)= g′(0)= 0, (6.3)

2g′′(1)+ g′(1)+ λ

6A
ψ(t)15/4g′(1)= 0. (6.4)

We see that, due to the final term in (6.4), the problem does not accept a fully separable
solution. However, in the limit of large thickness perturbations where A � 1, the boundary
condition (6.4) may be approximated by

2g′′(1)+ g′(1)= 0. (6.5)

This approximation breaks down for large times where t = O(A4/15), but allows us to
capture the early dynamics where buckling may occur, even if it is transient. For given
F(ζ ), the eigenvalue problem (6.2) with boundary conditions (6.3) and (6.5) may be solved
numerically by shooting, with asymptotic behaviour g(ζ )∼ ζ 2 as ζ → 0 and λ determined
as a shooting parameter by imposing the boundary condition (6.5).
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Figure 11. The evolution of the centre-surface displacement at the edge of the disc, H1(1, t), calculated from
the full centre-surface boundary-value problem (5.1) and (5.2) in red, and via the eigenvalue approximation
(6.7) in black. The initial thickness and centre-surface perturbations are given by h1(ζ, 0)= 10 sin(2πζ)/ζ
and H1(ζ, 0)= ζ 2(15 − 6ζ )/9.

Given F(ζ ) (satisfying the conditions (4.42) and (4.43)), (6.2), along with the
boundary conditions (6.3) and (6.5), constitutes an eigenvalue problem for g and λ. The
eigenfunctions, gk , satisfy an orthogonality condition, given by

〈g j , gk〉 =
∫ 1

0

F(ζ )

ζ
g′

j (ζ )g
′
k(ζ ) dζ = 0 for j = k. (6.6)

(We note that F need not be positive on (0, 1), in which case, 〈·, ·〉 does not formally define
an inner product.) Having computed all the eigenvalues λk and eigenfunctions gk , we can
reconstruct the solution for the centre-surface as an eigenfunction expansion, namely

H1(ζ, t)=ψ(t)−5/4
∑

k

〈H1(ζ, 0), gk〉
〈gk, gk〉 exp

[
6A

5λk

(
ψ(t)−15/4 − 1

)]
gk(ζ ). (6.7)

We check the validity of using the approximate boundary condition (6.5) instead of (6.4)
with a thickness perturbation h1(ζ, 0)= 10 sin(2πζ)/ζ , corresponding to A ≈ 12.48, and
the initial centre-surface given by H1(ζ, 0)= ζ 2(15 − 6ζ )/9. In figure 11, we show the
evolution of the centre-surface displacement H1(1, t) at the edge of the disc, predicted
by the full numerical solution described in § 5 and by the approximate solution (6.7). We
see that there is very good agreement in the early-time behaviour and good qualitative
agreement between the two solutions for all times, with the eigenfunction expansion (6.7)
capturing well the growth and decay of the full solution. Furthermore, we will demonstrate
below that the approximate solution (6.7) provides good estimates of both the duration and
the amplitude of the transient growth.

6.2. Quantifying the centre-surface deviation
It is difficult to make much analytical progress with the full expansion (6.7), so
let us consider for now the case where the centre-surface perturbation is exactly an
eigenfunction. Then, we only have a contribution from one term in the series, say

H1(ζ, t)= cψ(t)−5/4 exp
[

6A

5λ

(
ψ(t)−15/4 − 1

)]
g(ζ ). (6.8)
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In this instance, assuming we have again normalised H1 such that d(0)= 1, we explicitly
calculate the maximum difference (5.9) to be given by

d(t)=ψ(t)−5/4 exp
[

6A

5λ

(
ψ(t)−15/4 − 1

)]
. (6.9)

It is thus possible for the solution to grow only if λ is negative. However, by taking the
inner product of the eigenvalue equation (6.2) with g′, we find that the eigenvalues are
given by

λ

A
= g′(1)2/2 + ∫ 1

0

[
ζ g′′(ζ )2 + g′(ζ )2/ζ

]
dζ∫ 1

0 ζT1rr (ζ, 0)g′(ζ )2 dζ
. (6.10)

Here, the numerator is non-negative and the denominator depends on the initial radial
tension. As we would expect (e.g. Filippov & Zheng 2010), if the radial tension is positive
everywhere, then all of the eigenvalues λ are positive and transient growth is impossible.
However, if the radial tension is negative everywhere, then the eigenvalues are negative
and transient buckling is possible; if T1rr changes sign, then we can have both positive and
negative eigenvalues.

Assuming that λ is negative, we find that the stationary point of d ′(t)= 0 occurs at
t = t∗, where

ψ(t∗)= 2t∗
3

+ 1 =
(−18A

5λ

)4/15

. (6.11)

To have d(t) initially increasing, we need

A>−5λ
18
> 0, (6.12)

i.e. we need both for the problem (6.2)–(6.5) to admit a negative eigenvalue λ and for A to
be sufficiently large. As seen by Ryan et al. (2024), there is a threshold for the amplitude of
the thickness perturbation, above which there is transient buckling and below which there
is not. At the stationary point t = t∗, we calculate the maximum centre-surface deformation

d∗ = d(t∗)=
(−5λ

18A

)1/3

exp
(

−1
3

− 6A

5λ

)
. (6.13)

We infer that thickness perturbations of amplitude ε2 A where A = O
(
1/ log (1/δ)

)
can

cause H1 to grow by an order of magnitude in δ, thus invalidating the neglect of
nonlinear terms in § 4.2. We note also that, in the full eigenfunction expansion (6.7), the
term corresponding to the largest negative eigenvalue λ∗ (i.e. the negative eigenvalue of
smallest amplitude) will dominate the solution when t ∼ t∗, so we can continue to use the
approximations (6.11) and (6.13) for general centre-surface profiles comprising a mix of
eigenfunctions. We thus predict that the maximal time and centre-surface deformation
amplitude should satisfy ψ(t∗)= O(A4/15) and d(t∗)= O(A−1/3ek A) as A → ∞, for
some constant k.

We now compare these predicted relationships to numerical results calculated using the
full centre-surface equation (5.1) and boundary conditions (5.2). We take the initial centre-
surface profile H1(ζ, 0)= ζ 2 and Gaussian thickness perturbation (5.7). In figure 12(a),
we observe, as expected, a threshold value of A for transient growth, above which there
is a clear 4/15 power law. We see that there is excellent agreement between the predicted
relationships, (6.11) and (6.13), and the numerical solution (figure 12) once the threshold
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Figure 12. Plot of (a) ψ(t∗) and (b) d(t∗)A1/3 versus the thickness perturbation amplitude A, as calculated
from the full boundary-value problem (5.1) and (5.2). We use a thickness perturbation given by (5.7), with
μh = 0.3, 0.4, 0.5, and initial centre-surface displacement H1(ζ, 0)= ζ 2.

for transient growth has been reached. Moreover, the asymptotically straight curves
seen using log-linear axes in figure 12(b) are consistent with the predicted exponential
dependence of d∗ on A.

We note that the maximal time t∗ ∼ A4/15 occurs precisely when the approximation
(6.5) breaks down. Nevertheless, we conclude from the excellent agreement observed in
figure 12 that the asymptotic predictions (6.11) and (6.13) correctly capture the power-law
behaviour for large A, though not necessarily the prefactors.

6.3. Maximising axisymmetric buckling
We recall from figure 8 that the magnitude of the transient growth strongly depends on both
the initial centre-surface and the thickness profiles. Now we pose the question of which
combination of thickness and centre-surface perturbations gives rise to the largest transient
growth. The above analysis suggests the following related problem: which function F(ζ ),
satisfying the normalisation condition (4.42) and boundary conditions (4.43), gives rise
to the smallest possible (in magnitude) negative eigenvalue λ∗ of the problem (6.2)–
(6.5)? We then maximise over centre-surface perturbations by choosing H1(ζ, 0) to be
proportional to the eigenfunction g∗(ζ ) corresponding to the extremal eigenvalue λ∗.

Mathematically, our problem is then to find

λ∗ = min
F(ζ )

{|λ| : λ< 0} , (6.14)

subject to F satisfying the the constraint (4.42) and boundary conditions (4.43), and {g, λ}
solving the eigenvalue problem (6.2), (6.3) and (6.5). We perturb around the extremal
solutions by setting g′ �→ g′∗ + χ , F �→ F∗ + φ, while λ= λ∗ remains stationary. Then,
substituting into (6.2), (6.3) and (6.5), we get

(
ζχ(ζ )′

)′ − 1 + λ∗F∗(ζ )
ζ

χ(ζ )= λ∗ g′∗(ζ )φ(ζ )
ζ

, (6.15a)

χ(0)= 2χ ′(1)+ χ(1)= 0. (6.15b)

This problem for χ is self-adjoint, with the homogeneous problem satisfied by g′∗(ζ ). By
the Fredholm Alternative Theorem, we obtain the solvability condition∫ 1

0

g′∗(ζ )2

ζ
φ(ζ ) dζ = 0. (6.16)
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Meanwhile, by perturbing the conditions (4.42) and (4.43) on F , we find∫ 1

0

d
dζ

(
F∗′(ζ )
ζ

)
φ(ζ ) dζ = 0, (6.17a)

φ(0)= φ′(0)= φ(1)= 0. (6.17b)

From (6.15) and (6.17), we deduce that the extremal functions g∗ and F∗ satisfy the
boundary-value problems

g′′′∗ (ζ )+
g′′∗(ζ )
ζ

− 1 + λ∗F∗(ζ )
ζ 2 g′∗(ζ )= 0, (6.18a)

g∗(0)= g′∗(0)= 2g′′∗(1)+ g′∗(1)= 0, (6.18b)

F ′′∗ (ζ )−
F ′∗(ζ )
ζ

−μg′∗(ζ )2 = 0, (6.18c)

F∗(0)= F∗′(0)= F∗(1)= 0. (6.18d)

The extremal eigenvalue λ∗ is determined as part of the solution, while the additional
eigenvalue μ is associated with the constraint (4.42) and may be set to ±1 by scaling g∗
appropriately. We solve the problem (6.18) by shooting from ζ = 0, with the asymptotic
behaviour g∗(ζ )∼ ζ 2 and F∗(ζ )∼ cζ 2 as ζ → 0, where c and λ are determined as
shooting parameters by imposing the boundary conditions at ζ = 1.

To validate the results of the above approach, we also calculate the extremal
kernel function F∗ and the corresponding extremal eigenvalue λ∗ and eigenfunction g∗
numerically using the Rayleigh–Ritz method (see, for example, Collins 2006). We write
(6.10) in the form λ= I [g]/K [g], where

I [g] = g′′(1)2

2
+
∫ 1

0

(
ζg′′(ζ )2 + g′(ζ )2

ζ

)
dζ, K [g] =

∫ 1

0

F(ζ )g′(ζ )2

ζ
dζ. (6.19a,b)

We approximate g(ζ ) and F(ζ ) by truncated power series in ζ , with the coefficients
chosen to satisfy the boundary conditions (6.18b) and (6.18d), as well as the normalisation
conditions (4.42) and K [g] = 1. The remaining coefficients are then varied to minimise
I [g].

For this exercise, we fix three degrees of freedom (DoFs) in g (which is therefore
approximated by a polynomial of degree 6) while taking one, two or three DoFs in F
(which is approximated by a polynomial of degree 4, 5 or 6). The approximate values thus
obtained for the smallest negative eigenvalue are given in table 1. We see that this sequence
of eigenvalues approaches a limit as the number of DoFs is increased, and that the limiting
value agrees with the value of λ∗ computed from the “optimal” boundary-value problem
(6.18). This extremal value of λ tells us about the absolute maximum axisymmetric
transient growth that can be observed for a given (large) perturbation amplitude A.

We plot the calculated thickness perturbation profiles in figure 13(a) and indeed see that
three DoFs in both g and F are sufficient to give an excellent polynomial approximation
to the thickness perturbation that maximises axisymmetric transient growth. This extremal
perturbation corresponds to the sheet being slightly thicker at the centre and thinner
towards the edge, and indeed these kinds of perturbations were also found to promote
axisymmetric buckling in the numerical experiments performed in § 5. The corresponding
optimal initial centre-surface displacement is shown in figure 13(b). This characteristic
bowl-like shape is very similar to the maximal axisymmetric displacement shown in
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Method Eigenvalue

1 DoF −8.3423
2 DoF −8.3132
3 DoF −8.3015
‘optimal’ −8.3014

Table 1. Value of the smallest negative eigenvalue λ∗, computed using the Rayleigh–Ritz method with three
degrees of freedom (DoFs) in g and varying DoFs in F . The ‘optimal’ value is obtained by solving the
boundary-value problem (6.18).

h 1
 (

ζ,
0
)

H
1
 (

ζ,
0
)

5

4

3

2

1

0

–1

–2
0 0.2

ζ
0.4 0.6 0.8 1.0 0 0.2

ζ
0.4 0.6 0.8 1.0

‘Optimal’

3 DoF

2 DoF

1 DoF
0.25

0.20

0.15

0.10

0.05

(a) (b)

Figure 13. (a) Plot of the extremal thickness perturbation, h1(ζ, 0)= F∗′(ζ )/ζ , versus ζ . The solid curves are
obtained using the Rayleigh–Ritz approximation with three degrees of freedom (DoFs) in g and varying DoFs
in F . The dashed curve is the ‘optimal’ perturbation, given by the solution of (6.18). (b) Plot of the optimal
initial centre-surface profile, H1(ζ, 0)= g∗(ζ ) versus ζ .

figure 9(c), illustrating again how the results of this section can help us to understand
what kinds of centre-surface profiles are likely to be selected by the dynamics.

6.4. Non-axisymmetric eigenvalue problem
In the limit of large A, the dynamics can be approximately described by an eigenvalue
problem also in the non-axisymmetric case. Now, when we make the ansatz

H1(ζ, θ, t)=ψ(t)−5/4 J (m)(ζ, t)eimθ =ψ(t)−5/4 exp
[

6A

5λ(m)

(
ψ(t)−15/4 − 1

)]
g(ζ )eimθ ,

(6.20)
the centre-surface equation (4.47) is transformed to

�2
m g(ζ )= λ(m)

[
1
ζ

∂

∂ζ

(
F(ζ )

ζ

∂ J (m)

∂ζ

)
− m2

ζ 2
d

dζ

(
F(ζ )

ζ

)
J (m)

]
, (6.21)

with the boundary conditions

g(0)= 0, (6.22a)
g′(0)= 0, (6.22b)

2g′′(1)+ g′(1)− m2g(1)= 0, (6.22c)

2g′′′(1)− 3(m2 + 1)g′(1)+ 6m2g(1)= 0. (6.22d)
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As in § 6.1, terms of order ψ(t)15/4/A have been neglected in the boundary conditions
(6.22c) and (6.22d), so this approximation breaks down for sufficiently large t .

By taking the inner product of (6.21) with g, we find that the eigenvalue λ(m) can be
expressed as

λ(m)

A
=

2
∫ 1

0

[
ζg′′(ζ )2 +

(
1 + 2m2

) g′(ζ )2

ζ
+ m2

(
m2 − 4

) g(ζ )2

ζ 3

]
dζ

+g′(1)2 − 2m2g(1)g′(1)− 5m2g(1)2

2
∫ 1

0

[
ζT1rr (ζ, 0)g′(ζ )2 + m2 T1θθ (ζ, 0)g(ζ )2

ζ

]
dζ

. (6.23)

In the limit as m → ∞, (6.23) becomes

λ(m)

A
∼

m2
∫ 1

0
g(ζ )2/ζ 3 dζ∫ 1

0
T1θθ (ζ, 0)g(ζ )2/ζ dζ

. (6.24)

Therefore, negative eigenvalues can exist, implying that non-axisymmetric buckling
is possible, whenever the hoop tension T1θθ is negative. However, we note that the
eigenvalues grow like m2 for large m, so that the magnitude of any transient growth will
decrease exponentially for larger mode numbers.

We now use the eigenvalue approximation to explain the results concerning mode
selection found in figure 8. Assuming that the behaviour of the centre-surface is dominated
by the smallest (in magnitude) negative eigenvalue, it follows that the mode with the largest
deformation amplitude, d∗, will be that with the smallest negative eigenvalue. Figure 8
suggests that only modes m = 0, 1, 2 can be dominant. Motivated by this observation,
we calculate the smallest negative eigenvalue for modes m = 0, 1, 2 by solving (6.21)–
(6.22) numerically, for the Gaussian thickness perturbation given by (5.7) with varyingμh .
The results are shown in figure 14, where we see that the axisymmetric mode dominates
(i.e. λ(0) is closest to zero) for 0 ≤μh � 0.6, while the m = 2 mode dominates for μh �
0.6. The point of intersection at μh ≈ 0.6 corresponds to the region in the contour plot in
figure 8 where the dominant mode switches between m = 0 and m = 2, as μh varies. The
locations of the maxima in λ(0) and λ(2) (indicated by dashed lines) are also encouragingly
consistent with the values of μh that locally maximise d∗ in figure 8. The maximum value
of λ(2) is closer to zero than the maximum in λ(0), which explains why larger values of d∗
are attained with m = 2 than with m = 0.

We recall that figure 8 shows small regions of parameter values where the m = 1 mode
dominates, which appears to contradict figure 14. In these regions, the initial centre-surface
displacement is approximately orthogonal to the dominant eigenfunction, allowing other
subdominant modes to play a role in the dynamics.

6.5. Maximising non-axisymmetric buckling
We now ask what thickness perturbation leads to the smallest negative eigenvalue in
(6.21) for a non-axisymmetric centre-surface. We use a Rayleigh–Ritz approximation,
as in § 6.3, to calculate the permissible functions F and g that give the smallest (in
magnitude) eigenvalue λ(m)∗ for each mode number m, using (6.23). The results are
presented in figure 15, in which the square root modulus of each extremal eigenvalue
is plotted versus m, clearly showing that the eigenvalues grow with m2 for large m, in
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Figure 14. A plot of the smallest (in magnitude) negative eigenvalue, λ(m), satisfying the eigenvalue problem
(6.21)–(6.22), where the thickness perturbation is given by (5.7) with m = 0 (blue), m = 1 (red) and m = 2
(black). The local maxima are indicated by dashed lines for m = 0, 2.
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Figure 15. The square root modulus of the extremal eigenvalues of (6.21) and (6.22) versus mode number m.

agreement with (6.24). We see that the closest eigenvalue to zero is λ(2)∗ ≈ −4.38, with
|λ(0)∗ | and |λ(3)∗ | being the next smallest. There is also the special case m = 1, where the
minimum eigenvalue is approximately the same as for m = 6. We conclude that m = 2 is
the easiest mode to excite, in that it can undergo transient growth at smaller values of the
amplitude A than any other mode. The corresponding extremal exigenvalue λ(2)∗ ≈ −4.38
gives a bound on the transient growth that can be observed for any initial thickness and
centre-surface perturbations. For m ≥ 3, we calculate that 0> λ(2) > λ(m)∗ , meaning that,
even for the thickness perturbation that is optimal for a given m ≥ 3, the mode m = 2 will
be more dominant. This result explains why m = 0 and m = 2 were shown to be dominant
in § 5.

7. Conclusions
In this paper, we consider a thin sheet of viscous fluid retracting freely under surface
tension. We obtain exact equations expressing conservation of mass, momentum and
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angular momentum in terms of integrated tensions and bending moments, along with
effective boundary conditions that apply at the edge of the sheet. We find a simple base
solution where the sheet thickness is spatially uniform and the net tensions in the sheet
are identically zero. It follows that the non-zero tensions caused by small perturbations
to the initial sheet thickness or viscosity (see Appendix A) can play a significant role in
the evolution of transverse sheet displacements. Moreover, we show that any thickness
perturbation generically causes some region of the sheet to be under compression and
thus, potentially, subject to transverse buckling.

We apply the general theory to the simple example of a thin viscous disc with small
axisymmetric thickness perturbations. We show that axisymmetric buckling modes tend
to dominate when the radial tension Trr is negative, while the m = 2 azimuthal modes are
preferred when the hoop tension Tθθ is negative. In all cases, we find that the buckling,
should it occur, is only transient, with the disc eventually becoming flat.

This behaviour, observed in numerical experiments, is explained and quantified by
approximating the centre-surface evolution equation with an eigenvalue problem in the
limit of (relatively) large amplitude A of the thickness perturbations. We show that the
buckling amplitude, although transient, can be exponentially large in A. Although this
analysis is carried out in detail only for an axisymmetric viscous disc, we can see that the
same scaling argument also works for the general problem (4.30) and (4.31). Thus, only
logarithmically large values of A can be sufficient to cause the centre-surface displacement
to grow by an order of magnitude and invalidate the derivation of the centre-surface
equation (4.28). A next step is to consider how nonlinear effects modify the predicted
buckling behaviour.

All of our analysis is based on an asymptotic reduction of the governing equations and
boundary conditions under the assumption that the aspect ratio ε of the sheet is small. As
pointed out in § 4.1, this assumption must eventually fail as the sheet retracts and thickens
under surface tension. It is the topic of current work to confirm that the transient buckling
due to small thickness perturbations predicted by our theory can be reproduced using direct
numerical simulation of the full Stokes flow free boundary problem.

Our theory can be compared with previous analyses of a thin viscous sheet under a
compressive force (e.g. Buckmaster et al. 1975; Howell 1996; Ribe 2002). These studies
show that the dynamics occurs on two different timescales, with transverse buckling
happening much faster than stretching of the sheet, by a factor of 1/ε2. By considering
thickness perturbations of order ε2, which induce dimensionless tensions of order ε2,
we identify a distinguished limit in which buckling and stretching occur on the same
timescale.

Unlike those previous papers, our analysis also shows that no external forcing is required
to induce buckling (albeit transient). At first glance, this behaviour might seem to violate
energy principles, but we must recall that the base state consists of a retracting disc
whose surface area decreases like ψ(t)−1. Any of the associated surface energy that is
not dissipated by viscosity in the bulk is available to drive transverse displacements of the
sheet.

Our theory is deliberately pared down to demonstrate the minimal physics required
to generate compressive forces and excite sinuous disturbances in a thin viscous sheet.
Nevertheless, it must be acknowledged that our simple model would be difficult to
realise in practice (except, perhaps, in a microgravity environment). In principle, it
is straightforward to include in our model a hydrostatic support, as in G. I. Taylor’s
experiments with syrup floating on mercury (Taylor 1969) or the tin bath in the float glass
process. Temperature effects are also extremely important in the glass industry, where the
viscosity variations typically encountered are far larger than considered in Appendix A.
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Nevertheless, we believe that the transient instability mechanism uncovered in this paper
is universal, and our theory may help to explain and control the formation of ripples in the
production of sheet glass.

Appendix A. Variable viscosity
The viscosity of glass is strongly temperature-dependent, varying by a factor of 107 in the
temperature range of interest for manufacturing thin sheets (Shelby 2005). Here, we show
that the theory developed in § 4 can easily be generalised to describe situations where the
viscosity (like the initial sheet thickness) is almost constant, with small fluctuations of
order ε2. We also suppose that the viscosity is convected by the flow, which is true when
thermal conduction and heat transfer with the surroundings are both negligible. Thus, the
dimensionless viscosity takes the form η∼ 1 + ε2η1(X̃) as ε→ 0, where X̃ is the in-plane
Lagrangian variable introduced in § 4.1. Proceeding in a similar way to § 4, we calculate
the tensions induced by such a viscosity variation and examine its role in causing buckling
of a viscous sheet.

Perturbing the viscosity changes the Newtonian constitutive relations (4.1), which in
turn changes the tensions and bending moments (2.10) and (2.14). However, since the
perturbation to the viscosity is of O(ε2), we find that the leading-order problem is exactly
as in § 4.1, so that the thickness and velocity are given by (4.8) and (4.9), and the
leading-order tensions and bending moments are all equal to zero. Using the same process
as in § 4.2, we calculate the constitutive relations for the tension and bending moment
corrections to be given by

T1 = 2
(
ψ3/2∇̃ · ū1 − h1

ψ
− η1(X̃)

)
Ĩ +ψ3/2

(
∇̃ū1 + ∇̃ūt

1

)
, (A1)

with the constitutive relation (4.27) for the bending moment tensor unchanged.
As in § 4.2, it is helpful to introduce a scaled Airy stress function defined by (4.18).

Now, we find that the coupled system (4.19) and (4.20) is modified to

∇̃4A+ψ−1/4∇̃2h1 +ψ3/4∇̃2η1 = 0, 6
∂h1

∂t
+ψ−3/4∇̃2A+ 4η1 = 0. (A2)

Again, we can solve directly for ∇̃2h1 in the form

∇̃2h1(X̃, t)=ψ(t)1/4∇̃2[h1(X̃, 0)+ η1(X̃)
]+ψ(t)∇̃2η1(X̃). (A3)

Thus,A now satisfies the boundary-value problem

∇̃4A+ ∇̃2[h1(X̃, 0)+ η1(X̃)
]= 0 in ΩX (A4a)

A= ∂A
∂n

= 0 on ∂ΩX . (A4b)

As the constitutive relations for the bending moments are unchanged, we find that
the tensions in the sheet and the governing equation (4.28) for the centre-surface are
unchanged, except now h1(X̃, 0) �→ h1(X̃, 0)+ η1(X̃). All the solutions obtained in
§§ 5 and 6 for a thin viscous disc with small thickness perturbations are thus also valid
for viscosity perturbations. As we might have guessed, a small local increase in viscosity
has the same net effect on the dynamics as an increase in thickness. Moreover, the
propensity of small thickness variations to induce tension in the sheet could, in principle,
be counteracted by heating up the thicker regions and cooling the thinner regions.
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