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Motivated by the need for a better understanding of marine plastic transport, we
experimentally investigate finite-size particles floating in free-surface turbulence. Using
particle tracking velocimetry, we study the motion of spheres and discs along the quasi-
flat free-surface above homogeneous isotropic grid turbulence in open channel flows. The
focus is on the effect of the particle diameter, which varies from the Kolmogorov scale to
the integral scale of the turbulence. We find that particles of size up to approximately
one-tenth of the integral scale display motion statistics indistinguishable from surface
flow tracers. For larger sizes, the particle fluctuating energy and acceleration variance
decrease, the correlation times of their velocity and acceleration increase, and the particle
diffusivity is weakly dependent on their diameter. Unlike in three-dimensional turbulence,
the acceleration of finite-size floating particles becomes less intermittent with increasing
size, recovering a Gaussian distribution for diameters in the inertial subrange. These
results are used to assess the applicability of two distinct frameworks: temporal filtering
and spatial filtering. Neglecting preferential sampling and assuming an empirical linear
relation between the particle size and its response time, the temporal filtering approach
is found to correctly predict the main trends, though with quantitative discrepancies.
However, the spatial filtering approach, based on the spatial autocorrelation of the
free-surface turbulence, accurately reproduces the decay of the fluctuating energy with
increasing diameter. Although the scale separation is limited, power-law scaling relations
for the particle acceleration variance based on spatial filtering are compatible with the
observations.
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1. Introduction

Since the beginning of the plastic industry in the 1950s, it is estimated that roughly ten
billion metric tons (10'3 kg) of plastics have been produced worldwide, more than half of
which have been produced in the last twenty years only (Geyer, Jambeck & Law 2017).
Millions of tons of such plastics, the majority of which are positively buoyant, enter the
ocean every year in the form of small debris (Geyer et al. 2017). While much attention
has been devoted to micro-plastics smaller than 5 mm, recent estimates indicate that
95 % of the mass of buoyant marine plastics is accounted for by macro-plastics larger
than 25 mm (Kaandorp et al. 2023), which are much greater than the dissipative scales
of the turbulence in the upper ocean (Jiménez 1997). Therefore, to devise predictive
dispersion models and sequestration strategies for this harmful pollution, it is imperative
to reach a predictive understanding of the transport of relatively large floating objects.
This requires merging two challenging branches in the study of turbulence: its behaviour
along a free-surface and its ability to transport finite-size particles. Recent studies have
posed fundamental related questions in the context of physical oceanography, considering
individual and collective properties of floating particles along with the effects of currents,
wind, waves and the Earth’s rotation (Beron-Vera 2024; Bonner, Beron-Vera & Olascoaga
2024).

The goal of the present experimental study is to gain insight into the Lagrangian
transport of particles of different sizes floating on the quasi-flat free-surface above
homogeneous isotropic turbulence, in the absence of surface stresses and significant
waves. As the literature on the different involved areas is vast, in the following, we briefly
summarise only the background information which is particularly relevant to this work.

1.1. Turbulent dispersion

The modelling of Lagrangian turbulent dispersion originates from the theory of Taylor
(1922) for the evolution in time ¢ of the position x of a fluid parcel released at
time fo from a point source in stationary homogeneous isotropic turbulence. The mean
square displacement (X2 (1) = ([x(to) — x(1)]?) is related to the Lagrangian velocity
autocorrelation coefficient RL(‘L') = (u(to + r)u(t())) / (u?) via:

(X2 (1) =2( // RE(r)dr dr’. (1.1

Here, (-) denotes ensemble averaging, u is the fluctuating velocity, T =t — fg is the time
lag and only one component of motion is considered for simplicity of notation. For times
much larger than the integral time scale 7; = fooo R,f(r) dr, R,f (t) tends to zero and
(X2)(t) =2(u®)Trt. This implies that the long-time turbulent dispersion behaves as a
Brownian process with diffusivity:

1d, _, 5

K= ¥T (X)) = (u)Ty. (12)
Taylor’s theory finds wide applications in atmospheric sciences and oceanography (Griffa
1996; Wilson & Sawford 1996), and it can be extended to inhomogeneous flows upon
appropriate stationarisation of the velocity (Batchelor 1957; Viggiano et al. 2021).
The crux of the problem is evaluating RL(r): this is challenging to measure, as it
requires reconstructing trajectories of duration longer than 77 while resolving fine
temporal fluctuations associated with the highly intermittent Lagrangian acceleration a
(Toschi & Bodenschatz 2009). Indeed, significant efforts have been made to model this
quantity. Taylor (1922) assumed a simple exponential, RL(7) = e~"/Tt, which captures
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the long-time decay but not the short-time kinematics Rbf (1) =1—(a®)7? / 2(u?). This is
accounted for by the two-time model proposed by Sawford (1991) and adopted in several
later studies (Mordant et al. 2004b; Jung, Yeo & Lee 2008; Huck, Machicoane & Volk
2019; Berk & Coletti 2021, 2024; Salmon et al. 2023):
L Tie T/ T — The /T2

R, (v)= T T . (1.3)
Here, 71 and T, are associated with the integral and dissipative time scales of the
turbulence, respectively. Sawford (1991) modelled the acceleration of fluid particles
with a second-order autoregressive equation in which the random perturbation is time-
correlated and therefore differentiable. Thus, the kinematic relationship (aZ)RaL (r)=
—(uz)dzRﬁ (7)/dr? (Tennekes & Lumley 1972) can be used to evaluate the Lagrangian
acceleration autocorrelation coefficient RaL (v) =(a(ty + 1)a(ty))/ (a?) (Sawford 1991;
Huck et al. 2019):

L T Tye T
R, ()=
T —T»

(1.4)

For fluid tracers, R () decays over time scales comparable to the Kolmogorov time T
(Yeung & Pope 1989; Voth et al. 2002).

1.2. Inertial particles in turbulence

Being purely based on kinematics, Taylor’s theory applies to fluid tracers as well as inertial
particles, i.e. objects too dense and/or too large to follow the fluid flow (Balachandar &
Eaton 2010; Brandt & Coletti 2022). The behaviour of small inertial particles (i.e. with
diameter d;, smaller than the Kolmogorov scale 1) is usually rationalised in terms of
the Stokes number St =1, /1,, where 7, is the particle response time. As long as the
particle Reynolds number Re), = ||us||d,/v is small, the condition d;,, < n warrants the
approximate validity of Stokes’ drag formulation (Clift, Grace & Weber 2005). Here, v
is the kinematic viscosity of the fluid and u; = ugp —u, is the slip between the fluid
velocity at the particle location ug, and the particle velocity u,. Depending on Sz, the
particle motion has been shown to depart from the fluid flow due to two mechanisms:
preferential sampling of regions of high-strain and low-vorticity, prevalent for St <1
(Maxey 1987; Squires & Eaton 1991); and inertial filtering of small-scale/high-frequency
turbulent fluctuations, dominant for St > 1 (Bec et al. 2006).

The inertia of small particles stems from their density p,. When this is much larger
than the fluid density p, drag and gravity (of acceleration field g) dominate over unsteady
forces such as added mass, stress gradient and history force (Balachandar 2009; Ling,
Parmar & Balachandar 2013). The particle is then often conceptualised as a point mass,
and its equation of motion reads:

du up—u
TR TP g (1.5)
dr T

Neglecting gravity and assuming an exponential decay of Rﬁ (t), Tchen (1947) showed
how (1.5) implies that u, is obtained from low-pass filtering us, with a cutoff frequency
of 7,7 I By assuming that ugy is statistically indistinguishable from the unconditional fluid
velocity u, they derived

1 2

2\ _
uy) = T (u?) (1.6)
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Csanady (1963) and Hinze (1975) used similar but less restrictive assumptions to build
a framework later extended by Wang & Stock (1993), Jung et al. (2008) and Berk &
Coletti (2021), among others. In particular, assuming the form (1.3) for the Lagrangian
autocorrelation coefficient of uy,, closed expressions for the particle fluctuating energy

(u?), acceleration variance (ai) and velocity correlation time T, = fooo RuLp (t) dt (where

P
Rpr (7) is the Lagrangian correlation coefficient of u,) can be derived (see Jung et al. 2008;

Berk & Coletti 2021):

o, St?
) = (”ff’>[l (T /7y + S0) (T2 /7y + Sr)]’ 7
: (4h) /%2
(ap) = : (1.8)
(T1 /Ty + St)(T /Ty + St)
_ (T /7y +S)(Tr /Ty + SH(T + T7) (19)

P (T + SH(Ta /Ty + St) — St2

where now 77 and 7> are the time scales in the expression of the Lagrangian
autocorrelation coefficient of ug, (see Sawford (1991) and Huck er al. (2019)). In the
following, we will refer to this framework as temporal filtering. It predicts that the variance
of the particle fluctuating energy and acceleration, (12) and (af,), respectively, decrease
with increasing St; while the velocity correlation time 7, grows and the diffusivity
K,= (ug)Tl, remains essentially constant. Since extreme turbulent fluctuations are short-
lived, this view also predicts that acceleration intermittency, quantified by the flatness
(a;‘,) / (a[z])2, decreases with St. By modelling uy,, this approach can incorporate the effect
of preferential sampling as well as trajectory-crossing, i.e. the particle drift through the
turbulence due to body forces such as gravity (Csanady 1963; Wang & Stock 1993);
see also Mathai, Lohse & Sun (2020) for the analogous effect on light particles. While
simplified, this framework has been shown to capture important trends of the particle
behaviour when d;, <n and p,/p > 1 (see, e.g. Bec er al. (2006), Jung er al. (2008),
Ireland, Bragg & Collins (2016), Mehrabadi et al. (2018) and Berk & Coletti (2021, 2024)).

Developing a similar framework for particles of finite-size and with a density
comparable to (or smaller than) that of the fluid would be desirable, but it poses numerous
difficulties. First, for d;, > n, Stokes drag cannot be assumed and a closed form for 7, is
not available. In particular, the power-law dependence 7, ~ d[2, (or St~ (dp/ n)z) leads
to large overestimations, especially when the particle Reynolds number is not small.
Moreover, for moderate density ratios, unsteady forces may be comparable to drag,
complicating the question of how the particle responds to changes in the surrounding

fluid flow. The common proxy is the correlation time scale of ap, 7, ~ OTO RE (1) dr,
P

where Ty is the zero-crossing time of the Lagrangian autocorrelation coefficient of the
particle acceleration Rcfp (7) (see, e.g. Calzavarini et al. (2009) and Volk et al. (2011)).
Additionally, independent of density, for large (finite-size) particles, uy and uy are
loosely defined, requiring ad hoc heuristics based on the flow surrounding the particle
(Kidanemariam ef al. 2013; Uhlmann & Doychev 2014). Moreover, when p,/p <1,
unsteady forces are significant. The point-particle equation of motion for neutrally buoyant
particles then predicts that (a2) would increase or remain approximately constant with
dy,/n (Calzavarini et al. 2009; Homann & Bec 2010). This is at odds with experimental
measurements and particle-resolved simulations of neutrally buoyant particles, which
show how increasing d, /1 leads to decreasing (a[z,), as well as increasing T), and 7, (Voth
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et al. 2002; Qureshi et al. 2007, 2008; Volk et al. 2008; Brown, Warhaft & Voth 2009;
Homann & Bec 2010; Volk et al. 2011; Uhlmann & Chouippe 2017; Fan et al. 2024).

To address the effect of finite-size, Calzavarini et al. (2009) proposed to include
Faxén corrections, thus incorporating the non-uniformity of the flow at the particle scale
by filtering it over the particle’s surface (to estimate drag) and volume (to estimate
added mass and stress gradient forces). This produces qualitatively correct trends for
neutrally buoyant particles, though it underpredicts the effects of d), /n (Volk et al. 2011,
Uhlmann & Chouippe 2017). The interpretation is that the particle motion is driven
by turbulent fluctuations occurring at their scale. In other words, finite-size particles
are assumed to apply a spatial filtering (or coarse-graining) of the local turbulence
(Qureshi et al. 2007; Calzavarini et al. 2009; Jiang et al. 2022; Fan et al. 2024). For
particle sizes in the inertial subrange, L >> d), > n (L being the integral length scale),
velocity fluctuations at the particle scales are thus expected to scale according to the
phenomenology put forward by Kolmogorov (1941), ([u(xo +d)) — u(xp)]?) ~ (ed p)z/ 3
(where ¢ is the turbulent dissipation rate), yielding ((u?) — (ug))/(uz) ~(d,,/n)2/3,

(azz,)/(a2) ~ (dp/n)_2/3 and 1,/7,; ~ (dp/n)2/3. While those are compatible with the
observations, the limited available data cannot exclude other scaling behaviours (Voth
et al. 2002; Qureshi et al. 2007; Homann & Bec 2010; Volk et al. 2011; Uhlmann &
Chouippe 2017; Fan et al. 2024). Moreover, in keeping with the distribution of velocity
increments at increasing separations, the spatial filtering framework implies that the
particle acceleration (regardless of particle density) becomes less intermittent for larger
d, (Xu et al. 2007; Brown et al. 2009). This is in contrast with experiments and particle-
resolved simulations of neutrally buoyant particles, which report high flatness of a,, even
for d,,/n > 1 (Qureshi et al. 2007, 2008; Xu & Bodenschatz 2008; Brown et al. 2009;
Homann & Bec 2010; Bellani & Variano 2012). Even when a reduction of intermittency
with particle size was reported, the acceleration flatness was still found to be far higher
than the Gaussian limit (Volk et al. 2011).

The above-mentioned works on finite-size neutrally buoyant particles were concerned
with three-dimensional (3-D) turbulence. Ouellette, O’malley & Gollub (2008)
investigated the motion of spheres in a two-dimensional (2-D) chaotic flow, and found
the larger ones had a somewhat larger diffusivity. However, Xia et al. (2019) found that the
diffusivity of discs floating on wave-driven 2-D turbulence decreased when their diameter
increased. Therefore, the behaviour of (quasi-) neutrally buoyant finite-size particles in
free-surface turbulence (which, as we describe later, shares similarities with both 2-D and
3-D turbulence) remains an open question.

1.3. Free-surface turbulence

Most previous studies concerned with free-surface turbulence have focused on the effect of
the boundary conditions on the sub-surface flow; see seminal studies by Hunt & Graham
(1978), Perot & Moin (1995), Shen et al. (1999) and Magnaudet (2003), among several
others recently reviewed by Ruth & Coletti (2024). In particular, the kinematic boundary
condition u, =0 at z =0 influences a so-called ‘blockage layer’ of thickness comparable
to the integral scale L, increasing the surface-parallel velocity fluctuations at the expense
of the vertical fluctuations. Here and in the following, x and y indicate the surface-parallel
directions (x being streamwise in the presence of a mean flow) and z, positive upward,
is the surface-normal (vertical) direction; u,, u, and u, are the corresponding velocity
components. In the limit of large turbulent Reynolds number Re, the behaviour of the
Reynolds stresses in the blockage layer is well predicted by the theory of Hunt & Graham
(1978) based on rapid-distortion theory (Magnaudet 2003; Ruth & Coletti 2024).
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The dynamic boundary condition du, /dz = du,/dz = 0, however, imposes that vortex
lines reorient to be surface-normal within a surface layer of thickness LRe~!/2. This
has significant consequences for the dynamics immediately below the free-surface (Shen
et al. 1999; Guo & Shen 2010; Aarnes et al. 2025) but also for the motion along it.
Li et al. (2025) studied the behaviour of millimetric tracers floating along the quasi-
flat free-surface above turbulent water past a square-mesh grid. While the statistics of
velocity fluctuations, accelerations and dissipation were similar to those in the bulk, and
followed the classic phenomenology of Kolmogorov (1941), the surface-normal vorticity
signalled the presence of long-lived vortices (Kumar, Gupta & Banerjee 1998; Lovecchio,
Zonta & Soldati 2015). This was later confirmed in the detailed measurements of Qi et al.
(2025a,b), who tracked microscopic surface tracers in a homogeneous zero-mean-flow
turbulent water tank, highlighting the effect of the dynamic boundary condition on
strain-rate and vorticity.

In the absence of significant surfactant effects, the surface velocity field displays a
compressibility ((du,/dz)%) comparable to the mean square velocity gradients in the bulk,
which in turn influences the dispersion of small floating particles (Boffetta et al. 2004;
Cressman et al. 2004; Lovecchio, Marchioli & Soldati 2013; Li et al. 2024, 2025).

1.4. Focus of the present study

Despite its relevance, the behaviour of finite-size particles floating in free-surface
turbulence has rarely been addressed in fundamental fluid mechanics investigations. Valero
et al. (2022) studied the behaviour of realistic buoyant litter such as plastic cups, flexible
films and face masks in a laboratory flume, highlighting the importance of surface tension
and the effect of their size on the transport. In a recent field study, we have reported on
the transport of centimetre-sized discs and rods floating in an outdoor meandering stream
(Sanness Salmon et al. 2023). Compared with millimetre-sized floating tracers, the larger
particles were observed to have reduced accelerations and more time-correlated motions,
which impacted their diffusivity.

In the present study, we use the experimental facilities employed by Li et al. (2025) to
study the transport of tracers on the quasi-flat free-surface above homogeneous isotropic
grid turbulence, and focus on the behaviour of marginally buoyant particles in a wide range
of sizes, dp/n €[5, 110]. We characterise in detail their single-point and two-point/two-
time statistics, and discuss to which degree their behaviour is consistent with specific
assumptions. We aim to answer the following questions. How does the size of the floating
particles affect their motion, in particular, the velocity fluctuations, accelerations and
diffusivity? To which extent can the floating particles be modelled as point-particles of
a given response time? And to which extent can they be modelled as spatial filters of the
underlying turbulent flow?

The rest of the paper is organised as follows: the experimental approach and the parame-
ter space are described in § 2; § 3 presents the results in terms of flow properties below and
along the free-surface (§ 3.1) and the particle behaviour (§ 3.2). We then explore to which
degree the latter is consistent with the frameworks of temporal filtering (§ 3.3) and spatial
filtering (§ 3.4). Section 4 discusses the results, draws conclusions and gives an outlook.

2. Methods
2.1. Experimental apparatus

To cover a wide range of parameters, experiments are performed in two recirculating
open-channel flumes, one located at ETH Ziirich and the other at the Swiss Federal
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Facility H(@m) W @m) Us(ms™') M(mm) Rey(-) Fr(-) We(-) Rey()

ETH 0.400 0.450 0.207 35.0 7230 0.10 0.06 29
Empa 0.550 1.010 0.270 70.0 18,860 0.12 0.08 43, 84

Table 1. Hydrodynamic parameters characterising the free-surface flow in the two used facilities: water depth
H, channel width W, mean surface velocity Uy, square mesh size M, grid Reynolds number Reys, Froude
number Fr, Weber number We and Taylor-scale Reynolds number of the turbulence Re,.

Laboratories for Materials Science and Technology (Empa). The two facilities are different
in scale but identical in architecture, and the same measurement approaches are used in
both, as described in detail by Li ef al. (2025). A centrifugal pump drives water through
an upstream plenum featuring flow conditioning components (perforated stainless-
steel plates, polycarbonate honeycombs and stainless-steel screens) before entering a
contraction with a 6-1 area ratio. Turbulence is generated by a stainless-steel grid spanning
the entire water cross-section of depth H and width W. The grid features squared bars of
width d and mesh size M, resulting in a grid solidity ¢ = (d/M)(2 — (d/M)) = 0.31.
The main hydrodynamic parameters of the two facilities are summarised in table 1. The
Reynolds number Rey; = UgM /v and the Froude number Fr = Us/+/g H are based on the
mean surface velocity Us. At the start of each experiment, surface residue is removed
with a fine net and a standard surface tension y =72 mN m~! is measured via a Du Noiiy
ring. The values of Fr and of the Weber number We = p(u?)L/y are consistent with the
minimal deformation of the water surface, on which only sub-millimetre wave amplitudes
are observed. In the Empa facility, two configurations of the flow conditioning components
are used, resulting in two different levels of turbulence intensity. Therefore, three cases
with different Taylor-scale Reynolds number Re; (whose evaluation is detailed in § 3.1)
are considered.

Two types of floating particles are considered (table 2): white polypropylene
spheres (RGPBalls Srl, p, =0.87 g cm™3) and polypropylene discs (pp=0.92¢g cm™3),
photographed in figure 1. Their diameters vary in the range d), € [1.6, 30] mm, with
the smallest spheres used as tracers to characterise the free-surface turbulent flow (see
Li et al. 2025 for the verification that those particles faithfully follow the flow). In terms
of Kolmogorov scales, these tracers correspond to ~8n and ~5n, for the ETH and Empa
facilities, respectively. We remind that for 3-D turbulence, neutrally buoyant spherical
particles up to d;, ~ 51 behave as flow tracers (Homann & Bec 2010; Fiabane er al. 2012;
Uhlmann & Chouippe 2017; Berk & Coletti 2024). For free-surface flows, it has been
shown that particles up to d;, ~ 10n capture most of the turbulent kinetic energy (Nikora
et al. 2007; Sanness Salmon er al. 2023). The discs are produced in-house by laser-
cutting 1 mm thick sheets (Vibraplast AG) using a VLS3.50 Desktop Laser (Universal
Laser Systems Inc.). The large diameter-to-thickness ratio guarantees that the floating discs
remain parallel to the water surface. The particles are mostly submerged, consistent with
the weight/buoyancy force balance, which (neglecting surface tension effects) prescribes
their fractional submerged volume to be approximately equal to their relative density p,/p.

2.2. Measurement approach

The sub-surface turbulence properties in the bulk and across the blockage layer are
measured by particle image velocimetry (PIV) of 10 um hollow glass spheres (LaVision
GmbH, p), = 1.10gcm ™). This is performed along the mid-span vertical plane and
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Particletype  pp/p () dp(mm)  dp/n()  dp/L()
1.6 5.7 0.03
2.0 6.1,84 0.06, 0.13

Sphere 0.87 5.0 15.2,21.1 0.14, 0.32
7.0 21.2,29.5 0.20, 0.45
10.0 304,422 0.28, 0.65
5.0 15.2 0.14
7.0 21.2 0.20
10.0 30.4 0.28

Disc 0.92 15.0 45.5 0.43
20.0 71.7 0.33
25.0 89.6 0.42
30.0 107.6 0.50

Table 2. Physical properties and experimental summary of the floating particles including shape, relative
density p,/p and diameter d, in dimensional and dimensionless units.

25.0-mm "
: 30.0 mm

5.0 mm ' r 7.0mm’ - 10.0 mm

Figure 1. A close-up photograph of the finite-size floating particles; spheres (bottom row) and discs (top and
middle row).

15.0 mm

several surface-parallel planes as close as ~1 mm from the free-surface, as described in
detail by Li et al. (2025).

The properties of the free-surface turbulence and the behaviour of the finite-size
particles are obtained by particle tracking velocimetry (PTV) of the floating particles.
These are released at the inlet of the test section with a handheld spreader (Gardena
GmbH) and collected by a nylon net fixed at the outlet of the test section. Number
concentrations that may cause inter-particle interactions are avoided. The particles are
imaged by a 12MP CMOS camera (Baumer Ltd, VQXT-120C.HS) mounting Zeiss Milvius
lenses. This is suspended above the channel at a downstream location of x =30M from
the grid, pointing downward at the free-surface flow. The position is chosen such that the
field of view (FOV) is within a region where equilibrium conditions have been reached and
classic scaling relations for homogeneous isotropic turbulence apply (Mohamed & Larue
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Facility fps  Resolution Focal length Spatial resolution FOV Imaging range
(Hz) (px?) (mm) (px mm~") (m?) (x/M)

ETH 100 4096 x 2400 35 8.26 0.497 x 0.291 24 t0 36

Empa 90 4096 x 3068 21 7.04 0.583 x 0.437 27 to 32

Table 3. Main imaging parameters for the two experimental facilities: frame rate, camera resolution, focal
length of the lens, spatial resolution, size of the FOV and non-dimensional distance from the grid spanned by
the FOV.

1990; Lavoie, Djenidi & Antonia 2007; Hearst & Lavoie 2014). Two continuous LEDs (GS
Vitec GmbH, MultiLED) illuminate the FOV from both ends of the channel. Diffusers
are employed to evenly distribute the light along the water surface, and black background
panels are positioned on the transparent walls of the test section to improve image contrast.
The imaging parameters for the two facilities are summarised in table 3. The camera
calibration is realised by imaging a checkerboard pattern kept at the water surface level,
which allows correcting for slight barrel distortion (Zhang 2000). The boundaries of the
FOV, which is centred at mid-span and covers approximately half of the channel width, are
sufficiently far from the channel sidewalls to ensure that the imaged flow is not influenced
by the lateral boundary layers.

Particles are identified via image segmentation above an intensity threshold, whose exact
value is not consequential thanks to the high contrast. The centroids of contiguous groups
of pixels exceeding the threshold are identified via a circle-finder algorithm based on the
circular Hough transform (alternative algorithms returning the same results within sub-
pixel accuracy). Rare occurrences of adjacent particles are discarded in post-processing,
imposing a minimum inter-particle gap of twice the capillary length /y/pg =2.7 mm
or d,, (whichever is larger). This guarantees that the tracked particles are not significantly
influenced by their neighbours.

Particle trajectories are reconstructed using an in-house code implementing a nearest-
neighbour PTV algorithm (Baker & Coletti 2019, 2021, 2022; Sanness Salmon et al. 2023).
For the tracer particles, an advective predictor is used which searches in the radius around
the centroid shifted downstream by Ax = (U)At (At being the inter-frame temporal
separation). For particles 5 mm and larger, the advective predictor is unnecessary as
the inter-frame displacements are smaller than the particle radius. The particle positions
Xp, velocities u;, and accelerations a, are obtained by convolving the trajectories with
a Gaussian kernel and its derivatives, removing most of the high-frequency noise (Voth
et al. 2002; Mordant et al. 2004a). Here and in the following, the bold typeface indicates
vectors associated with the two-dimensional motion along the free-surface. Because
tracking floating particles along the quasi-flat free-surface is a robust process, most of
the reconstructed trajectories have comparable lengths. Still, to avoid possible biases
due to varying trajectory length (Mordant ez al. 2004a; Guala et al. 2007), we calculate
Lagrangian statistics from trajectories of equal length (180 and 140 frames in the ETH and
Empa facilities, respectively), trimming longer trajectories.

As tracking errors are negligible, the uncertainties are mostly associated with the finite
number of samples. To yield a number of trajectories sufficient for statistical convergence,
between twenty and one hundred measurement runs are conducted for each particle-flow
condition combination, with 2700-2900 images acquired in each run. For d,, < 7mm,
more than 10 000 trajectories are obtained for each case. The larger particles have a lower
yield due to the constraint of avoiding inter-particle interaction, but the statistics are still
based on at least 3700 trajectories. Although statistical convergence of the observables
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Figure 2. (a) Vertical profiles of the sub-surface properties measured by PIV at Rey = 29. (b) Corresponding
probability distribution functions (p.d.f.s) of the free-surface turbulence properties measured by PTV. The
dashed line indicates a normal distribution.

within a few percent is achieved in each experimental run, larger variability is observed
between different runs. Therefore, when relevant for the interpretation of the results, the
statistical uncertainty is represented with error bars given by the run-to-run standard
deviation.

3. Results
3.1. Properties of the turbulence below and along the free-surface

For both facilities, the full characterisation of the sub-surface and free-surface flow is
reported by Li er al. (2025). Here, we provide an account of the main properties, with
plots of selected cases to illustrate the flow behaviour.

With the uppermost grid bar located at approximately z = —0.86 M, turbulence is forced
over the entire flow volume. Indeed, the behaviour of the sub-surface turbulence measured
by PIV is consistent with the predictions of Hunt & Graham (1978) for the evolution of
homogeneous turbulence below a flat free-surface: the root mean square (r.m.s.) of the
vertical velocity fluctuations (u?)l/ 2 drops to vanishingly small levels approaching the

free-surface, while the horizontal one (u% )1/2 increases. The dissipation rate & grows in the
blockage layer and decreases in the surface layer to approximately recover its bulk value.
The compressibility coefficient C = ((du;/ 9x;)?) /{(Qu;/ox j)2> (with indices restricted to
the surface-parallel components) grows to approach the free-surface condition C = 0.5,
implying that the in-plane velocity gradients are uncorrelated (Cressman et al. 2004;
Boffetta et al. 2004). These trends are displayed in figure 2(a) for the representative case
Re, =29.

The lateral velocity fluctuations u, and accelerations a, of the tracer particles measured
by PTV yield the probability distribution functions (p.d.f.s) plotted in figure 2(b),
normalised by their respective r.m.s. values. The p.d.f. of surface-normal vorticity w; is
also shown, obtained from Lagrangian tracking of 2 mm long floating rods (see Li et al.
2025). The rods’ r.m.s. rotation rate was found to be an appropriate proxy for the near-
surface w, measured via PIV. While u; are normally distributed, a; and w, display levels
of intermittency of the small-scale flow features comparable to those in 3-D turbulence
(Qi et al. 2025a).
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Rey  wpps(ms™) e Lmm)  Tp(s)  Amm)  pmm) (s
29 0.012 3.2x 1074 15.5 1.23 2.5 0.2 0.06
43 0.010 0.9 x 1074 351 1.87 4.3 0.3 0.11
84 0.017 1.7 x 1074 59.7 2.19 5.0 0.3 0.08

Table 4. Quantities characterising the free-surface turbulence for the three considered Re,: r.m.s. velocity
fluctuation u,,,,s, mean dissipation rate of turbulent kinetic energy ¢, integral length scale L, integral time scale
Ty, Taylor micro-scale A, Kolmogorov length scale 1 and Kolmogorov time scale .

The free-surface velocity data are used to obtain Eulerian fields of the mean and
r.m.s. fluctuations of the free-surface velocity. The measurements are spatially binned into
5 mm x 5 mm windows, the size of which is chosen to give at least 100 instantaneous
vectors for ensemble-averaging. The fluctuations are obtained by subtracting the local
mean velocity, which varies by only a few percent within the FOV. Both r.m.s. components
are similar, with the anisotropy ratio (uf) / (u%) in the range of 0.96—1.18. The streamwise
decay of the turbulent kinetic energy of the free-surface flow is well described by a

power-law decay: _

(q*) x  xo\ "

— =Al— - , 3.1
U: M M

where (¢%) = (u - u) = (u%) + (ui), Xo is the virtual origin of the grid and the parameter

A is determined via a least-square fit. The decay exponent m is found to be close to unity,
consistent with results in 3-D turbulence (Mohamed & Larue 1990; Lavoie et al. 2007,
Hearst & Lavoie 2014; Sinhuber, Bodenschatz & Bewley 2015). The mean dissipation
rate along the free-surface is evaluated from the spatial decay of (¢?), from which we
evaluate free-surface values of the Kolmogorov scales, Taylor microscale A = V15U s T

and Rej = ;s A/ v, Where s = +/(q?)/2. To determine the integral length scales L of
the free-surface turbulence, we evaluate the Eulerian velocity correlation coefficient:

(w(ro+r)-u(ro))

(g?)

where the ensemble-averaging is carried out over tracers separated by a distance r
from the reference location rg, discretising the separation in bins containing O(10%)
data points each. An exponential fit to the form Rf (r)=e""/L yields values of the
integral scale consistent with the classic relation L ~ u?, /e (Tennekes & Lumley 1972).
Similarly, the integral time scale Ty is evaluated by fitting an exponential decay to
the Lagrangian velocity autocorrelation coefficient, R,f(r) =e~"/TL. The free-surface
turbulence properties for the three considered flow conditions are summarised in table 4.

RE(r) = , (3.2)

3.2. Behaviour of finite-size floating particles

To describe the kinematics of the finite-size particle motion, only selected components of
the free-surface velocity and acceleration are illustrated; the behaviour of both components
is quantitatively similar, as expected from the quasi-isotropic nature of the free-surface
turbulence.

The p.d.f.s of the lateral velocity fluctuations are plotted in figure 3(a), normalised by the
respective r.m.s. values, showing a Gaussian distribution for all sizes. Figure 3(b) shows
how the particle fluctuating energy (ug) = (up - up) remains equal to the one of tracers
up to approximately d,,/L = 0.1 and drops significantly for larger sizes: increasingly large
floating particles are less responsive to the underlying fluid fluctuations. In terms of the
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Figure 3. (a) P.d.f.s of the lateral velocity fluctuations of the floating particles for Re; = 43. The dashed line
indicates a normal distribution. (b) Particle fluctuating energy versus dimensionless particle size. Error bars
represent the run-to-run standard deviation.

Kolmogorov scale, this corresponds to dj,/n € [8, 20] for the different cases. In general,
the reduction of fluctuating energy with increasing particle size agrees with findings in
3-D turbulence (Homann & Bec 2010; Calzavarini et al. 2012; Chouippe & Uhlmann
2015; Uhlmann & Chouippe 2017). Our results are comparable, for example, with the
experiments of Machicoane et al. (2014) who measured an energy reduction of roughly
40 % for very large (d,/L ~ 0.5) neutrally buoyant spherical particles in a von Kdrman
flow. The fundamental differences between 3-D and free-surface turbulence, however, limit
the value of quantitative comparisons. Here and in the following figures, no systematic
differences are seen in the behaviour of floating spheres and discs of similar diameter
(Rey =43). This suggests that, for the present level of submergence, the motion of floating
particles depends on the near-surface flow and how this is modulated by their spatial
extension in the surface-parallel direction. This is consistent with the submerged depth
of the particles (estimated from a simple force balance and visually verified), which is at
most comparable with the surface layer (Hunt & Graham 1978). Larger particles whose
centre of mass resides in the blockage layer may display different dynamics.

The p.d.f.s of the streamwise particle acceleration are reported in figure 4(a). Unlike
for the velocity fluctuations, the particle size has a clear influence on the shape of
the distributions: the intermittency decreases significantly with increasing size, and the
acceleration of the larger particles essentially follows a Gaussian distribution. The total
acceleration variance (a2) = (a, - a)) remains approximately constant for d,,/L < 0.1 and
drops for larger sizes (figure 4b), and it does so more steeply than the fluctuating kinetic
energy. This is likely related to the fact that the fluid accelerations are mostly associated
with the fine scales of the turbulence (Toschi & Bodenschatz 2009), as discussed in the
following sections.

The degree to which the motion of the finite-size particles is time-correlated is described
by the particle velocity autocorrelation coefficient, illustrated in figure 5(a) for Re, = 29.
The decay rate of RLI;p (1) decreases with particle size, which is quantified by the increase of

the correlation time scale 7),. This is estimated by fitting an exponential of the form e ™ /Ty
to the measurement of RLI;p (1), reported in figure 5(b) normalised by the fluid integral

time scale 77. We note that this procedure is associated with significant uncertainty:
the accurate measurement of the integral time scales requires integrating over a duration
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Figure 4. (a) P.d.f.s of streamwise acceleration of the floating particles for Re; = 43. The dashed line indicates
a normal distribution. (b) Particle acceleration variance versus dimensionless particle size. Error bars represent
the run-to-run standard deviation.

(@) . (b) Rey
1.0 10 10 29 43 84100
\ T T
0.8 4r
® Spheres
|
~ 06 I
> = 4
QL
& 04 ¥ 50
= +
0.2 1+ 'Y ™ ¢ ¢
1072 0 : ‘
0 0.5 1.0 15 1072 107! 10°
t/T}, dy/L

Figure 5. (a) Measured Lagrangian particle velocity autocorrelation coefficients for Re; =29. (b) Particle
velocity correlation time scale versus dimensionless particle size. Error bars represent the run-to-run standard
deviation.

significantly longer than the time scales themselves. This is, however, seldom possible in
laboratory experiments due to the limited length of the trajectories (even in the present
case, in which most of the trajectories stretch over the entire FOV). Therefore, we rely on
the assumption that the autocorrelations decay exponentially (as in Baker & Coletti 2021
and Sanness Salmon et al. 2023). The uncertainty associated with possible departures
of Rﬁp(t) from the measured exponential decay at long times also affects the diffusivity
(discussed later), but is not expected to overshadow the reported trends. Similar to the
velocity and acceleration, the correlation time scale of particles smaller than d), /L =0.1
is indistinguishable from the one of the fluid. For larger diameters, an increasing trend of
T,/ Ty is apparent: the motion of larger particles is characterised by more time-correlated
velocity fluctuations.

3.3. Comparison with the temporal filtering framework

In this section, we evaluate the applicability of the temporal filtering framework to the
dynamics of the finite-size floating particles. The first step is to evaluate an effective
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Figure 6. (a) Particle Stokes number evaluated by integrating their measured acceleration autocorrelation
coefficient (filled symbols) and their equivalent analytical form (1.4) inspired by Sawford (1991) (open
symbols). The continuous line is the linear relation (3.3) from Uhlmann & Chouippe (2017) and the dashed
line is the 2/3 power-law scaling based on Kolmogorov (1941). (b) Lagrangian particle velocity autocorrelation
coefficients for Re, =29 measured by PTV (filled symbols) and their respective analytical form (1.3) (lines).
(c) Lagrangian particle acceleration autocorrelation coefficient for dj,/n =21.1 and Re, =29 measured by
PTV (symbols) and its analytical form (line). The oscillations are due to the small surface waves.

response time 7,, which can be estimated as the definite integral of ij () up to the zero-
crossing time 7y (Calzavarini et al. 2009). Measuring the latter, however, is challenging as
it requires high temporal resolution and low noise (Machicoane & Volk 2016; Machicoane,
Huck & Volk 2017). Inspection of our data indicates that the cases at Re, = 29 provides
robust estimates of t,,, which are plotted in figure 6(a) in terms of St (filled symbols).
An alternative, though related strategy is to use an analytical model for Rpr (r) and

differentiate it to obtain Rﬁp (7). Following this avenue, we employ the model of Sawford
(1991), with two temporal scales that capture the large-scale and dissipative particle
dynamics. In the original model, Ty = 2(u?)/Coe = O(Ty) and T = 7,Co/2a0 = O(zy),
where ag = (a?)e73/?v1/2 and Cy is the constant in the inertial scaling of the second-
order Lagrangian structure function, SZL (v) = ([u(to + ) — u(r)]?) = Coet (Kolmogorov
1941). By analogy, we define T , = 2(u§)/Co,ps =0O(Tp) and T3 ) = 1,Co,p/2a0,p =
O(zp), where ag , = (alz,)s_z’/ 2p1/2 and Co,p is found by fitting the measured structure
function of the Lagrangian particle velocity as Séj p(r) = Cy,pet. The resulting forms of
lep (7) and R[fp (t) (equivalent to (1.3) and (1.4), with T , and T3 , in place of 77 and
T», respectively) capture reasonably well the behaviour of the measurements, as shown
for selected cases in figures 6(b) and 6(c). Because the model parameters are set based
on the measurements, the agreement mostly indicates that the forms (1.3) and (1.4) are
appropriate to describe the autocorrelation coefficients. Indeed, the values of St based on
integrating the analytical form of Rép (1), plotted as open symbols in figure 6(a), are in
good agreement with those based on the measurements.

Both these strategies require empirical knowledge of the Lagrangian particle velocities
and accelerations, while one would like to estimate 7, based on the turbulence and particle
characteristics only. However, as discussed in § 1.2, there is no consensus on the correct
expression or even the scaling dependence of 7, with the particle properties. Here, we test
the empirical linear relation

dl’
St=1+0.08( 2 ), 3.3)
n

which was shown by Uhlmann & Chouippe (2017) to represent well their particle-resolved
simulations and the experiments by Volk et al. (2011) in 3-D turbulence. Figure 6(a) shows
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Figure 7. Comparison between measurements (filled symbols) and the temporal filtering framework (lines)
for all Re, cases; (a) particle fluctuating energy (1.7), (b) velocity correlation time scale (1.9) and (c) particle
diffusivity (3.4) versus dimensionless particle size. Error bars represent the run-to-run standard deviation.

that such a relation is also consistent with the behaviour of our finite-size particles floating
in free-surface turbulence. Therefore, for simplicity, we will adopt (3.3) in the following
analysis. Two remarks are, however, in order. First, (3.3) is expected to overestimate St in
the range d,,/n <5, as neutrally buoyant particles of this size are indistinguishable from
tracers both in 3-D and free-surface turbulence (Qureshi et al. 2007; Volk et al. 2011;
Berk & Coletti 2024; Li et al. 2025). Second, as discussed in § 3.4, the present data are
also compatible with the scaling St~ (d,/ n)%/? predicted by the spatial filtering ansatz
(also shown in figure 6a).

Keeping in mind such caveats, we evaluate St via (3.3) and test the temporal filtering
predictions (1.7) to (1.9). Here, we take uy =u, i.e. we assume that the particles do
not preferentially sample flow regions with specific properties. This is supported by the
evidence that finite-size neutrally buoyant particles do not cluster (Fiabane et al. 2012) or
do so weakly (Uhlmann & Chouippe 2017). In figures 7(a) and 7(b), we then compare the
measured fluctuating energy and correlation time scales of the floating particles against the
temporal filtering predictions. Overall, the trend of (12) is correctly captured. The energy
of the small particles is somewhat underestimated, likely because (3.3) overestimates
their response time as mentioned previously. Larger discrepancies in (1) are found for
Re) =29, which might be due to the lack of scale separation of the inertial subrange in
this case. The correlation time T), is somewhat underestimated, although the experimental
scatter for the larger particles (due to the limited number of long trajectories recorded)
may partly account for the mismatch. Multiplying (1.7) and (1.9) yields

Kp _ (uﬁ)Tp _h+h
K, ()T, T
i.e. the diffusivity is expected to be independent of the particle inertia (as originally
predicted by Tchen 1947). That is, under the temporal filtering assumption, the increase of
T,/ Ty with particle size balances the decrease of (ug) /{u?). This prediction is consistent
with the measurements at Rey =29, while it underestimates the diffusivity measured in
stronger turbulence, as shown in figure 7(c). There, the diffusivity is evaluated indirectly
based on (3.4), i.e. as the product between the velocity variance and the correlation time
scale rather than differentiating the mean square displacement, due to the limited length of
the trajectories. Still, considering the vast range of particle sizes, the change in diffusivity
is relatively modest, implying that (3.4) is a reasonable first-order approximation.
Figure 8(a) compares the measured particle acceleration variance and the trend
predicted by (1.8). The general trend is captured, though with some quantitative
discrepancies. We note that, in the inertial subrange, the temporal filtering framework
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Figure 8. (a¢) Comparison between the measured particle acceleration variance (filled symbols) and the
temporal filtering framework (1.8) (lines) for all Re, cases. Error bars represent the run-to-run standard
deviation and the different power-law scalings are indicated by dashed lines. (b) Particle acceleration flatness
as a function of dimensionless particle size. The dashed line indicates a flatness of 3, the value for a Gaussian
distribution.

implies (a%) /{a?) ~ St~! (Berk & Coletti 2024), which according to the assumed linear

relation (3.3) is equivalent to (alz,) /{a*) ~ (d »/ n)~!. Recent particle-resolved simulations
in 3-D turbulence by Jiang et al. (2022) agree with such scaling. The present data, however,
suggest an influence of Re, on the scaling, which will be discussed in § 3.4.

Finally, we consider the return to Gaussianity of the acceleration p.d.f.s for increasingly
inertial particles, which is a hallmark of temporal filtering of small inertial particles in
turbulence (Bec er al. 2006). This is quantified by the flatness (ay)/(az)* plotted in
figure 8(b), showing that intermittency in the floating particle acceleration is significant up
to approximately d, /n = 50. According to (3.3), this corresponds to St ~ 5. The temporal
filtering framework does not provide a priori scaling for (aﬁ;) / (af,)z, but we can refer to
point-particle simulations based on such an assumption. For example, in the homogeneous
3-D turbulence simulations by Ireland ez al. (2016) at Re, = 88 (comparable to our more
turbulent case), the acceleration flatness approximately recovers the Gaussian value of 3
for St ~ 10 (see their figure 11).

3.4. Comparison with the spatial filtering framework

As discussed in § 1.2, the prevalent view is that neutrally buoyant finite-size particles act
as spatial filters of the local turbulent flow. We test such an assumption by considering the
amount of energy contained in the flow at scales up to d,. This is readily represented by

the second-order Eulerian velocity structure function, Sf r)={(llu(ro+r) —u(ro) ||2),
which quantifies the turbulent kinetic energy contained in scales r and smaller (Davidson
2015). As the particle responds to the remaining turbulent energy (qz) —(1/2) SZE (dp), the
kinematic relation Sf (r)= 2(q2)[1 — R,f (r)] implies that the fluctuating kinetic energy of
a finite-size particle is

(u7)(dp) ~ (q*)RE (d)). (3.5)

Following Kolmogorov (1941) theory, this argument similarly leads to ({g2) —
(u))/(q”) ~ (dp/m)*? in the inertial subrange (Homann & Bec 2010; Uhlmann &
Chouippe 2017). Alternatively, (ug) can be estimated directly from (3.5) if a model for
RE(r) is available based on the turbulence properties. Inspired again by Sawford (1991),
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Figure 9. (a) Eulerian velocity autocorrelation coefficient for Re; = 29 measured by PTV (symbols) and in its
analytical form (3.6). () Comparison between the measured particle fluctuating energy (filled symbols) and
the spatial filtering framework (3.5) with (3.6).

we write a two-length exponential:

Lie "Lt — [,e /L2
Li—L,

RE(r) = : (3.6)
where L1 and L, are associated with the energy-containing and dissipative scales of the
flow, respectively. Because RE (r) is expected to approximate a simple exponential in the
large-scale limit, we take L | = L. Remembering that the Taylor microscale is related to the
curvature of Rf (r) at small scales (Pope 2000), we take L, = A. This representation proves
effective, reproducing well the measured Eulerian velocity autocorrelation coefficient, see
figure 9(a). Remarkably, figure 9(b) shows that (3.5) captures the behaviour over the entire
range of d,/n and for all Re, considered here.

Let us now consider the other important properties of the particle motion, and
their predicted trends based on the spatial filtering ansatz. While the application of
Kolmogorov’s theory leads to (a%) J{a*) ~(d »/ n)~2/3 (Voth et al. 2002), the question is
complicated by the consideration that the forces acting on finite-size particles are driven by
the pressure increments at their scale (Xu et al. 2007; Brown et al. 2009). The scaling for
the latter is thought to vary with Re,, leading to a transition from (d, / n 3 to (d »/ n) %3
as the turbulence Reynolds number is increased (Qureshi et al. 2007; Homann & Bec
2010). The floating particle acceleration we measure at the different Re, (see figure 8a)
agrees with this picture: the data at Re; = 29 are consistent with the —4/3 decay, whereas
the more turbulent cases are compatible with the —2/3 decay.

Kolmogorov’s inertial subrange theory also predicts the particle response time (taken as
the correlation time scale of a) to scale as 7, ~ 7,(d,/ n)?/3. Experiments and particle-
resolved simulations of neutrally buoyant finite-size particles in 3-D turbulence, however,
find only approximate agreement with such a trend, the comparison being complicated by
the limited range of sizes and finite-Re, effects (Homann & Bec 2010; Volk et al. 2011;
Uhlmann & Chouippe 2017; Jiang et al. 2022; Fan et al. 2024). Similarly, as shown in
figure 6(a), our observations of floating particles are compatible with such inertial scaling,
but do not allow us to unambiguously support it with respect to other proposals (such
as (3.3)). Like previous studies, we are also limited to a marginal separation of scales,
which in this case is inherent to the flow configuration: increasing the intensity of the free-
surface turbulence inevitably leads to larger surface deformations, changing the nature of
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the problem at hand (Brocchini & Peregrine 2001). Thus, unless fluids of high surface
tension are used, turbulent motion along a quasi-flat free-surface can only be obtained at
relatively small Re,.

The acceleration flatness can also be estimated in the framework of spatial filtering by
assuming intermittency corrections for the high-order moments of the velocity increments
(Volk et al. 2011; Fan et al. 2024). For example, using the model by She & Leveque (1994)
leads to (aé) / (a®)?~d »/ n)*O'S(’. While this is comparable with the trends reported by
Volk et al. (2011), the acceleration intermittency of finite-size neutrally buoyant particles
in 3-D turbulence remains strong for all sizes: the flatness of the acceleration p.d.f. has
consistently been reported to be much larger than 3, and often larger than 10, even for
dp/n > 40 (Qureshi et al. 2007, 2008; Xu & Bodenschatz 2008; Brown et al. 2009;
Homann & Bec 2010; Volk et al. 2011; Bellani & Variano 2012; Uhlmann & Chouippe
2017; Jiang et al. 2022; Fan et al. 2024). Such a persistent intermittency for particle sizes
so deep in the inertial subrange is contrary to a simplistic application of either the temporal
or spatial filtering assumption (Qureshi et al. 2007). Strikingly, unlike in 3-D turbulence,
particles floating on the free-surface do display a return to Gaussian acceleration p.d.f.
with increasing size (see figures 4a and 8b).

The spatial filtering assumption does not offer a specific prediction for the Lagrangian
dispersion, in particular, for 7}, and K, nor are we aware of systematic studies of R,fp (1)
and its decay for large particles in 3-D turbulence. The exception is represented by the
study of Machicoane & Volk (2016), who measured RuLp (7) in a von Karman flow. They

found, however, that the confined nature of the flow crucially influenced Rbfp (1), not
allowing one to isolate the effect of particle size.

4. Discussion and conclusions

We have studied experimentally the behaviour of finite-size, marginally buoyant spheres
and discs in homogeneous isotropic free-surface turbulence. By using two experimental
facilities of identical architecture but different in size, we have spanned a wide range
of parameters, with particle sizes up to dp/n~ 100 and turbulence Reynolds numbers
Re) € [29, 84]. The latter is limited by our focus on a regime of quasi-flat free-surfaces,
without adding to this already complex system the effect(s) of wind shear and/or surface
waves (Falkovich et al. 2005; Farazmand & Sapsis 2019; Del Grosso et al. 2019). The
motion of the particles is compared with the behaviour of small floating tracers in the same
free-surface flows. We find that the behaviour of particle diameters up to approximately
dp/L =0.1 and/or d,/n=(O(10) is virtually indistinguishable from that of the free-
surface flow. For larger sizes, the particle fluctuating energy (u,%) and acceleration variance

(alz,) decrease, while their velocity correlation time 7}, and response time 7, (taken as the
correlation time scale of the particle acceleration) increase. The opposite and comparable
changes in (uﬁ) and T, imply that the long-term diffusivity K, = (ul%)Tp is weakly
dependent on particle size. The accelerations become less intermittent with increasing
particle size, displaying a Gaussian distribution above approximately d,/n = 50. The
present data show no systematic differences between spheres and discs when the diameter
d), (i.e. their maximum extension in the surface-parallel direction) is used to characterise
their size. This indicates that the motion is mostly influenced by the near-surface flow,
unlike non-spherical particles in 3-D turbulence for which the relevant geometric scale is
the volume-equivalent diameter (Jiang et al. 2022).

We have used our measurements to address the question of whether, and to which
degree, the motion of finite-size floating particles can be described by the two
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fundamentally different approaches commonly used to rationalise the behaviour of inertial
particles in turbulence: temporal filtering, which assumes that the particles respond only
to fluid fluctuations slower than 7,; and spatial filtering, which assumes that the particles
respond only to fluctuations of length scale larger than d,. In particular, we have applied
the temporal filtering approach in its simplified form that assumes the particles to sample
the flow ergodically, i.e. without favouring specific flow regions. This was the original
assumption of Tchen (1947), which fails to capture important trends of small heavy
particles that preferentially sample the turbulence (Wang & Stock 1993; Jung et al. 2008).
In the case of large particles, however, the evidence from 3-D turbulence studies suggests
that preferential sampling is weak. Under this assumption, the temporal filtering model
provides closed expressions for the particle fluctuating energy, acceleration, velocity
correlation time scale and diffusivity, based solely on 7, and the characteristic time scales
of the free-surface flow.

Our observations suggest that, in the present range of parameters, the response time
(hence, the Stokes number) of the floating particles is reasonably estimated from d, via an
empirical linear relation derived for finite-size particles in 3-D turbulence. Using that, the
temporal filtering approach captures the main observed trends of the transport properties.
This is noteworthy, in that a simple particle equation of motion such as (1.5) is very useful
in predicting the fate of floating particles in a free-surface flow of known properties. The
diffusivity is especially important to parametrise the sub-grid terms in coarse-graining
strategies (e.g. in large-eddy simulations and in other large-scale models used to predict
the fate of marine pollution) but is usually poorly constrained. For example, in the study
of Lagrangian transport of floating plastics in the Mediterranean Sea by Kaandorp et al.
(2020), arange of K, between 1 m’s~! and 100 m?s~! was considered. The prediction that
particle diffusivity is, to first order, equal to that of the underlying free-surface turbulence
(at least in the considered case of no wind and negligible waves) may prove useful in this
sense.

The spatial filtering approach, however, is found to reproduce with quantitative accuracy
the reduction of the fluctuating energy of the floating particles with increasing size. In
particular, we stress the usefulness of the simple relation (ug) ~ (qz)RME (dp) when the
spatial autocorrelation of the free-surface flow is available or can be modelled. Here,
we find it to be well represented by a two-length exponential inspired by Sawford’s two-
time model for the temporal autocorrelation. This framework predicts power-law scaling
relations for the acceleration variance that are compatible with our observations, including
the effect of Re,.

It is remarkable that the acceleration distributions of the floating particles lose their
intermittent character with increasing size. This is consistent with the picture of both
temporal and spatial filtering, but in contrast with observations in 3-D turbulence: there,
the intermittency remains strong for neutrally buoyant particles of all sizes, indicating that
any filtering approach (temporal or spatial) is inadequate or anyway too simplistic (Qureshi
et al. 2007). The present finding suggests that finite-size floating particles may be more
amenable to such representations.

The different acceleration distributions of large particles in free-surface versus 3-D flows
may be interpreted in view of differences in the turbulent dynamics. In 3-D flows, the
intense small-scale activity is correlated with large-scale fluctuations of the energy input
(Blum et al. 2010, 2011; Carter & Coletti 2018; Vela-Martin & Avila 2024) and small
vortices are often spatially organised around large-scale shear layers between energetic
eddies (Ishihara, Gotoh & Kaneda 2009; Hunt et al. 2014). This may partly explain
why even particles with inertial subrange sizes exhibit intermittent accelerations. In free-
surface turbulence, while large-scale properties such as the turbulent kinetic energy and
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the integral scales reflect those of the bulk (Li er al. 2025), the velocity gradient tensor
of the surface motion follows profoundly different dynamics associated with the specific
boundary conditions (Qi et al. 2025b). In particular, the free-surface vorticity and strain
rate evolve over time scales comparable to 77, (rather than 7, as in 3-D turbulence) and are
related to upwelling/downwelling events moving fluid towards and away from the surface
(Kumar ef al. 1998; Shen et al. 1999; Lovecchio ef al. 2015; Ruth & Coletti 2024; Li et al.
2025; Qi et al. 2025a). The equilibrium between upwellings and downwellings implies that
stretching and compression of the surface-attached vortices are in balance (unlike in 3-D
turbulence; Davidson 2015), impacting the organisation of the intense-fluctuation events
and the inter-scale energy transfer along the free-surface (Ruth & Coletti 2024; Qi et al.
2025a,b). Further studies that simultaneously capture both the flow and the particle motion
shall elucidate how the spatio-temporal structure of the turbulence affects the acceleration
of finite-size floating particles.

Taken together, these results demonstrate that both the temporal filtering and the spatial
filtering approaches capture important and complementary aspects of the motion of float-
ing particles in free-surface turbulence. Spatial filtering provides a more accurate estimate
of the decrease in particle fluctuating energy with size, compared with the prediction based
on temporal filtering. The relative success of the latter might actually be rooted in the
approximately linear relation between d), and 7, and thus merely reflect spatial filtering.
Temporal filtering, however, also yields approximate estimates of the velocity correlation
time scale and diffusivity, which are not directly predicted by spatial filtering. As Tchen
(1947) first realised, the concept of response time and temporal filtering are intertwined
and, as such, temporal filtering is implicit in point-particle simulations of Lagrangian
transport based on (1.5). The present findings suggest that, for finite-size floating particles,
alternative approaches fully based on spatial filtering may be desirable, though defining
them is outside the scope of the present work. Finally, we remark on an important
limitation: for the considered case of negligible waves to be realised, Re, (and thus scale
separation) cannot be large. This implies that scaling relations such as those predicted by
spatial filtering using Kolmogorov’s theory have a limited range of applicability. Such a
limitation on the Reynolds number, in turn, constrains the scale separation in the flow.
Therefore, one cannot clearly discern whether the relevant dimensionless particle size
is d,/L, dy/n or possibly d,/A. From basic notions on turbulent kinetic energy and
intermittency, the behaviour of the particle velocity and acceleration are expected to
depend on the size compared with the integral and Kolmogorov scale, respectively. This
may be a simplistic view, considering the relations between distance scales (Blum et al.
2011) and the peculiar nature of the free-surface (Qi et al. 2025a).

Future works shall explore further the influence of floating particle geometry, for
example, considering prolate particles whose translation and rotational motions are
coupled (Voth & Soldati 2017) and which represent a large fraction of marine plastics
(Kooi & Koelmans 2019). Moreover, research is warranted on how the effect of turbulence
combines with that of surface waves, whose impact on the transport of spherical and
non-spherical particles has attracted significant interest in recent years (Pizzo, Melville &
Deike 2019; Baker & DiBenedetto 2023; Xiao et al. 2024). Finally, in the presence of wind,
the submergence will determine the influence of windage, i.e. the drag experienced by
objects partly protruding above the free-surface (Beron-Vera, Olascoaga & Miron 2019).
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