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Abstract

We present a hierarchical classification of specializations of the divide-and-conquer paradigm.

The aim is to identify a subclass of divide-and-conquer algorithms with an efficient parallel

implementation which can be viewed as a static space-time mapping. The specializations

impose a balanced call tree, a fixed degree of the problem division, and elementwise operations.

The correctness of our compile-time transformations is proved by equational reasoning in

Haskell; recursion and iteration are handled by induction. We demonstrate the practicality

of the skeleton by some examples, one of which is Strassen’s matrix multiplication.

Capsule Review

The divide-and-conquer paradigm is simple and intuitive, but has subtle technical dimensions

when studied closely. This paper describes a variety of divide-and-conquer strategies (expressed

as ‘skeletons’ in Haskell), proves various properties/equivalences amongst them, and shows

how to translate them into iterative loops in C for execution on either sequential or parallel

architectures. Although the number of different versions of the paradigm may seem daunting,

their definition and use is well motivated, and their interrelations are carefully defined.

1 Introduction

In the divide-and-conquer paradigm (DC) (Aho et al., 1974; Horowitz & Sahni,

1984), the solution of a problem is specified by dividing the problem into a number

of subproblems, which are solved recursively until a basic case is reached, and then

combining the solutions of the subproblems to the solution of the original problem.

This programming paradigm is used frequently for computations on large data sets.

The intensive study of the parallelization of DC (Mou & Hudak, 1988; Mou,

1989; Cole, 1989) is a tiny but key portion of all work on DC. Because of the

wide applicability of the DC paradigm, it has often been formulated as a so-called

algorithmic skeleton (Cole, 1989; Darlington et al., 1993), which can be used as

a basic building block for programming. One purpose of the skeleton concept is

to provide the user with efficient implementations of popular paradigms. In this

approach, the algorithmic skeleton for a paradigm corresponds to an executable, but

unintuitive architectural skeleton (Kindermann, 1994). To make the correspondence
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between the algorithmic and the architectural skeleton formally precise, we work in

the domain of functional programming in which skeletons are predefined higher-

order polymorphic functions.

The fact that the subproblems are independent makes DC particularly attractive

for a parallelization. That is, one major purpose of an architectural skeleton for DC
is to provide an efficient implementation for a given parallel computer. However,

in order for a corresponding efficient architectural skeleton to exist, the algorithmic

skeleton has to satisfy certain conditions.

The aim of this treatise is to specialize an algorithmic skeleton forDC to a form for

which there is an efficient parallel implementation. We impose specializations step by

step, e.g. a fixed division degree of data or of work, etc. We present only a single path

in the tree of possible specializations of DC; other specializations can be envisioned

as well. Some specialized skeletons (we call them sources) can be transformed

to functional target skeletons, which have an obvious correspondence with nested

parallel loop programs. For example, our so-called ‘call-balanced fixed-degree DC’

skeleton and all of its specializations can be compiled into such a skeleton.

Of course, the functional target skeleton is not meant to be executed in Haskell –

this would be less efficient than executing the source skeleton. But it is our stepping

stone to a loop program in a language which is closer to the machine architecture,

like C. The loop program can be viewed as an abstract architectural skeleton and

translated easily to different parallel machines. In the absence of resource constraints,

it will provide the fastest possible execution given the data dependences imposed by

DC.

The abstract computational model in which we justify and describe our specializa-

tions is the call tree. The root of the call tree represents the entire problem instance,

the ith child of a node N represents the ith subproblem instance of the problem

instance which N represents.

In our view, a specialization of a skeleton does not necessarily imply the preser-

vation of its type. For a transformation to an efficient implementation, we take the

liberty, e.g. to omit tuple components that become irrelevant, or to add structural

parameters. We consider skeleton B to be a specialization of skeleton A if B can be

defined by an optional projection composed with an application of A with possibly

modified arguments. Every function is a specialization of itself and of the identity

function (f = id f).

Early work on transforming recursion with dependent calls into sequential loops

was based on a depth-first traversal (Partsch & Pepper, 1976). This method is not

very useful in a parallelization, where a breadth-first traversal is called for. The

parallelization technique of Harrison and Khoshnevisan (1992) can be extended to

handle DC if certain conditions are fulfilled (de Guzmán et al., 1993). We start with

similar considerations and develop a method for translating DC into a nested linear

recursive skeleton, which can easily be interpreted as a loop nest. Our approach

uses a tree structure as intermediate representation, because the tree allows the

correct typing of recursively defined objects and is useful for exploiting structural

properties in the parallelization. We prove the semantic equivalence of the specialized

algorithmic skeleton and the loop nest.
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The Haskell definitions and equalities have been type checked automatically. To

understand the development process, the reader is not required to understand all of

the code we present. Some equalities, which are quite easily understood intuitively,

require some amount of formalism to make the equational reasoning in Haskell

work.
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Fig. 1. Specializations of DC.

Figure 1 depicts the skeletons we present in this paper, and their dependences.

Downward arrows denote specializations, undirected edges equivalences, dashed

arrows a switch in language (from Haskell to C).

The paper is structured as follows. In section 2, the skeletons dc0 to dc3 are

defined. In section 3, we transform the call-balanced fixed-degree DC skeleton dc3,

which is recursive, to skeleton it3, which is iterative (in the sense that it uses list

comprehensions). Then we provide rules for translating it3, which is as close to

loops as we can get in Haskell, to a parallel loop nest in C. In section 4, we specialize

skeleton dc3 further, with elementwise operations on balanced data partitions, and

present a corresponding C loop program. In section 5, we demonstrate the use of

the most specific skeleton dc4 by discussing three examples: scan, Strassen’s matrix

multiplication, and Karatsuba’s polynomial product. The last section summarizes

our results and discusses related work.
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2 Specializing DC
In this section, we propose a sequence of specializations of a skeleton for general

DC. We denote our skeletons in the functional language Haskell (Hudak et al., 1992)

(see also http://haskell.org/). First, we present a general form of DC, which is

then specialized to enforce a balanced call tree, and subsequently further to enforce

a fixed degree of the problem division.

At the outset, let us make some remarks about programming methodology. We

see two kinds of people interacting with skeletons:

• the application programmer must choose for his application one from a library

of algorithmic skeletons,

• the systems programmer must provide one or more architectural skeletons for

each algorithmic skeleton in the library.

In providing specialized DC skeletons, we play part of the role of the systems pro-

grammer. Let us briefly discuss some issues relevant to the application programmer.

Consider the skeleton library consisting of dc0 to dc4. To maximize efficiency,

the application programmer should choose the most specialized skeleton which ac-

commodates his/her algorithm. Frequently, the application will have to be ‘adapted’

to the skeleton. Such adaptations include the reformating of the input or output

(like enlarging the length of a vector to the next power of 2) and the introduction

of additional information to make the problem solution fit into the given skeletal

structure. One must watch that the cost of these adaptations does not outweigh the

savings gained by the chosen implementation.

Another important issue is granularity. In general, a compiler cannot determine

the appropriate data size, at which to stop the parallelization and prescribe a

sequential execution. The application programmer can help, e.g. in the case of DC,

by making this choice explicitly and supplying an optimized sequential algorithm to

be used in the base case of the DC skeleton.

Before we continue with the description of our increasingly specialized skeletons

dc0 to dc4, figure 2 gives an impression of what kind of problems are covered by

each of them. (Skeleton dc4 is deferred to section 4.)

Auxiliary functions cited in the programs that follow can be found in the appendix.

We use the following type synonyms, in which Nat denotes the natural numbers,

TDiv the type of the divide function, and TICom/TCom the types of the combine

function with/without using input data.

type Nat = Int

type TDiv a = a -> [a]

type TCom b = [b] -> b

type TICom a b = (a,[b]) -> b
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dc0 Quicksort (Blelloch, 1990; Horowitz & Sahni, 1984),

Evaluation of expressions,

Downsweep/Upsweep in a tree,

Step in a simulation of a discrete system

dc1 Pseudomorphisms (Mou & Hudak, 1988),

Reduce ◦ Map (Axford & Joy, 1993) on trees,

Shannon Expansion (Norwood & McCluskey, 1996)

dc2 Radix Sort (Blelloch, 1990)

dc3 Convex Hull (Blelloch, 1990),

Mergesort (Horowitz & Sahni, 1984),

Reduce ◦ Map (Axford & Joy, 1993) on vectors,

Maximum Segment Sum (Smith, 1987),

Simple numerical integration

dc4 Vector scan,

Bitonic Sort (Knuth, 1973),

Fast Fourier Transform (Leighton, 1992),

(Karatsuba’s) polynomial product (Aho et al., 1974),

(Strassen’s) matrix multiplication (Strassen, 1969)

Fig. 2. Applications of skeletons dc0 to dc4.

2.1 Most general DC (dc0)

We assume that the subproblems can be solved independently. This puts, e.g. branch-

and-bound algorithms outside our hierarchy, because of the existence of a global

variable, the currently best value.

Under this assumption, the most general DC skeleton can be specified as follows:

dc0 :: (a->Bool) -> (a->b) -> TDiv a -> TICom a b -> a -> b

dc0 p b d c = r

where r x = if p x then b x

else c (x, map r (d x))

As aggregating data structure, we have chosen the list arbitrarily; other choices can

be envisioned. The skeleton is parametrized by four so-called customizing functions:

the predicate p, which recognizes the basic case, the basic function b, which is applied

in this case, and the functions d for dividing a problem into a list of independent

subproblems and c for combining the input data and the list of subproblem solutions

to the solution of the original problem. The customizing functions are parameters

which must be fixed at compile time, i.e. before we parallelize. Only the last parameter

x, the data, is a run-time parameter. Take the example of a variant of the quicksort

algorithm (Blelloch, 1990; Horowitz & Sahni, 1984):

quicksort :: Integral a => [a] -> [a]

quicksort = dc0 ((<2).length) id d c
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where pivot xs = let l = length xs

in ((xs!!0)+(xs!!(l‘div‘2))+(xs!!(l-1)))‘div‘3

fil f xs = filter (‘f‘ (pivot xs)) xs

d xs = [fil (<) xs, fil (>) xs]

c (xs,[l,g]) = l ++ fil (==) xs ++ g

Note that the pivot is computed in the divide as well as in the combine function,

but this does not justify a structural refinement of the skeleton. The reusage of

values of common subexpressions is the responsibility of the compiler. The crucial

point is that the information taken directly from the input data can be used in the

combine function of dc0.

To proceed to loop form, it is necessary to eliminate irregularities in the structure

of the skeleton. The most apparent irregularity is that the combine function is

defined on data not only of different levels of recursion, but even of different phases,

namely the divide and combine phase. This complicates the proof of correctness

and later the generation of the data-parallel program. In the following subsection,

we eliminate the use of the input data in the combine function, without loss of

generality.

2.2 DC without combining the input data (dc1)

In the following skeleton, the input data is not used explicitly in the combine

function:

dc1 :: (a->Bool) -> (a->b) -> TDiv a -> TCom b -> a -> b

dc1 p b d c = r

where r x = if p x then b x

else (c . map r . d) x

Skeleton dc1 is well suited for Reduce ◦ Map algorithms (Axford & Joy, 1993)

on trees:

data Tree a = Leaf a | Branch [Tree a]

tree_map_reduce :: (a->b) -> ([b]->b) -> Tree a -> b

tree_map_reduce mapfun redfun = dc1 p b d redfun

where p (Leaf _) = True

p (Branch _) = False

b (Leaf x) = mapfun x

d (Branch xs) = xs

The following application computes the sum of all squares in a particular tree:

tree_map_reduce (\x->x*x) sum

(Branch [Leaf 2,Branch [Leaf 3,Leaf 4,Leaf 5]])

which gives the result 54.

dc0 and dc1 have the same expressive power (Herrmann & Lengauer, 1997); dc0

is semantically equivalent to a specialization of dc1.
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2.3 Call-balanced DC (dc2)

Two more specializations have to be applied in order to obtain a parallel loop

program: (1) we must fix the degree of the problem division, and (2) we must balance

the call tree, i.e. all paths from the root to any leaf must have the same length. The

notion of balance, as we use it here, does not imply a balanced processor load.

One question is in which order these specializations should be applied. Later we

will see that the loop program is doubly nested: the outer loop enumerates the levels

of the tree and the inner loop the nodes at a single level. There are other ways of

scanning the nodes of a tree, but this variant of the outer loop gives us the free

schedule, in which each point of the scan is processed as soon as possible while

respecting the data dependences. If the division degree is fixed but the tree is not

balanced, we cannot construct the outer loop (and, therefore, also not the inner one

because it depends on the outer loop). On the other hand, balance without a fixed

degree means that we are able to construct the outer loop, but not the inner one.

Therefore, we impose balance first and fix the degree later.

Because balance implies that each path of the call tree contains the same number

of recursive calls, we can replace predicate p by a counter n for the remaining

recursion levels; n appears late in the list of curried parameters because it is not

constant during a computation like p but changes frequently. The following skeleton

dc2 describes the class of DC with a balanced call tree.

dc2 :: (a->b) -> TDiv a -> TCom b -> Nat -> a -> b

dc2 b d c = r

where r n = if n==0 then b

else c . map (r (n-1)) . d

A good application for dc2 is the radix sort (Blelloch, 1990). A set of lexico-

graphically comparable lists of the same length is partitioned into blocks in which

elements have the same most significant component. These blocks are ordered with

respect to this component and the algorithm is applied recursively using the next

component for comparison. The auxiliary function which digits delivers a list of

all digits which are relevant in the division for the actual subproblem instance.

radix_sort :: Ord a => [[a]] -> [[a]]

radix_sort xs = dc2 fst d flatten (length (xs!!0)) (xs,0)

where d (x,l) = let digits = which_digits l [] x

parts = [ filter ((==i).(!!l)) x | i<-digits ]

in zip parts (repeat (l+1))

dc2 is an optimized version of a specialization of dc1. If one combines n and x

to a pair, we obtain the following skeleton dc2 by dc1, in which dc2 is expressed in

terms of dc1.

dc2_by_dc1 :: (a->b) -> TDiv a -> TCom b -> Nat -> a -> b

dc2_by_dc1 b d c n x = dc1 p bb dd c (n,x)

where p (m,_) = m==0

bb (_,y) = b y

dd (m,y) = zip (repeat (m-1)) (d y)
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Fig. 3. Transformation steps of DC towards regularity.

If one allows n to be instantiated depending on x, terminating instances of skeleton

dc1 can be expressed in terms of dc2 with a potential loss of efficiency in the parallel

implementation; this requires a modification of the customizing functions. We have

to consider two cases. In case 1, the base case is not necessarily reached within the

given number of recursion levels. In case 2, the base case is reached after fewer

levels of recursion than given. We suggest a solution for both cases:

Case 1. We need a function depth which tells us the maximal recursion depth

depending on p, d and x, to be given as parameter n to dc2. In (Harrison &

Khoshnevisan, 1992), this is computed by a while loop, which we have to avoid

since we want to apply a static space-time mapping. Determining the depth is the

responsibility of the environment; often, it can be computed easily from the size

of the input data. From a practical point of view, there is a simpler and more

efficient option: the depth remains a structural parameter and is chosen later in

dependence of the size of the processor topology, and function b is replaced by

the sequential DC algorithm. This also avoids the creation of a lot of threads on

a single processor.

Case 2. We have to extend the domain of the customizing functions d and c in

order to establish the so-called overrun tolerance property (de Guzmán et al.,

1993), i.e. although the truth of predicate p indicates that function b has to be

applied, further recursion is not harmful. This can be achieved by extending the

definitions of d and c, in the base case, to d x = [x] and c [y] = y. If, in the

recursive case, the problem is not divisible any further, it is simply passed on to

the next level of recursion in a singleton list. On the way back, if there is only a

single subproblem solution, this becomes the solution of the original problem.

2.4 Call-balanced fixed-degree DC (dc3)

In skeleton dc2, the existence of a potential child of a node in the call tree depends

on run-time data, which makes it impossible to compute a static allocation of the

nodes at a level of the call tree.

Another non-static variant is a semi-dynamic allocation, i.e., by computing the

allocation of the nodes at a level in the call tree with a parallel scan of the number

of children of the nodes at the level above. This is similar to Blelloch (1989).

For an efficient static parallelization, it is convenient to have a fixed division
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degree. In this case, subtrees of the call tree can be assigned to partitions of the

topology at compile time, and administration overhead at run time is avoided. In

most cases, the degree of the problem division is 2. Examples of higher degrees

are, e.g. Karatsuba’s polynomial product (Aho et al., 1974) with a degree of 3 and

Strassen’s matrix multiplication (Strassen, 1969; Horowitz & Sahni, 1984) with a

degree of 7.

Whereas, for a particular division degree, a DC skeleton can be defined in Haskell

(using tuples) and checked at compile time, this cannot be done for the entire class

of fixed-degree DC, due to the limitations of the type system of Haskell. Therefore,

skeleton dc3 is defined to be dc2 with an additional constraint on function d.

dc3 :: Nat -> (a->b) -> TDiv a -> TCom b -> Nat -> a -> b

dc3 k b d = dc2 b (takeE k . d)

The definition of dc3 uses takeE to impose a restriction on the class of problems:

the customizing function d is treated as if it always produced a list of length k.

If d is given by the user, the compiler must check that the restriction is satisfied.

For purposes of equational reasoning, takeE is defined to access elements by index.

For robustness and to make things easier for the user, the slightly more restrictive

function takeE’ could be used instead.

takeE :: Nat -> [a] -> [a]

takeE k xs = [ xs!!i | i<-[0..k-1] ]

takeE’ :: Nat -> [a] -> [a]

takeE’ k xs = if length xs == k

then xs

else error "length constraint violated"

dc3 can be used for integration, e.g. consider the following algorithm based on

Simpson’s rule, which divides always into two parts:

integrate :: (Floating a, RealFrac a) => (a->a) -> a -> (a,a) -> a

integrate f eps (lower,upper) =

(dc3 2 b d c n (lower,upper) + correct_border) * scale

where correct_border = (f upper - f lower) / 2

scale = (upper-lower) / (2^n * 3)

b (lower,upper) = f lower + 2 * f ((lower+upper) / 2)

d (lower,upper) = let med = (lower+upper)/2

in [(lower,med),(med,upper)]

c [lval,rval] = lval+rval

n = ceiling (logBase 2 ((upper-lower)/eps))

The integration works as follows. The range is split into 2n intervals, for the

minimal n which makes each interval not longer than eps. Then, each interval is

integrated using Simpson’s rule and the results are combined by addition.
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2.4.1 Expressing call-unbalanced fixed-degree DC in terms of dc3

Unfortunately, some algorithms do not guarantee that the call tree is balanced.

Furthermore, a lot of algorithms lead to a balanced tree only in the case that the

input data is of a particular size. We want to be able to handle these algorithms

for all possible sizes. An observation made in section 2.3 is that we can achieve

balance if we transform the divide and combine function to an equivalent, overrun-

tolerant form, destroying a possible fixed degree (see figure 3(b–c)). The branches

that are missing in comparison to a tree of fixed degree have to be simulated in the

implementation.

Let us consider what happens in the case when a problem instance is not divisible

any further, but the parameter value n>0 forces further unfolding. Then, the divide

function sends its input data only down the leftmost path of the extended call tree

until n=0 (see figure 3(c–d)), the other paths carry useless information.

0

0

0

0

expressed by dc3unbalanced

tag

0

-1

0

0

-110

100

2  1

1 2 3

1 4

1  5

9

9

3

1  5  14

2  3  1

2  1 3

1 2

1 4

1  5 9

1  5  14

2  3  1

Fig. 4. Adaptation to dc3.

Similarly, the corresponding combine functions just deliver the value from the

leftmost child. How the combine function should behave is therefore determined by

an additional tag of a problem resp. solution instance, which counts the number

of levels from the actual level to the level of the last division. For an example see

figure 4, which describes the process of an artificial DC algorithm on numbers,

which sorts in its divide phase, squares in the basic phase and constructs the prefix

sum in its combine phase. The following skeleton dc3tobal performs the adaptation

under the assumption that the user’s algorithm matches the list pattern enforcing a

fixed degree k, as pointed out before.

dc3tobal :: Int->(a->Bool)->(a->b)->TDiv a->TCom b->Int->a->b

dc3tobal k divisible bb dd cc n x = fst (dc3 k b d c n (x,0))

where b (x,l) = (bb x,l)
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d (x,l) = if divisible x

then takeE k (zip (dd x) (repeat 0))

else (x,l+1) : take (k-1) (repeat (x,-1))

c s = let ys = map fst s

l = snd (head s)

in if l==0 then (cc ys,0)

else (head ys,l-1)

3 Transforming call-balanced fixed-degree DC to loops

In this section, we show how the recursive call-balanced fixed-degree DC skeleton

(dc3) can be transformed to an intermediate iterative program, which can later

be implemented easily on many parallel systems. The important aspect of our

transformations is that all but the last step are in Haskell, i.e. amenable to equational

reasoning.

In section 3.2, we transform dc2 to linear recursion. We state in Law 1 that the

abstract version dc2a (see figure 1) of the call-balanced skeleton dc2 is equivalent

to the linearly recursive skeleton it2a which enumerates the levels of the call graph.

In section 3.3, we use this equivalence to state the equivalence of dc3a and it3a

in Law 7. We present some laws, which introduce concrete versions of the abstract

expressions occurring in it3a. In section 3.4, we replace in it3a the abstract by

the concrete expressions, simplify, replace iterators by list comprehensions, and

introduce names for the intermediate values computed by the phases. We obtain the

functional target skeleton it3, whose equivalence with dc3 is given by Law 13. it3

iterates across the nodes of a fixed level of the call graph by a further, nested linear

recursion. In section 3.5, we transform it3 to a C program with annotations for

parallelism.

But first we define a few Haskell functions, which are used in the remainder of

this paper.

3.1 Definition of auxiliary Haskell functions

We use a data type PS (for ‘power structure’) to represent a list structure by a tree

with empty inner nodes. A single element is defined with the constructor Sgt, a list

of power structures is made a power structure using the constructor Com.

data PS a = Sgt a | Com [PS a] deriving (Eq,Show)

We use the following functions to work with data type PS.

unSgt :: PS a -> a

unSgt (Sgt a) = a

unCom :: PS a -> [PS a]

unCom (Com as) = as
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dmap :: (PS a->PS b) -> Nat -> PS a -> PS b

dmap f 0 = f

dmap f n | n>0 = Com . map (dmap f (n-1)) . unCom

dkmap :: Nat -> (PS a->PS b) -> Nat -> PS a -> PS b

dkmap k f 0 = f

dkmap k f n | n>0 = Com . takeE k . map (dkmap k f (n-1)) . unCom

comp :: [a->a] -> a -> a

comp = foldr (.) id

down :: (Nat->a->a) -> Nat -> a -> a

down f n = comp [f i | i<-[0..n-1]]

up :: (Nat->a->a) -> Nat -> a -> a

up f n = comp [f i | i<-[n-1,n-2..0]]

partition :: Nat -> Nat -> [a] -> [[a]]

partition k n xs = [ [xs !! (i*k+j) | j<-[0..k-1]]

| i <- [0..k^n-1]]

unpartition :: Nat -> Nat -> [[a]] -> [a]

unpartition k n xs = [xs !! i !! j | i<-[0..k^n-1], j<-[0..k-1]]

Sgt, unSgt, Com and unCom are wrappings resp. unwrappings of data type PS.

dmap f n applies a function to the n-th level of a power structure. dkmap k f n

does the same as dmap f n, but its domain is restricted to those power structures

in which all nodes at the first n levels have a branching degree of k. comp takes a

list of functions and composes them. The functions down and up take a function

and a number n and compose this function n times with itself, while counting the

first argument down resp. up. The function partition takes parameters k and n,

and maps a list of length kn+1 bijectively to kn lists of length k taking successive

elements. unpartition k n is the inverse of partition k n.

3.2 Transforming dc2 to linear recursion

Our goal is a linearly recursive program, which iterates through the levels of the

call tree. Consider the collection of input data at different levels. At level 0, the

input data is a single object (the input data of the problem). At level 1, it is a list

(of input data of the subproblems). At level 2, it is a list of lists (of input data of

the subproblems of the subproblems), etc. In Haskell, a list and a list of lists are

of different type, i.e. a function which can deal with all levels, taking the level as a

parameter, is not well-typed. Therefore, we use instead the algebraic data type PS,

which defines a superset of what we intend to define.
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Here is the new Haskell definition for dc2, which works on power structures

instead of lists; we name it dc2a (a is for abstract).

dc2a :: (PS a->PS b)->(PS a->PS a)->(PS b->PS b)->Nat->PS a->PS b

dc2a bb dd cc n =

if n==0 then bb

else cc . dmap (dc2a bb dd cc (n-1)) 1 . dd

Let us show how to express dc2 in terms of dc2a.

dc2_by_dc2a :: (a->b) -> TDiv a -> TCom b -> Nat -> a -> b

dc2_by_dc2a b d c n = unSgt . dc2a bb dd cc n . Sgt

where bb = Sgt . b . unSgt

dd = Com . map Sgt . d . unSgt

cc = Sgt . c . map unSgt . unCom

Now, we define the linearly recursive function it2a.

it2a :: (PS a->PS b)->(PS a->PS a)->(PS b->PS b)->Nat->PS a->PS b

it2a bb dd cc n = down (dmap cc) n . dmap bb n . up (dmap dd) n

We observe that it2a equals dc2a, and state this in Law 1. The proof uses

Laws 2–6, whose proofs we omit here.

Law 1

dc2a = it2a

Proof

By induction on n

n=0

dc2a bb dd cc 0 xx

= { Selection of the then branch }
bb xx

= { Identity twice }
(id . bb . id) xx

= { Definition of down, up, and dmap }
(down (dmap cc) 0 . dmap bb 0 . up (dmap dd) 0) xx

= { Definition it2a }
it2a bb dd cc 0 xx

n → n+1

dc2a bb dd cc (n+1) xx

= { Selection of the else branch }
(cc . dmap (dc2a bb dd cc n) 1 . dd) xx

= { Induction hypothesis }
(cc . dmap (it2a bb dd cc n) 1 . dd) xx

= { Definition of it2a }
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(cc . dmap (down (dmap cc) n . dmap bb n .

up (dmap dd) n) 1 . dd) xx

= { dmap distribution }
(cc . dmap (down (dmap cc) n) 1 . dmap (dmap bb n) 1 .

dmap (up (dmap dd) n) 1 . dd) xx

= { Laws 5, 4, and 6 }
(cc . down (dmap cc . (+1)) n . dmap bb (n+1) .

up (dmap dd . (+1)) n . dd) xx

= { Definition of dmap }
(dmap cc 0 . down (dmap cc . (+1)) n . dmap bb (n+1) .

up (dmap dd . (+1)) n . dmap dd 0) xx

= { Laws 2 and 3 }
(down (dmap cc) (n+1) . dmap bb (n+1) . up (dmap dd) (n+1)) xx

= { Definition it2a }
it2a bb dd cc (n+1) xx

q

Law 2

f 0 . down (f . (+1)) n = down f (n+1)

Law 3

up (f . (+1)) n . f 0 = up f (n+1)

Law 4

dmap (dmap f n) m = dmap f (n+m)

Law 5

dmap (down (dmap f) n) m = down (dmap f . (+m)) n

Law 6

dmap (up (dmap f) n) m = up (dmap f . (+m)) n

Laws 2 and 3 address the addition of a further iteration to a sequence of

iterations. Law 4 states how nested maps can be replaced by a single map. Laws 5

and 6 extend Law 4 to the case, in which an iterator up or down iterates on the inner

map. Analogously, in loop parallelization, this describes the process of bringing an

inner sequential loop to the top level.

3.3 The abstract skeletons for dc3

Skeleton dc3a is the abstract version of dc3 (see figure 1), and skeleton it3a is its

iterative counterpart.

dc3a ::

Nat->(PS a->PS b)->(PS a->PS a)->(PS b->PS b)->Nat->PS a->PS b

dc3a k b d = dc2a b (Com . takeE k . unCom . d)
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it3a ::

Nat->(PS a->PS b)->(PS a->PS a)->(PS b->PS b)->Nat->PS a->PS b

it3a k b d = it2a b dd

where dd x = Com [unCom (d x) !! i | i<-[0..k-1]]

Law 7

dc3a = it3a

Proof

By Law 1, dc2a and it2a are equivalent. We impose the fixed division degree on

both skeletons, obtaining dc3a and it3a. q

In the previous subsection, function dmap is used for distributing a function call

to all nodes at a fixed level of the call tree. For the divide function and the basic

function, this is the leaf level. For the combine function, this is the level above

the leaf level because the information stored in the leaf nodes is combined in their

parent nodes and the leaf nodes are deleted. In order to express this application

easily by a single linear recursion, the nodes at said level have to be represented by

a one-dimensional data structure; we use a list. The representation mapping is given

in Definition 8. The structural information that is contained in the tree is used to

derive functions which manipulate the linear structure.

Figure 5 illustrates how this is done. We have used the local definitions dd, bb,

and cc from dc2 by dc2a on the abstract side. The abstract level (the level which

makes use of the tree or power structure) is depicted on the left side, the concrete

level (performing the corresponding computations on the linear structure) on the

right side. At the abstract level, we can exploit Laws 1 and 7 because they contain

the structural information needed. The computation proceeds from top to bottom.

If one projects all tree drawings in this figure onto each other, one obtains the

complete call tree.

In the rest of this subsection, we work out how the abstract functions are expressed

in terms of the concrete functions.

3.3.1 Expressing the abstract functions in terms of the concrete ones

Our aim is to obtain a linear representation of the nodes at level n of the balanced

k-degree call tree. To be able to exploit the property of fixed degree, we use

function dkmap k instead of dmap. The representation is defined below by function

represent k n, and is depicted in figure 5.

Definition 8

(Linearization)

We call the mapping of a level of a k-degree tree to a list a linearization.

We define function lintrans k n, which performs this mapping of level n, and

its inverse invlintrans k n. Based on these, we define a representation function

represent k n which expects a tree of depth n, and an abstraction function

abstract k n which is the inverse of represent k n on lists of length kn.
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x0 x1

Com [Sgt x0, Sgt x1]

x

Sgt x

y00 y01 y10 y11
Com [Com [Sgt y00, Sgt y01],

y0 y1

Com [Sgt y0, Sgt y1]

y

Sgt y

Com [Sgt y10, Sgt y11] ]

x00 x01 x10 x11

[x]

[[x0, x1]]

[x00, x01, x10, x11]

[y00, y01, y10, y11]

[x0, x1]

[[x00, x01], [x10, x11]]

[[y00, y01], [y10, y11]]

[y0, y1]

[[y0, y1]]

[y]

Com [Com [Sgt x00, Sgt x01],

dkmap 2 (Com . map Sgt . d . unSgt)  0

dkmap 2 (Com . map Sgt . d . unSgt)  1

dkmap 2 (Sgt . b . unSgt)  2

dkmap 2 (Sgt . c . map unSgt . unCom)  1

represent 2 0

represent 2 1

represent 2 2

represent 2 1

represent 2 2

represent 2 0

map d

unpartition 2 0

map d

unpartition 2 1

map b

partition 2 1

map c

partition 2 0

map c

Com [Sgt x10, Sgt x11] ]

dkmap 2 (Sgt . c . map unSgt . unCom)  0

Fig. 5. Effect of linearization.

lintrans :: Nat -> Nat -> PS a -> [PS a]

lintrans k 0 (Sgt x) = [Sgt x]

lintrans k n x | n>0 = [(lintrans k (n-1) (unCom x !! i)) !! j

| i<-[0..k-1], j<-[0..k^(n-1)-1]]

invlintrans :: Nat -> Nat -> [PS a] -> PS a

invlintrans k 0 [Sgt x] = Sgt x

invlintrans k n x | n>0

= Com [invlintrans k (n-1) [x!!(i*k^(n-1)+j)

| j<-[0..k^(n-1)-1]]

| i<-[0..k-1]]

represent :: Nat -> Nat -> PS a -> [a]

represent k n = map unSgt . lintrans k n
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abstract :: Nat -> Nat -> [a] -> PS a

abstract k n = invlintrans k n . map Sgt

Law 9

(Concretization of dkmap)

dkmap k f n = invlintrans k n . map f . lintrans k n

Let us derive the concrete from the abstract implementation. Note that figure 5

consists of commuting diagrams. Starting from a position at the abstract side, one

can first perform the abstract function, moving downwards, and then go to the

representation side, or one can first apply the representation function and then

the concrete function. The existence of the concrete function is guaranteed by

the invertibility of the representation function, but, a priori, the concrete function

is unknown. Aside from the basic function, the concrete function consists of a

composition of a calculation on the data and a type adaptation. In order to find

the concrete function, we first write down the equation for the commuting diagram.

This equation contains free variables. Its solution consists of bindings of the free

variables to expressions.

represent k n . dkmap k f m = g . represent k p

(dkmap k f m) is the abstract implementation, g the concrete one, and everything

but g is known. Because the inverse of (represent k p) is (abstract k p), we can

compute g by using the equation:

g = represent k n . dkmap k f m . abstract k p

We can replace each occurrence of the abstract function (dkmap k f m) by first

applying the representation, then the concrete implementation g and then the ab-

straction. Of course, this only makes sense if we get rid of representation and

abstraction functions.

We exploit properties of the customizing functions that are made explicit by

functions Sgt, unSgt, Com and unCom in combination together and with map. A

divide step increments the height of the tree, because the divide function takes a leaf

(a problem) and delivers a tree of height 1 (containing the subproblems). The basic

step maintains the height of the tree. A combine step decrements the height of the

tree, because the combine function is applied to all nodes above the leaf level, takes

a subtree of height 1 (containing the subproblem solutions) and delivers a leaf (a

solution).

We present the following three concretization laws, one for each phase. A proof

of Law 10 can be found in (Herrmann & Lengauer, 1997).

Law 10

(Concretization of dkmap k dd n)

dkmap k (Com . map Sgt . d . unSgt) n

= abstract k (n+1) . unpartition k n . map d . represent k n
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Law 11

(Concretization of dkmap k bb n)

dkmap k (Sgt . b . unSgt) n

= abstract k n . map b . represent k n

Law 12

(Concretization of dkmap k cc n)

dkmap k (Sgt . c . map unSgt . unCom) n

= abstract k n . map c . partition k n . represent k (n+1)

3.4 Transformations towards the functional target skeleton it3

Let us give an overview of the transformation process. The balanced fixed-degree

DC skeleton in its recursive form dc3 can be expressed in terms of dc2a, but with the

additional fixed-degree constraint on d. We use Law 1, which states the equivalence

of recursion and iteration on the abstract side. That is, dc3 can be expressed in

terms of it2a. Then, we replace every function on the abstract side by its linear

representation, obtaining function it3 1.

it3_1 :: Nat -> (a->b) -> (a->[a]) -> ([b]->b) -> Nat -> a -> b

it3_1 k b d c n =

unSgt

. down (\m -> abstract k m

. map c

. partition k m

. represent k (m+1) ) n

. abstract k n . map b . represent k n

. up (\m -> abstract k (m+1)

. unpartition k m

. map (\xs->[(d xs)!!i | i<-[0..k-1]])

. represent k m ) n

. Sgt

The conversions represent k n and abstract k n in it3 1 are inverses of each

other and can be eliminated; see figure 5. The transformation continues by replacing

functions map, partition, and unpartition with list comprehensions, which will

lead to parallel loops in C. There are still linear recursions left (in down and up) which

perform iterations through the levels of the call tree. These are also transformed into

list comprehensions, which will lead to sequential loops in C. Intermediate results

of these recursions are stored in lists g and h in skeleton it3, in order to make the

correspondence to a single-assignment C program obvious.

it3 :: Nat -> (a->b) -> (a->[a]) -> ([b]->b) -> Nat -> a -> b

it3 k b d c n x =

let a0 = (:[]) x

h = a0:[ [d (h !! (m-1) !! (l‘div‘k)) !! (l‘mod‘k)
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| l <- [0..k^m-1]]

| m<-[1..n]]

a1 = h !! n

a2 = [b (a1!!i) | i<-[0..k^n-1]]

g = a2:[ [ c (let args = [g !! (m-1) !! (k*i+j)

| j <- [0..k-1]]

in args)

| i <- [0..k^(n-m)-1]]

| m<-[1..n]]

a3 = g !! n

a4 = head a3

in a4

Law 13

dc3 = it3

Proof

Because Law 7 states the equivalence of dc3a and it3a, the representation of dc3a,

i.e. dc3 is equivalent to the representation of it3a, which is it3 due to application

of the representation function. q

3.5 Transformation to C

In this subsection, we transform the functional target skeleton it3 into an imperative

skeleton in C. We use correspondences of data structures resp. control structures

between Haskell and C which should be obvious. We do not provide a formal proof

of their semantic equivalence.

3.5.1 Correspondences between Haskell and C

Let us present the main rules we used in our transformations. The rules do not form

a complete translation system from Haskell to C, e.g. the laziness of Haskell is not

preserved. Giving up laziness is necessary for a static space-time mapping.

Before applying these rules, we must use a sophisticated algorithm (e.g. (Bell et al.,

1997)) to eliminate higher-order functions for which no skeleton implementation

exists, and polymorphism.

1. (Int,+,-,*,‘div‘,‘mod‘,^ ) in Haskell corresponds with (int,+,-,*,/,%,

pow(.,.)) in C. ‘mod‘ and % correspond only on the natural numbers.

Function pow(b,m) in C returns b to the power of m.

2. The run-time argument of the Haskell function is referred to as input in the

C code, the result of the function is assigned to the variable output.

3. The body of a let expression without recursive equations, and with the

equations sorted in the direction of the data dependences, is transformed to a

sequence of C statements.
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4. Lists in Haskell are represented in C as arrays. This correspondence is sound

with respect to the static structure, because in C different elements of an array

can represent arrays of different sizes (like in Haskell lists can contain lists of

different lengths).

5. Due to the correspondence (4), the application of the transformed (:[])

function to a[0] has to be a and the one of (!!i) to a has to be a[i].

6. List comprehensions in Haskell have a correspondence to loops in C, which

iterate through an array. Whether a loop can be implemented in parallel,

depends on lack of data dependences between array elements.

3.5.2 The C code

Applying the correspondences from the previous subsection to it3, we obtain the

C program below. seqfor defines a loop whose iterations are executed in sequence.

parfor defines a loop whose iterations can be processed in parallel. If programmed

correctly, the semantics of both seqfor and parfor is defined by the ordinary

(sequential) for loop. This is expressed by the C definitions:

#define seqfor for

#define parfor for

The functions divide, basic and combine denote the result of a compilation of d,

b, and c resp. from Haskell to C. They take as first argument the location of the

result and as second argument the run-time argument of the corresponding Haskell

function. Function divide takes an additional argument which determines the

position of the needed element in the list which the corresponding Haskell function

d delivers, i.e., the selection of an element of a list is pushed into function divide.

/* input */

input(&(a0[0]));

/* divide phase */

h[0] = a0;

seqfor(m=1;m<=n;m++)

parfor(l=0;l<pow(k,m);l++)

divide(&(h[m][l]),h[m-1][l/k],l%k);

a1 = h[n];

/* basic phase */

parfor(i=0;i<pow(k,n);i++)

basic(&(a2[i]),a1[i]);

/* combine phase */

g[0] = a2;

seqfor(m=1;m<=n;m++)

parfor(i=0;i<pow(k,n-m);i++) {
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parfor(j=0;j<k;j++)

args[m][i][j] = g[m-1][k*i+j];

combine(&(g[m][i]),args[m][i]); }

a3 = g[n];

/* output */

output(a3[0]);

In the arrays we use in the divide and combine phase, the first index corresponds

to time and the second to (processor/memory) space.

Because the time component of all data dependence vectors is 1 and nests of an

outer sequential and an inner parallel loop require global synchronization after each

step of the outer loop (Lengauer, 1993), it is sufficient to keep memory space for at

most two successive steps of the outer loop.

4 Instantiation with balanced data division and elementwise operations

In this section, we instantiate the call-balanced fixed-degreeDC skeleton in two steps:

1. First, we impose a balance on the data division. This means that the data is

split into a fixed number of partitions of equal size. Partition i is assigned to

the part of the topology which handles the i-th subproblem instance. This is

important for problems in which the input or output data do not fit into the

memory of a single processor, because it enables the data distribution.

2. Then we impose elementwise operations on the zip of the partitions. As a

consequence, only elements which have the same index (within their partition)

can be combined. The advantage is that communications become much more

regular and the customizing functions can be viewed as vectorized operations,

which accelerates the computation of the divide and combine functions by

additional massive parallelism.

Details of the derivation can be found in Herrmann and Lengauer (1997). The rest

of this section covers only the most interesting aspects.

4.1 Elementwise operations on balanced data partitions

Skeleton dc4 restricts the divide and combine function to elementwise operations.

We omit the definition of dc4 (Herrmann & Lengauer, 1997), because it uses a

lot of auxiliary functions which describe properties like balanced data division and

elementwise operations. The type of dc4 differs slightly from that of dc3.

dc4 :: Nat -- degree of problem division

-> (a->b) -- basic function

-> ([a]->[a]) -- divide function

-> ([b]->[b]) -- combine function

-> Nat -- recursion depth

-> [a] -- input data

-> [b] -- output data
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Here, the input and output data are lists. Divide function d and combine function

c are supposed to take a list of length k as input and output. The input elements

of d and the output elements of c correspond to the list elements with the same

index in different partitions, the output elements of d and the input elements of c

correspond to the list elements with the same index in different subproblems resp.

subproblem solutions. Not all list elements have to carry useful data. Dummy places

originate from empty partitions in the input and output data distribution.

4.2 it4: The functional target for dc4

Before we present it4, we have to introduce two more auxiliary functions. (digpos

k d v) computes of the representation of number v in radix k, the digit at position

d. (digchange k d v i) replaces this digit by i.

it4 :: Nat->(a->b)->([a]->[a])->([b]->[b])->Nat->[a]->[b]

it4 k b d c n x =

let a0 = x

h = a0:[ [ let arg_d = [ h !! (m-1) !! digchange k (n-m) q i

| i<-[0..k-1]]

in d arg_d !! digpos k (n-m) q

| q<-[0..k^n-1]]

| m<-[1..n]]

a1 = h !! n

a2 = [b (a1!!q) | q<-[0..k^n-1]]

g = a2:[ [ let arg_c = [ g !! (m-1) !! digchange k (m-1) q i

| i<-[0..k-1]]

in c arg_c !! digpos k (m-1) q

| q<-[0..k^n-1]]

| m<-[1..n]]

a3 = g !! n

in a3

Law 14

dc4 = it4

Proof

dc4 and it4 have both been obtained from dc3 resp. it3 by specialization with

elementwise operations, and dc3 and it3 are equivalent by Law 13. q

4.3 Transformation to C

Skeleton it4 can be transformed to C like it3 in the previous section.

Due to the outer sequential loops and the inner parallel loops, this program is

data-parallel. Thus, it can be implemented easily on SIMD or, after conversion

into an SPMD program, on MIMD machines. We show only the most interesting

parts of the program, i.e. the loops that implement the skeleton. Instead of d, b,
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and c, we use divide, basic, and combine, respectively. The functions take as first

argument the location of the result and as second argument the run-time argument

of the corresponding Haskell functions. divide and combine expect an additional

argument that indicates which element of the result list is desired. The sequential

loops enforce a global synchronization, so the first (sequential) indices of the arrays

need not range over all values of m, but just over their values in the modulus of 2, i.e.

the set {0,1}. We implemented this using functions new(m) and old(m). digpos and

digchange are equivalent to the Haskell functions defined in the previous subsection.

/* input */

parfor(q=0;q<pow(k,n);q++)

input(&(a0[q]),q);

/* divide phase */

h[0] = a0;

seqfor(m=1;m<=n;m++)

parfor(q=0;q<pow(k,n);q++) {

for (i=0;i<k;i++)

arg_d[q][i] = h[old(m)][digchange(k,n-m,q,i)];

divide(&(h[new(m)][q]),arg_d[q],digpos(k,n-m,q)); }

a1 = h[old(m)];

/* basic phase */

parfor(q=0;q<pow(k,n);q++)

basic(&(a2[q]),a1[q]);

/* combine phase */

g[0] = a2;

seqfor(m=1;m<=n;m++)

parfor(q=0;q<pow(k,n);q++) {

for(i=0;i<k;i++)

arg_c[q][i] = g[old(m)][digchange(k,m-1,q,i)];

combine(&(g[new(m)][q]),arg_c[q],digpos(k,m-1,q)); }

a3 = g[old(m)];

/* output */

parfor(q=0;q<pow(k,n);q++)

output(q,a3[q]);

5 Examples

5.1 Scan

We take the scan function as a short example to demonstrate the use of skeleton dc4.

The scan function takes an associative operator (op :: a->a->a) and a list of type

[a] with elements, say a0 to am−1 and computes a list of the same type and length
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with elements, say, b0 to bm−1, where b0 = a0 and ∀ i : 0< i<m : bi = bi−1‘op‘ai.

The scan function is useful in many parallel algorithms, especially sorting algorithms

(Blelloch, 1989). In (Carpentieri & Mou, 1991; Gorlatch, 1996a), a parallel algorithm

for scan is presented which fits into skeleton dc4 after applying a method called

‘broadcast dissolving’ (Mou, 1989), later renamed to ‘broadcast elimination’. ilog2

computes the integer logarithm in base 2.

scan :: (a->a->a) -> [a] -> [a]

scan op xs = map fst (dc4 2 b id c n xs)

where n = ilog2 (length xs)

b x = (x,x)

c [(x,sx),(y,sy)] = let s = sx‘op‘sy

in [(x,s),(sx‘op‘y,s)]

The divide function behaves like the identity, i.e. the i-th partition becomes part

of the i-th subproblem. The basic function copies the input into both positions of a

pair. The role of the pair during the combine phase is that the first position contains

the result value for that particular position with respect to the subproblem instance,

and the second contains the result value of the last element of the partition. So, in

the combine phase, every operation on an element of some partition also replicates

the operation on the last element of that partition. This implements broadcast

elimination. A combine function without broadcast elimination would pass the left

solution as left part of the result and combine the last element of the left solution

with op elementwise with all elements of the right solution, delivering the right part

of the result.

If scan is implemented in C with annotations, pairs can be represented by the C

data structure struct.

5.2 Strassen’s matrix multiplication

Strassen’s matrix multiplication (Strassen, 1969), a DC algorithm with a division

degree of 7, computes the product of two matrices of size m × m sequentially in

time of O(mlog2 7) (log2 7 ≈ 2.81) instead of O(m3) of the trivial algorithm. For

a parallel computation, the gain is in the savings of processors. Where, e.g. for

the trivial algorithm, 512 (= 83) processors are necessary to reduce a problem of

size 2n+3 × 2n+3 to problems of size 2n × 2n, which can be solved in parallel, our

modification of Strassen’s algorithm requires only 343 (= 73) processors. Minor

disadvantages are the overhead in parallel dividing and combining, and a more

complicated data dependence pattern which may lead to a communication overhead

on some machines.

In the following program strassen, matrices are represented by lists of rows,

where each row is represented by a list of column elements. Program strassen

takes two matrices xss and yss of size 2n×2n, and returns the product of xss and

yss. Figure 6 shows one step of the recursive decomposition of the matrices. How

the cs are computed from the as and bs can be taken from the where clause of

program strassen.
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a11 a12

a21 a22

b11 b12

b21 b22

c11 c12

c21 c22
=*

Fig. 6. Matrix partitions.

strassen :: Num a => [[a]] -> [[a]] -> [[a]]

strassen xss yss =

let n = ilog2 (length xss)

in ( d1d2 n . from_quadtree n . project 4 7 n

. dc4 7 b d c n

. embed 4 7 n (0,0) . to_quadtree n . d2d1 n )

(zipWith zip xss yss)

where

b (a,b) = a*b

d [(a11,b11),(a12,b12),(a21,b21),(a22,b22),_,_,_]

= [(a11+a22,b11+b22),(a21+a22,b11),(a11,b12-b22), (a22,-b11+b21),

(a11+a12,b22),(-a11+a21,b11+b12),(a12-a22,b21+b22)]

c [m1,m2,m3,m4,m5,m6,m7]

= let (c11,c12,c21,c22) = (m1+m4-m5+m7,m3+m5,m2+m4,m1+m3-m2+m6)

in [c11,c12,c21,c22,0,0,0]

strassen is based on the skeleton dc4, but the data are rearranged as follows:

1. The two input matrices are zipped together with zipWith zip xss yss.

2. The zipped matrices, represented as list of lists, are transformed with d2d1 to

a single list, whose elements are in row major order.

3. to quadtree performs a bit-unshuffle permutation, which changes the order

to the leaf sequence of a complete quadtree. In the quadtree, each non-leaf

node represents a matrix by dividing it into four submatrices. The principle of

Strassen’s algorithm is to perform elementwise operations on these submatrices.

4. The function embed inserts empty data partitions, because the problem division,

whose degree is 7, exceeds the data division, whose degree is 4.

The definitions of these functions can be found in the appendix. After dc4 has been

applied, index transformations 2–4 have to be reversed. For an efficient implemen-

tation, the allocation of input and output data for dc4 should be computed from

these index transformations, i.e. rearrangements at run time should be avoided.

To express Strassen’s algorithm with the parallel C skeleton presented in sec-

tion 4.3, one has to compile the customizing functions from Haskell to C which can

be done easily because they contain only list, tuple, and arithmetic operations.

5.3 Karatsuba’s polynomial product

This subsection contains material that we have published before with respect to a

slighly modified DC skeleton (Herrmann & Lengauer, 1996).
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In 1962, Karatsuba published a DC algorithm for the multiplication of large

integers of bitsize N with cost O(N log2 3) (log2 3 ≈ 1.58) based on ternary DC (Aho

et al., 1974). A trivial algorithm has complexity O(N2). As an example of ternary

DC we choose the polynomial product, which is the part of Karatsuba’s algorithm

that is responsible for its complexity.

Here, we concentrate on the product of two polynomials which are represented

by powerlists (Misra, 1994) of their coefficients in order. The length of both lists is

the smallest power of two which is greater than the maximum of both degrees. We

consider +, − and ∗ operations on polynomials; when applying them to integers,

we pretend to deal with the respective constant polynomial. If a, b, c and d are

polynomials in the variable X of degree at most N < 2n−1, then (a ∗XN + b) ∗
(c ∗XN + d) = h ∗X2∗N +m ∗XN + l, where h = a ∗ c (h is for ‘high’), l = b ∗ d (l

is for ‘low’) and m = (a ∗ d+ b ∗ c) (m is for ‘middle’). The ordinary polynomial

product uses two polynomial subproducts for computing m, leading to quadratic

cost, whereas the Karatsuba algorithm uses the equality m = (a+ b)∗(c+ d)− h− l
to compute only a single additional polynomial subproduct. Polynomial addition

and subtraction does not influence the asymptotic cost because it can be done in

parallel in constant time and in sequence in linear time.

Due to the datatype and data dependence restrictions imposed by our skeleton,

the input vector of the skeleton is the zip of two coefficient vectors (zip [a0,...,a2∗N−1]

[b0,...,b2∗N−1] = [(a0, b0),...,(a2∗N−1, b2∗N−1)]) and the result is the zip of the higher

and lower part of the resulting coefficient vector, as can be seen in the definition of

karatsuba, which multiplies two polynomials represented by equal-size powerlists:

karatsuba :: Num a => [a] -> [a] -> [a]

karatsuba x y =

let n = ilog2 (length x)

in ((\x-> fst x ++ snd x) . unzip . project 2 3 n .

dc4 3 b d c n .

embed 2 3 n (0,0)) (zip x y)

where b (x,y)

= (0,x*y)

d [(xh,yh),(xl,yl),_]

= [(xh,yh),(xl,yl),(xh+xl,yh+yl)]

c [(hh,hl),(lh,ll),(mh,ml)]

= [(hh,lh+ml-hl-ll),(hl+mh-hh-lh,ll),(0,0)]

Of the constituting functions, b multiplies two constant polynomials. Function d

divides a problem into three subproblems: the first is working on the high parts,

the second on the low parts and the third on the sum of the high and the low

parts, corresponding to (a+ b) and (c+ d) of the formula for m. The function c

combines the results (hh,hl ) (the high parts), (lh,ll ) (the low parts) and (mh,ml )

(the middle parts). The high positions mh of the middle parts overlap with the low

positions hl of the high parts, and the low positions ml of the middle parts with

the high positions lh of the low parts. Results of overlapping positions have to be

summed. Further, the results of the high and low part have to be subtracted from
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left (high) right (low) left+right (middle)
[(0,1),(1,1),(1,1),(1,1)]

[0,0,1,2,3,3,2,1]
[(0,3),(0,3),(1,2),(2,1)]

[0,1] x [1,1]
[(0,1),(1,1)]

[0,1,1,1] x [1,1,1,1]

[(0,1)] [(1,1)] [(1,2)]

[0,0]
[(0,0)]

[0,1]
[(0,1)]

[0,2]
[(0,2)]

[0,0,1,1]
[(0,1),(0,1)]

[(1,1)] [(1,1)] [(2,2)]

[1,1] x [1,1]
[(1,1),(1,1)]

[0,1]
[(0,1)]

[0,1]
[(0,1)]

[0,4]
[(0,4)]

[0,1,2,1]
[(0,2),(1,1)]

[1,2] x [2,2]
[(1,2),(2,2)]

[(1,2)] [(2,2)] [(3,4)]

[0,2]
[(0,2)]

[0,4]
[(0,4)]

[0,12]
[(0,12)]

[0,2,6,4]
[(0,6),(2,4)]

[0] x [1] [1] x [1] [1] x [2] [1] x [1] [1] x [1] [2] x [2] [1] x [2] [2] x [2] [3] x [4]

Fig. 7. Call graph for a call of karatsuba.

the result of the middle part. As an example, figure 7 depicts the call graph for

multiplication of the polynomials (X2 +X+ 1) and (X3 +X2 +X+ 1) whose result

is the polynomial (X5 + 2 ∗X4 + 3 ∗X3 + 3 ∗X2 + 2 ∗X+ 1). In each node, we give

on top the polynomials as lists of their coefficients and below the representation as

required by the skeleton.

6 Results, related work, and further research

Starting with a general specification of DC, we have obtained, through a series of

systematic stepwise refinements of the skeleton, a data-parallel nested loop program

for a class of DC algorithms. From dc2 on, each specialized skeleton can be

implemented by a parallel loop program, representing a different class of DC
problems. We presented implementations for dc3 and dc4 that can be mapped to

space and time at compile-time.

Intentionally, most of our derivation has been conducted on the formal territory

of Haskell. For central steps we have developed equational proofs.

Huang et al. (1992) have presented a derivation of a parallel implementation of

Strassen’s matrix multiplication algorithm using tensor product formulas. The result

is a loop program with a nesting depth of 4 (if loops of constant extent are not

considered), but they also perform the initial and final permutations and ensure that

dummy points are not scanned.

We took Strassen’s matrix multiplication as a motivating example and, contrary

to Huang et al. (1992), obtained a loop program with a nesting depth of 2 (the outer

in time and the inner in space). Both loop programs are similar but ours does not

exploit that the data division is only 4 but not 7 like the problem division. Therefore,

our program includes unnecessary operations, but they do not add to the execution

time (using the number of processors needed for implementing the free schedule).
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Additionally, we assume a special distribution of the input and output data instead

of the row- or column-major order which is often presumed in matrix algorithms.

The strength of our method is in that an algorithm, which is well structured

(i.e. fits into a skeleton after adaptations) but hard to implement by hand without

recursion (like Strassen’s), can be compiled from a functional specification to a

low-level target program, whose structure is so simple that every operation can be

given a point in time and space at compile time.

Our skeletons are given in the functional language Haskell, i.e. they have a syntax,

a type, and a semantics which is referentially transparent. Adding a static type to

all functional equalities enforces that only those implementations are derived which

are well defined on the specified domain. Some algebraic equations hold, e.g. for the

type Integer but not for the type Float, due to numerical approximation.

Furthermore, because Haskell is executable and has a C interface, one might

use our fast, parallel C program for the skeleton and still keep its parameters, the

customizing functions, in Haskell.

Aside from Huang et al. (1992), there is other work related to ours. Misra (1994)

and Achatz and Schulte (1996) restrict themselves to a binary division of data and

problems. The approach of Mou and Hudak (1988) and Mou (1989, 1990) allows

an arbitrary division of problems and a division of multi-dimensional data into two

parts per dimension. Cole (1989) restricts himself to centralized I/O.

None of these papers presents explicitly a nested loop program, and Mou’s

approach is the only one that is powerful enough to handle Strassen’s matrix

multiplication with distributed I/O data, aside from ours.

There has been related work in our own group. First, there is work on the par-

allelization of the homomorphism (Bird, 1988), a basic DC skeleton somewhat more

restrictive than ours. There exists a theory for the transformational parallelization of

homomorphisms (Skillicorn, 1994; Gorlatch, 1996b). The class of distributable homo-

morphisms (DH ) (Gorlatch, 1996a) corresponds to the combine phase of our skeleton

dc4 with a binary divide function. For all functions of the DH class, a common

hypercube implementation can be derived by transformation in the Bird-Meertens

formalism (Gorlatch, 1996a).

The class of ‘static DC’ (Gorlatch & Bischof, 1997) is an analog of our dc3 skele-

ton, however, with the capability of applying different divide (combine) functions at

different descendants (ascendants) in the call tree. The analog of our Law 1 is their

Theorem 2. The result of Gorlatch and Bischof (1997) is an asynchronous, SPMD

program as opposed to our synchronous nested loop program.

In our own previous work (Herrmann & Lengauer, 1996), we obtained loop

programs similar to the one presented here by parallelization in a space-time mapping

model related to the hypercube. In this paper, we have presented a more precise,

top-down development in the framework of equational reasoning.

In our future work we want to make the results available for practical use. It is

necessary to have a language for the user to define customizing functions and to

compose skeletons. As language, we chose a subset of Haskell, that is processed in

an eager fashion. At the moment, we are working on a compiler that translates this
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subset into C with MPI. The parallel construct is the list and list comprehensions

are compiled into potentially parallel loops.
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A Auxiliary functions

flatten :: [[a]] -> [a]

flatten = foldl (++) []

which_digits :: (Ord b, Integral a) => a -> [b] -> [[b]] -> [b]

which_digits l ds [] = ds

which_digits l ds (x:xs) = which_digits l (insert (x!!l) ds) xs

insert :: Ord a => a -> [a] -> [a]

insert x [] = [x]

insert x (y:ys) =

if x>y then y : insert x ys

else if x==y then y:ys

else x:y:ys

digpos :: Nat -> Nat -> Nat -> Nat

digpos k d v = v ‘div‘ k^d ‘mod‘ k

digchange :: Nat -> Nat -> Nat -> Nat -> Nat

digchange k d v i = v + (i - digpos k d v) * k^d

ilog2 :: Int -> Int

ilog2 x = let powers = [ (i,2^i) | i<-[0..] ]

v = fst (head (filter ((>= x) . snd) powers))

in if 2^v ==x then v

else error "ilog applied to non-power of two"

numrep :: Nat -> Nat -> Nat -> [Nat]

numrep radix n v = [v ‘div‘ radix^(n-i-1) ‘mod‘ radix | i<-[0..n-1]]

numabs :: Nat -> Nat -> [Nat] -> Nat

numabs radix n xs = sum [(xs!!i)*radix^(n-i-1) | i<-[0..n-1]]

embed :: Nat -> Nat -> Nat -> a -> [a] -> [a]
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embed lowval highval n dummy xs

= [ let r=numrep highval n i

in if or (map (>=lowval) r)

then dummy

else xs !! numabs lowval n r

| i<-[0..highval^n-1] ]

project :: Nat -> Nat -> Nat -> [a] -> [a]

project lowval highval n xs

= [ xs !! numabs highval n (numrep lowval n i)

| i<-[0..lowval^n-1] ]

shuffle :: Nat -> [a] -> [a]

shuffle n v | n‘mod‘2 == 0

= let m = n‘div‘2

in [v!!((i‘div‘2)+m*(i‘mod‘2)) | i<-[0..n-1]]

unshuffle :: Nat -> [a] -> [a]

unshuffle n v | n‘mod‘2 == 0

= let r = [0..n‘div‘2-1]

in [v!!(2*i)|i<-r]++[v!!(2*i+1)|i<-r]

bitshuffle :: Nat -> Nat -> Nat

bitshuffle n = numabs 2 n . shuffle n . numrep 2 n

bitunshuffle :: Nat -> Nat -> Nat

bitunshuffle n = numabs 2 n . unshuffle n . numrep 2 n

to_quadtree :: Nat -> [a] -> [a]

to_quadtree n xs = [xs !! bitunshuffle (2*n) i | i<-[0..4^n-1]]

from_quadtree :: Nat -> [a] -> [a]

from_quadtree n xs = [xs !! bitshuffle (2*n) i | i<-[0..4^n-1]]

d1d2 :: Nat -> [a] -> [[a]]

d1d2 n xs = [ [xs !! (i*2^n+j) | j<-[0..2^n-1]] | i<-[0..2^n-1]]

d2d1 :: Nat -> [[a]] -> [a]

d2d1 n xss = [ xss!!i!!j | i<-[0..2^n-1], j<-[0..2^n-1]]
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