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Abstract A p-arithmetic subgroup of SL2(Q) like the Ihara group Γ := SL2(Z[1/p]) acts by Möbius
transformations on the Poincaré upper half plane H and on Drinfeld’s p-adic upper half plane
Hp := P1(Cp)−P1(Qp). The diagonal action of Γ on the product is discrete, and the quotient Γ\(Hp×H)
can be envisaged as a ‘mock Hilbert modular surface’. According to a striking prediction of Nekovář and
Scholl, the CM points on genuine Hilbert modular surfaces should give rise to ‘plectic Heegner points’ that
encode nontrivial regulators attached, notably, to elliptic curves of rank two over real quadratic fields.
This article develops the analogy between Hilbert modular surfaces and their mock counterparts, with
the aim of transposing the plectic philosophy to the mock Hilbert setting, where the analogous plectic
invariants are expected to lie in the alternating square of the Mordell–Weil group of certain elliptic curves
of rank two over Q.
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2 H. Darmon and M. Fornea

Introduction

The Hilbert modular group SL2(OF ) attached to a real quadratic field F, viewed as a
discrete subgroup of SL2(R)×SL2(R) by ordering the real embeddings ν1,ν2 : F → R,
acts discretely by Möbius transformations on the product H×H of two Poincaré upper

half planes. The cohomology of the complex surface

SF := SL2(OF )\(H×H)

is intimately tied with the arithmetic of elliptic curves with everywhere good reduction
over F. More precisely, if E/F is such a (modular) elliptic curve, Ej := E⊗F,νj

R are

the associated real elliptic curves for j = 1,2, let πE be the associated automorphic

representation of GL2(F ), and let H2(SF ,Q)[πE ] denote the πE-isotypic part relative
to the action of the Hecke operators on the second cohomology of SF with rational

coefficients. Oda’s period conjecture predicts an isomorphism

H2(SF ,Q)[πE ]�H1(E1,Q)⊗H1(E2,Q) (1)

of rational Hodge structures [29]. This strong ‘geometric’ form of modularity has

implications for the arithmetic of E/F that are richer, more subtle and less well understood
than those that arise from realising E as a quotient of the Jacobian of a Shimura curve.

For instance, let K ⊂ M2(F ) ⊂ M2(R)×M2(R) be a quadratic extension of F which is

‘Almost Totally Real’ (ATR) – that is, satisfies

K⊗F,ν1
R= C, K⊗F,ν2

R= R⊕R.

Let τ1 ∈ H be the fixed point for the action of ν1(K
×) ⊂ GL2(R) on P1(C), and let

τ2,τ
′
2 ∈ R be the fixed points of ν2(K

×). Denote by (τ2,τ
′
2) the hyperbolic geodesic in H

joining τ2 to τ ′2, and let γ ⊂ SF be the simple closed geodesic contained in the image of

{τ1}× (τ2,τ
′
2)⊂H×H.

The finiteness of H1(SF ,Z) implies there there is an integer m ≥ 1 and a smooth real

two-dimensional region Π⊂ SF having mγ as its boundary. Oda’s period conjecture (1)
implies that, for a suitable real analytic two-form ω ∈ Ω2(SF )[πE ], the complex integral

Pγ :=
1

m

∫
Π

ω ∈ C (2)

is independent of the choice of Π up to elements in a suitable period lattice Λ1 attached

to E1. Viewing (2) as an element of C/Λ1
∼= E1(C), the complex point Pγ is conjectured

to be defined over an explicit ring class field of K, following a numerical recipe that is

worked out and tested experimentally in [7] and [17].

The Ihara group Γ := SL2(Z[1/p]) shares tantalising similarities with the Hilbert
modular group SL2(OF ). It is of cohomological dimension two, and its second cohomology,

viewed as a module over the Hecke algebra, encodes arithmetic information about elliptic

curves over Spec(Z[1/p]). The Ihara group also acts by Möbius transformations both on
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Mock plectic points 3

H and on Drinfeld’s p-adic upper half plane Hp := P1(Cp) \P1(Qp). Its diagonal action

on the product Hp×H is discrete, and the quotient

S := Γ\(Hp×H)

can thus be envisaged as a ‘mock Hilbert modular surface’, following a suggestive

terminology of Barry Mazur [24]. Fleshing out the analogy between SF and S leads to
fruitful perspectives on the arithmetic of elliptic curves (and modular abelian varieties)

over Q with multiplicative reduction at p. Notably,

• the ‘exceptional zero conjecture’ on derivatives of the p-adic L-functions of these
elliptic curves formulated by Mazur, Tate and Teitelbaum [23] and proved by
Greenberg and Stevens [15] can be understood as the counterpart of (1) for S;

• the mock analogues of the ATR points of (2) are the Stark–Heegner points of [6]
which are indexed by real quadratic geodesics on S and are conjecturally defined
over ring class fields of real quadratic fields.

These two analogies are briefly explained in Sections 1 and 2, respectively.

A striking insight of Nekovář and Scholl ([26], [27], [28]) suggests that zero-dimensional

CM cycles on SF should give rise to ‘plectic Heegner points’ involving nontrivial regulators
for elliptic curves (over F ) of rank two. At the moment, no precise numerical recipe

is available to compute them, placing the conjectures of loc.cit. somewhat outside

the scope of experimental verification. (The reader is nevertheless referred to [10]
for some results in that direction.) More recently, the second author and Lennart

Gehrmann have explored the implications of the plectic conjectures in the setting of

quaternionic Shimura varieties uniformised by products of Drinfeld’s upper half planes

[11]. They constructed unconditionally p-adic realizations of plectic Heegner points which
admit a concrete analytic description. In that context, the plectic philosophy has been

tested experimentally in [13], and some partial evidence has been given in [12], even

though its theoretical underpinnings remain poorly understood. These non-archimedean
perspectives suggest that it might be instructive to examine the plectic philosophy in the

intermediate setting of mock Hilbert modular surfaces, whose periods involve a somewhat

delicate mix of complex and p-adic integration.
The primary aim of this note is to develop the analogy between SF and S and

describe its most important arithmetic applications, with a special emphasis on the

plectic framework where it had not been examined systematically before. The main new

contribution, presented in Section 3, is the construction of global cohomology classes –
referred to as ‘mock plectic points’ – associated to elliptic curves over Q of conductor p

and CM points on S. The techniques developed in this paper can be used to generalize and

upgrade the p-adic plectic point contructions of [13], [11] in the CM setting, relating these
objects to the leading terms of anticyclotomic p-adic L-functions that were introduced

and studied in [1]. Viewed in this way, the plectic philosophy is seen to be consistent with

the anticyclotomic Birch and Swinnerton-Dyer conjecture in the somewhat exotic setting
of loc.cit., where the twisted L-values that one wishes to interpolate vanish identically,

and it becomes necessary to p-adically interpolate the Heegner points themselves over the

anticyclotomic tower, viewed as algebraic avatars of first derivatives of twisted L-series.

https://doi.org/10.1017/S1474748025000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000179


4 H. Darmon and M. Fornea

The authors hope that this consistency provides some oblique evidence for the plectic
philosophy of Nekovář and Scholl, while enriching the dictionary between Hilbert modular

surfaces and their mock counterparts.

1. Mock Hilbert modular forms and their periods

A mock Hilbert modular form on S (of parallel weight 2) should be thought of, loosely

speaking, as a ‘holomorphic differential two-form on Γ\(Hp ×H)’ – that is, a function

f(zp,z∞) of the variables zp ∈Hp and z∞ ∈H which is rigid analytic in zp, holomorphic
in z∞, and satisfies the transformation rule

‘f

(
azp+ b

czp+d
,
az∞+ b

cz∞+d

)
= (czp+d)2(cz∞+d)2f(zp,z∞)′ for all

(
a b

c d

)
∈ Γ. (3)

The awkward mix of rigid and complex analysis inherent in this (non) definition prevents

(3) from resting on a solid mathematical foundation. A few simple facts about rigid

differentials on the Drinfeld upper half plane can nonetheless be made to conjure a

concrete object that captures key features of (2).

1.1. Digression: rigid analytic differentials on Hp

This section briefly summarises a few key facts about rigid analytic differentials on Hp

and their connection with harmonic cocycles on the Bruhat-Tits tree of GL2(Qp). A more
thorough exposition can be found in [8] for example.

Let T := T0 
T1 denote the Bruhat–Tits tree of SL2(Qp), whose set T0 of vertices is

in bijection with homothety classes of Zp-lattices in Q2
p, two lattices being joined by an

edge in T1 ⊂ T 2
0 if they are represented by lattices contained one in the other with index

p. There is a natural reduction map

red: Hp −→ T

from Hp to T , which maps the standard affinoid

A◦ := {z ∈ OCp
such that |z−a| ≥ 1, for all a ∈ Zp} ⊂ P1(Cp) (4)

to the vertex attached to the lattice v◦ = [Z2
p]. The p+1 mod p residue discs in the

complement of A◦ are in natural bijection with P1(Fp) and contain the boundary annuli

W∞ = {z ∈ P1(Cp) such that 1< |z|< p}, (5)

Wj = {z ∈ P1(Cp) such that 1/p < |z− j|< 1}, for j = 0, . . . ,p−1.

The edges having v◦ as an endpoint are likewise in bijection with P1(Fp) by setting

e∞ ↔ (Z2
p, Zp · (1,0)+pZ2

p), ej ↔ (Z2
p, Zp · (j,1)+pZ2

p), for j = 0, . . . ,p−1. (6)
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Mock plectic points 5

Figure 1. The Drinfeld upper half plane and the Bruhat-Tits tree.

The preimage of the singleton {ej} under the reduction map is the annulus Wj , for each

j ∈ P1(Fp). The properties

red−1({v◦}) =A◦, red−1({ej}) =Wj, for all j ∈ P1(Fp),

combined with the requirement of compatibility with the natural actions of SL2(Qp) on

Hp and on T , determine the reduction map uniquely. In particular, the preimage, denoted

Av, of the vertex v ∈ T0 is an affinoid obtained by taking the complement in P(Cp) of

(p+1) mod p residue discs with Qp-rational centers (relative to a coordinate on P(Qp)
depending on v). Given an edge e= (v1,v2) ∈ T1, the affinoids Av1

and Av2
are glued to

each other along the p-adic annulus attached to e, denoted We. With just a modicum

of artistic licence, the entire Drinfeld upper-half plane can be visualised as a tubular
neighbourhood of T , as in the figure below for p= 2.

This picture suggests that Hp, unlike its Archimedean counterpart, is far from being

simply connected and that its first cohomology is quite rich. For each edge e ∈ T1, the
de Rham cohomology of We is identified with Cp via the map that sends ω ∈ Ω1

rig(We)

to its p-adic annular residue, denoted resWe
(ω). This residue map is well defined up to a

sign, which is determined by fixing an orientation on We, or, equivalently, viewing e as

an ordered edge of T , having a source and target. Let E(T ) denote the set of such ordered
edges, let s,t : E(T )→T0 denote the source and target maps, and write ē for the edge e

with its source and target interchanged.

Definition 1.1. A harmonic cocycle on T is a Cp-valued function

c : E(T )→ Cp
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6 H. Darmon and M. Fornea

satisfying the following properties:

• c(ē) =−c(e), for all e ∈ E(T );
• for all vertices v of T , ∑

s(e)=v

c(e) =
∑

t(e)=v

c(e) = 0.

The Cp-vector space of Cp-valued harmonic cocycles on T is denoted Char(T ,Cp). The

class of a rigid analytic differential ω ∈ Ω1
rig(Hp) in the de Rham cohomology of Hp is

encoded in the Cp-valued function cω on E(T ) defined by

cω(e) = resWe
(ω).

That cω is a harmonic cocycle follows directly from the residue theorem for rigid
differentials. The oriented edges of T are also in natural bijection with the compact

open balls in P1(Qp), by assigning to e ∈ E(T ) the ball Ue according to the following

prescriptions:

Uē
Ue = P1(Qp), Ue∞ = P1(Qp)−Zp, Uγe = γUe, for all γ ∈ Γ,

where e∞ is the distinguished edge of E(T ) evoked in (6). The harmonic cocycle cω can

therefore be parlayed into a Cp-valued distribution μω satisfying the defining property

μω(Ue) = cω(e),

where Ue ⊂ P1(Qp) is the open ball corresponding to the ordered edge e, with zero total

mass

μω(P1(Qp)) = 0.

The distribution μω belongs to the dual of the Steinberg representation (i.e., the dual

space of locally constant Cp-valued functions on P1(Qp) modulo constant functions).

For this paragraph, and this paragraph only, let Γ ⊂ SL2(Qp) be a group acting

discretely on Hp and for which the quotient graph Γ\T is finite. If the rigid differential
ω is Γ-invariant, the harmonic cocycle cω takes on finitely many values and is therefore

p-adically bounded. The distribution μω then extends to a Cp-valued measure, which can

be integrated against continuous functions on P1(Qp). The differential ω can then be
obtained from μω by the rule

ω =

∫
P1(Qp)

dz

z− t
dμω(t), (7)

a special case of Jeremy Teitelbaum’s p-adic Poisson Kernel formula [31] which recovers

a rigid analytic modular form on Hp from its associated boundary distribution.

1.2. Modular form-valued harmonic cocycles as mock residues

Returning to the setting where Γ = SL2(Z[1/p]) and to the dubious notion of a mock

Hilbert modular form on Γ\(Hp ×H) proposed in (2), the discussion in the previous

section suggests at least what its system of p-adic annular residues ought to look like:
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Definition 1.2. A system of mock residues is a harmonic cocycle

c : E(T )−→ Ω1(H)

with values in the space Ω1(H) of holomorphic differentials on H, satisfying

• c(e) is a weight two cusp form on the stabiliser Γe of e in Γ (i.e., a holomorphic
differential on the standard compactification of Γe\H);

• for all γ ∈ Γ and all e ∈ E(T ), the following equality holds:

γ∗c(γe) = c(e).

Roughly speaking, a system of mock residues is what one might expect to obtain from

the p-adic annular residues of a mock Hilbert modular form of parallel weight two. But
unlike (2), Definition 1.2 is completely rigorous. Since Γ acts transitively on the unordered

edges of T , and because the Hecke congruence group Γ0(p) is the stabiliser in Γ of the

distinguished edge e∞ ∈ E(T ) of (6), the map c �→ c(e∞) identifies the complex vector
space Char(T ,Ω1(H))Γ of mock residues for Γ with the space S2(Γ0(p))

p-new of weight

two newforms of level p. It transpires that mock Hilbert modular forms – or at least,

their systems of mock p-adic residues – are merely a slightly overwrought incarnation of

classical modular forms of weight two on Γ0(p).

Remark 1.3. Since there are no weight two cusp forms of level one, all cusp forms of level

p are automatically new, and the adjective ‘p-new’ is redundant. However, it becomes
crucial in the more general setting where an auxiliary level N prime to p is introduced

and the Ihara group Γ is replaced by the subgroup of matrices in SL2(Z[1/p]) that are

upper-triangular modulo N. Similarly, the group Γ0(p) is substituted by Γ0(Np), and the

relevant space of harmonic cocycles becomes related to the space of p-new forms of weight
two and level Np.

1.3. C-valued distributions

Given a p-new weight two cusp form f on Γ0(p), denote by cf the associated mock residue,

and write fe := cf (e) ∈ S2(Γe). For any x,y ∈H∗ :=H
P1(Q), the assignment

e �→ 2πi

∫ y

x

fe(z) dz (8)

is a C-valued harmonic cocycle on T , denoted cf [x,y]. It determines a C-valued
distribution μf [x,y] on P1(Qp), which can be integrated against locally constant complex-

valued functions on P1(Qp). In order to integrate μf [x,y] against Teitelbaum’s p-adic

Poisson kernel as in (7), the distribution μf [x,y] needs to be upgraded to a measure with
suitable integrality properties.

1.4. Modular symbols

Suppose henceforth that f is a Hecke eigenform with rational fourier coefficients, and let

E/Q denote the corresponding strong Weil curve. The theory of modular symbols shows

that the values of the harmonic cocycle cf [x,y] acquire good integrality properties when
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8 H. Darmon and M. Fornea

x,y belong to the boundary P1(Q) of the extended upper half plane. More precisely, Manin

and Drinfeld have shown that the values

cf [r,s](e) = 2πi

∫ s

r

fe(z) dz r,s ∈ P1(Q)

= 2πi

∫ γs

γr

f(z) dz, where γ ∈ Γ satisfies γe= e∞

belong to a lattice Λf ⊂ C which is commensurable with the period lattice ΛE of E.

Restricting the function (x,y) �→ cf [x,y] to P1(Q)×P1(Q) leads to a modular symbol

with values in the space of Λf -valued harmonic cocycles on T . For economy of notation,
the resulting Λf -valued measures on P1(Qp) will continue to be denoted

μf [r,s] ∈ Meas(P1(Qp),Λf ).

The Λf -valued measures μf [r,s] are intimately connected to special values of the Hasse–
Weil L-series attached to E, via the formulae

μf [0,∞](Zp) = L(E,1), μf [0,∞](Z×
p ) = (1−ap(E)) ·L(E,1), (9)

where ap(E) = 1 or −1, depending on whether E has split or non-split multiplicative

reduction at p. The Mazur–Swinnerton-Dyer p-adic L-function attached to E (viewed as
taking values in Qp⊗Λf ) is the Mellin–Mazur transform of μf [0,∞] restricted to Z×

p :

Lp(E,s) =

∫
Z
×
p

〈x〉s−1dμf [0,∞](x). (10)

More generally, if χ is a primitive Dirichlet character of conductor c prime to p, the

twisted L-values L(E,χ,1) can be obtained analogously from the measures μf [a/c,∞]:∑
a∈(Z/cZ)×

χ(a) ·μf [−a/c,∞](Zp) =
c

τ(χ)
·L(E,χ,1),

∑
a∈(Z/cZ)×

χ(a) ·μf [−a/c,∞](Z×
p ) =

c

τ(χ)
·
(
1−χ(p)ap(E)

)
·L(E,χ,1),

where τ(χ) =
∑

a∈(Z/cZ)× χ(a)e2πi
a
c is the Gauss sum attached to χ, while the Mazur–

Swinnerton-Dyer p-adic L-function can be defined by setting

Lp(E,χ,s) :=
∑

a∈(Z/cZ)×

χ(a)

∫
Z
×
p

〈x〉s−1dμf [−a/c,∞](x). (11)

Even more importantly for the constructions that will follow, a system of Λf ⊗Cp-valued

rigid differentials on the p-adic upper half-plane can also be obtained by integrating the

measures μf [r,s] against Teitelbaum’s Poisson kernel:

ωf [r,s] :=

∫
P1(Qp)

dz

z− t
dμf [r,s](t) ∈ Ω1

rig(Hp)⊗Λf . (12)
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Mock plectic points 9

The assignment ωf : (r,s) �→ ωf [r,s] determines a Γ-equivariant modular symbol with

values in Ω1
rig(Hp)⊗Λf , satisfying

γ∗ωf [γr,γs] = ωf [r,s], for all γ ∈ Γ.

1.5. The Mazur–Tate–Teitelbaum conjecture

Write Kp for the quadratic unramified extension of Qp, let A× denote the multiplicative

group of nowhere vanishing rigid analytic functions on Hp endowed with the Γ-

action induced by Möbius transformations, and let A×/K×
p be the quotient by the

subgroup of constant K×
p -valued functions. The logarithmic derivative F �→ dF/F gives a

Γ-equivariant map from A×/K×
p to Ω1

rig(Hp), whose image contains the rigid differentials

ωf [r,s]:

Lemma 1.4. The differentials ωf [r,s] are in the image of the logarithmic derivative map;

that is, there are elements Ff [r,s] ∈ (A×/K×
p )⊗Λf satisfying

dlogFf [r,s] = ωf [r,s]. (13)

Proof. A partitioning of P1(Qp) is a collection

C = {(C1,t1), . . . ,(Cm,tm)}, (14)

where the Cj are compact open subsets of P1(Qp) which are mutually disjoint and satisfy

P1(Qp) = C1
·· ·
Cm, tj ∈ Cj for j = 1, . . . ,m.

The set of partitionings of P1(Qp) is equipped with a natural partial ordering in which

C ≤ C′ if each of the compact open subsets involved in C′ is contained in one of the compact

open subsets arising in C. Let μ be a Z-valued mesure of total measure zero on P1(Qp).

Each partitioning of P1(Qp) gives rise to a system of degree zero divisors on P1(Qp) by
associating to the partitioning C of (14) the divisor

DC :=

m∑
j=1

μ(Cj) · [tj ].

Fix a base point z0 ∈Hp(Kp) and let FC be the unique rational function satisfying

Divisor(FC) = DC, FC(z0) = 1,

which exists because the divisor DC is supported on P1(Qp). The limit

Fμ := lim
C

FC ∈ A×,

taken over any maximal chain in the set of partitionings, is a well-defined element of A×

which depends only on μ and on the base point z0, and whose image in A×/K×
p does

not depend on the choice of z0. Extending this construction to Λf -valued measures in the

obvious way and applying it to the measures μf [r,s], it is readily verified that

Ff [r,s] := Fμf [r,s] ∈ (A×/K×
p )⊗Λf

satisfies (13).
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10 H. Darmon and M. Fornea

The assignment (r,s) �→Ff [r,s] defines a Γ-invariant modular symbol with values in the

Γ-module (A×/K×
p )⊗Λf , that is,

Ff ∈MS
(
(A×/K×

p )⊗Λf

)Γ
,

where MS(Ω) denotes the Γ-module of modular symbols with values in a Γ-module
Ω. The obstruction to lifting Ff to MS(A× ⊗Λf )

Γ is intimately tied with the p-adic

uniformisation of the elliptic curve E which has multiplicative reduction at p. Namely,

let q ∈ Q×
p be the p-adic Tate period of E. The following theorem is a consequence

of the conjecture of Mazur, Tate and Teitelbaum [23] and its proof by Greenberg and

Stevens [15]:

Theorem 1.5. There exists a lattice Λ′
f ⊃ Λf such that the modular symbol Ff can be

lifted to a Γ-invariant modular symbol with values in (A×/qZ)⊗Λ′
f .

Proof. The functor MS(−) of modular symbols is exact, and taking Γ-cohomology gives

the exact sequence

MS
(
(A×/qZ)⊗Λf

)Γ η �� MS
(
(A×/K×

p )⊗Λf

)Γ δ �� H1
(
Γ,MS((K×

p /qZ)⊗Λf )
)
,

where ker(η) is finite because so is the abelianization of Γ ([30], II, 1.4). The obstruction

to lifting Ff to MS
(
(A×/qZ)⊗Λf

)Γ
is encoded by the class cf = δ(Ff ) which can be

represented by the 1-cocycle

c̃f (γ) =
γ · F̃f

F̃f

,

where F̃f ∈MS(A×⊗Λf ) is any lift of Ff . Let logq be the branch the p-adic logarithm
satisfying logq(q) = 0 which induces a map K×

p /qZ →Kp with finite kernel. At the cost of

replacing the lattice Λf with Λ′
f = 1

tΛf for some t ∈ Z, the claim of the theorem reduces

to the equality

logq(cf ) = 0

in H1
(
Γ,MS(Kp⊗Λ′

f )
)
, or equivalently to

log(cf ) =
log(q)

ordp(q)
·ordp(cf ).

Now, [6, Corollary 3.3 & Lemma 3.4] imply that ordp(cf ) is nontrivial and that the two
classes log(cf ) and ordp(cf ) are proportional. The factor of proportionality is obtained

by producing a suitable triple (γ,r,s) ∈ Γ×P1(Q)2 such that any 1-coboundary b for Γ

with values in MS((K×
p /qZ)⊗Λ′

f ) satisfies b(γ)[r,s] = 0 and

log(cf )(γ)[r,s] =
log(q)

ordp(q)
·ordp(cf )(γ)[r,s] & ordp(cf )(γ)[r,s] �= 0. (15)

Note that the first requirement is satisfied when γ ∈ Γ fixes r and s. The stabiliser in Γ of

any pair (r,s)∈ P1(Q)2 is generated (up to torsion) by a hyperbolic matrix γr,s which has

powers of p as its eigenvalues and fixes the differential ωf [r,s]. The multiplicative period
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Jf [r,s] := c̃f (γr,s)[r,s](z) =
F̃f [r,s](γr,sz)

F̃f [r,s](z)
, satisfying log(Jf [r,s]) =

∫ γr,sz

z

ωf [r,s]

does not depend on the base point z ∈ Hp(Kp) and belongs to Q×
p ⊗Λ′

f [6, Prop. 2.7].
When (r,s) = (0,∞), the period is related to the central critical value L(E,1) and to the

first derivative of the Mazur–Swinnerton-Dyer p-adic L-function Lp(E,s) attached to E

in (10):

ordp(Jf [0,∞]) = δp(E) ·L(E,1), log(Jf [0,∞]) = δp(E) ·L′
p(E,1),

where δp(E) = 1 if ap(E) = 1 and δp(E) = 0 if ap(E) = −1 (cf. [6, §2.2 & 2.3]). As the

Mazur–Tate–Teitelbaum conjecture asserts that

L′
p(E,1) =

log(q)

ordp(q)
·L(E,1),

we deduce that

log(Jf [0,∞]) =
log(q)

ordp(q)
·ordp(Jf [0,∞]).

More generally, the valuations and logarithms of the periods Jf [∞,a/c] with gcd(a,c) = 1
can be expressed in terms the special values (resp. derivatives) of partial L-series (resp.

partial p-adic L-series) whose linear combinations give all the twisted values L(E,χ,1) and

L′
p(E,χ,1) defined in (11), as χ ranges over all primitive Dirichlet characters of conductor

c for which χ(p) = ap(E) [6, §2.2 & 2.3]. The Mazur–Tate–Teitelbaum conjecture for
these L-series and the nonvanishing result of [6, Lemma 2.17] then imply that (15) can

be achieved.

Explicitly, Theorem 1.5 ensures the existence of a lattice Λ′
f ⊃ Λf such that Ff is a

Γ-invariant modular symbol with values in (A×/qZ)⊗Λ′
f satisfying

• dlogFf [r,s] = ωf [r,s], for all r,s ∈ P1(Q);
• F [γr,γs](γz) = F [r,s](z) (mod qZ⊗Λ′

f ), for all γ ∈ Γ, r,s ∈ P1(Q), and z ∈Hp.

The statement that the (multiplicative) periods Jf [r,s] of the ‘mock Hilbert modular

form’ attached to E lie in a lattice commensurable with qZ⊗ΛE resonates with Oda’s

period conjecture for Hilbert modular surfaces. The emergence of the Tate period in what
had, up to now, been a rather formal sequence of constructions provides the first inkling

that the point of view of mock Hilbert modular surfaces opens genuinely new perspectives

on arithmetic questions related to f and its associated elliptic curve E.

2. Stark–Heegner points

A real multiplication (RM) point on Hp is an element τ ∈ Hp which also lies in a real

quadratic field K. Its associated order is the subring

Oτ :=

{(
a b

c d

)
∈M2

(
Z[1/p]

)
satisfying aτ + b= cτ2+dτ

}
(16)
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12 H. Darmon and M. Fornea

of the matrix ring M2

(
Z[1/p]

)
. This commutative ring is identified with a Z[1/p]-order in

K by sending a matrix in (16) to its automorphy factor cτ +d. Global class field theory
associates to any Z[1/p]-order O ⊂K an abelian extension HO (resp. H+

O) of K whose

Galois group over K is identified with the Picard group (resp. the narrow Picard group) of

projective O-modules (resp. of projective O-modules endowed with an orientation at ∞):

Gal(HO/K) = Pic(O), Gal(H+
O/K) = Pic+(O).

The stabiliser in Γ of the RM point τ ∈ Hp is identified with the group of norm one

elements in Oτ . Since p is non-split in K =Q(τ), this stabiliser is of rank one. The choice

of a fundamental unit of K, which is fixed once and for all, determines a generator γτ of

the stabiliser of τ modulo torsion. The Stark–Heegner point attached to τ is the element

Pτ := Ff [r,γτr](τ) ∈ (C×
p /q

Z)⊗Λ′
f = E(Cp)⊗Λ′

f .

Remark 2.1. To simplify the comparison with [6], we observe that the quantity

Ff [r,γτr](τ) was denoted in loc.cit. by a multiplicative integral

Ff [r,γτr](τ) =×
∫ τ∫ γτr

r

ωf .

The point of view of this article is aligned with the reinterpretation of Stark–Heegner

points as values of rigid analytic cocycles following [9].

The definition of Pτ ostensibly rests on the choice of an auxiliary base point r ∈ P1(Q)

but is ultimately independent of that choice. Indeed, for any s ∈ P1(Q), we have

Ff [r,γτr](τ) = Ff [r,s](τ) ·Ff [s,γτs](τ) ·Ff [γτs,γτr](τ)

= Ff [s,γτs](τ)

because γτ τ = τ and Ff [γτs,γτr](τ) = Ff [s,r](τ) = Ff [r,s](τ)
−1.

After choosing real and imaginary generators Ω+
f and Ω−

f of Λ′
f ∩R and Λ′

f ∩ iR and

writing

Pτ = P+
τ ·Ω+

f +P−
τ ·Ω−

f ,

the invariants P+
τ and P−

τ ∈ E(Cp) are conjectured to satisfy the following [6]:

Conjecture 2.2. The points P+
τ and P−

τ are defined over the ring class field HOτ
and

the narrow ring class field H+
Oτ

, respectively. The point P−
τ is in the minus part for the

action of complex conjugation on E(H+
Oτ

).

The points P±
τ are expected to behave in most key respects just like classical Heegner

points over ring class fields of imaginary quadratic fields; in particular, they should satisfy
an analogue of the Gross–Zagier formula. Stark–Heegner points are the ‘mock’ counterpart

of the ‘ATR points’ on elliptic curves over real quadratic fields, arising from topological

one-cycles on a genuine Hilbert modular surface, that were alluded to in equation (2) of
the introduction. The properties of the points P±

τ predicted in Conjecture 2.2 are poorly

understood, just as they are for their ATR counterparts, despitr the theoretical evidence

obtained in [4], [20], [21] and [5], for instance.
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Conjecture 2.2 is consistent with the Birch and Swinnerton-Dyer conjecture, since the
sign in the functional equation for L(E/K,s) is always −1 for E an elliptic curve (or

modular abelian variety) of conductor p and K a real quadratic field in which p is inert.

The same is true as well for the L-functions L(E/K,χ,s) twisted by ring class characters
χ of prime-to-p conductor. It follows that

ords=1L(E/K,χ,s)≥ 1, for all χ : Gal(HOτ
/K)−→C×,

and hence that

ords=1L(E/Hτ ,s)≥ [HOτ
:K].

The Stark–Heegner point construction gives a conjectural analytic recipe for the
systematic supply of nontrivial global points over ring class fields of K whose existence

is predicted by the Birch and Swinnerton-Dyer conjecture.

Remark 2.3. The construction of Stark–Heegner points has been generalised to various

different settings over the years, notably in [32], [14], [19], [18] and [11].

3. Mock plectic points

A remarkable insight of Nekovář and Scholl suggests that zero-dimensional CM cycles on

Hilbert modular surfaces should encode determinants of global points for elliptic curves
of rank two called ‘plectic Heegner points’. This suggests that the CM points on Hp×H
are just as interesting arithmetically as the RM points on Hp that lead to Stark–Heegner

points. The goal of this last chapter is to describe the ‘mock plectic points’ attached
to CM zero-cycles on the mock Hilbert surface S and to explore the relevance of these

invariants for the arithmetic of elliptic curves of rank two.

Let K be a quadratic imaginary field, viewed simultaneously as a subfield of Cp and C,
and embedded diagonally in Cp×C. A point τ = (τp,τ∞) ∈ (Hp×H)∩K is called a CM

point on S attached to K. For simplicity, it shall be assumed henceforth that its associated

order, defined as in (16), is the maximal Z[1/p]-order in the imaginary quadratic field K,

that this order has class number one, and that the prime p is inert in K, leaving aside
the slightly more delicate case where p is ramified.

In contrast with the setting for Conjecture 2.2 and the discussion following it, the

sign in the functional equation for L(E/K,χ,s) is now systematically equal to 1, for any
ring class character χ of K of prime-to-p conductor. The Birch and Swinnerton-Dyer

conjecture therefore predicts that E(K) has even rank. A systematic supply of Heegner

points over K or over ring class fields of conductor prime to p is therefore not expected
to arise in this setting. Rather, the mock plectic invariant attached to τ will be used to

prove the implication

L(E/K,1) �= 0 ⇒ E′(Q) is finite,

where E′
/Q is the quadratic twist of E attached to K, and it will be conjectured to remain

nontrivial in settings where ords=1L(E/K,s) = 2.
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3.1. E(C)-valued harmonic cocycles

To parlay the system cf of mock residues attached to f into a rigorous evaluation of the

plectic invariant attached to τ , it is natural to replace the Γ-stable subset P1(Q)⊂H∗ of
Section 1.4 by the Γ-orbit

Σ := Γτ∞

of τ∞ inH. For each pair (x,y)∈Σ2, one obtains a C-valued harmonic cocycle on T via (8),

denoted cf [x,y]. The collection of cf [x,y] as x,y vary over Σ satisfies the Γ-equivariance

property

cf [γx,γy](γe) = cf [x,y](e), for all γ ∈ Γ, x,y ∈ Σ, and e ∈ E(T ).

Recall that Λf is a lattice in C containing all the periods of the form 2πi
∫ s

r
f(z)dz with

r,s ∈ P1(Q), and that E has been replaced by the isogenous curve with period lattice Λf ,

which is possible by the Manin-Drinfeld theorem. The theory of modular symbols can be
invoked to obtain a Γ-equivariant collection {cf [x]}x∈Σ of harmonic cocycles, indexed by

a single x ∈ Σ, but with values in C/Λf = E(C), satisfying

cf [x,y] = cf [y]− cf [x] (mod Λf ), for all x,y ∈ Σ.

This is done by setting

cf [x](e) = |E(Q)tors| ·2πi
∫ x

i∞
fe(z) dz (mod Λf )

= |E(Q)tors| ·2πi
∫ γx

i∞
f(z) dz (mod Λf )

where γe= e∞ for γ ∈ Γ. (17)

As in Sections 1.1 and 1.3, the harmonic cocycle cf [x] gives rise to an E(C)-valued
distribution on P1(Qp) with zero total mass, denoted μf [x], which can only be integrated

against locally constant Z-valued functions on P1(Qp).

3.2. The isogeny tree of a CM curve

The eventual upgrading of μf [x] to a measure is based on the observation that the values

in (17) can be interpreted as Heegner points on E/Q attached to CM points of p-power
conductor on the modular curve X0(p). These points are defined over the anticyclotomic

extension

K∞ =

∞⋃
n=0

Kn,

where Kn is the ring class field of K of conductor pn. This field is totally ramified at the

(unique) prime of K above p. Write

Gn =Gal(Kn/K), G∞ =Gal(K∞/K) = lim
←

Gn.

Global class field theory identifies G∞ with K×
p,1 the group of norm one elements,

rec : K×
p,1

∼−→G∞.
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Let A be the elliptic curve over Q with complex multiplication by the maximal order OK .

It is unique up to isomorphism over Q and has a model over Q because of the running
class number one assumption. Let TA be the p-isogeny graph of A, whose vertices are

elliptic curves over Q related to A by a cyclic isogeny of p-power degree, and whose edges

correspond to p-isogenies. This graph is a tree of valency (p+1) with a distinguished
vertex vA attached to A. Since the elliptic curves that are p-power isogenous to A are all

defined over K∞, the Galois group G∞ =K×
p,1 acts on TA in the natural way. This action

fixes vA and transitively permutes all the vertices (or edges) that lie at a fixed distance
from vA. More precisely, for every n ≥ 0, the subgroup Un ≤ K×

p,1 attached to the ring

class field Kn under the Galois correspondence stabilizes all the vertices of TA at distance

n from vA. Choose a sequence of adjacent vertices {vn}n≥0 satisfying

Un = StabK×
p,1

(vn).

For every n≥ 1, the oriented edge en = (vn−1,vn) from vn−1 to vn satisfies

Un = StabK×
p,1

(en).

The vertices (resp. edges) of TA at distance n from vA are in bijection with the Gn =

K×
p,1/Un-orbit of vn (resp. en). It is convenient to interpret each vertex of TA as a point

on the j -line X0(1), and to view each edge as a point on the modular curve X0(p),

the coarse moduli space of pairs of elliptic curves related by a p-isogeny. For n ≥ 1, let

Pn ∈X0(p)(Kn) be the point corresponding to the oriented edge en. Since Un/Un+1 acts

simply transitively on the set of edges at distance n+1 from vA having vn as an endpoint,
it follows that

TrKn+1/Kn
(Pn+1) = Up(Pn) ∀ n≥ 1.

Remark 3.1. Recall we previously defined ap(E) = 1 or −1 depending on whether

E has split or non-split multiplicative reduction at p. If we write yn ∈ E(Kn) for the

Heegner point arising from the divisor ap(E)n · (Pn−∞) on X0(p) through the modular
parametrization ϕE : X0(p) → E (normalized by ϕE(∞) = 0E), then the collection

{yn ∈ E(Kn)}n≥1 is trace-compatible.

Fix a trivialisationH1(A(C),Zp)�Z2
p. The choice of a complex embedding ι∞ :K∞ ↪→C

together with Shimura’s reciprocity law determine a K×
p,1-equivariant graph isomorphism

jA : TA ∼−→T ,

which sends the vertex attached to A′ to the lattice H1(A
′(C),Zp)⊆H1(A(C),Qp) =Q2

p,
after viewing A′ as a curve over C via ι∞. In particular, jA maps the distinguished vertex

vA to v◦. The identification jA allows the harmonic cocycle cf [τ∞] to be viewed as taking

values in E(K∞). More precisely, [6, Lemma 1.5] and equation (17) give

cf [τ∞](α ·en) = yrec(α)n , ∀ n≥ 1, α ∈K×
p,1.
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Moreover, as K×
p,1 acts transitively on the edges at a fixed distance from vA, we deduce

that

cf [τ∞](α ·e) = rec(α) · cf [τ∞](e), ∀ e ∈ E(T ), α ∈K×
p,1. (18)

The general case of x= γ−1τ∞ ∈ Σ is dealt with by the formula

cf [x](e) = cf [τ∞](γe) ∀ e ∈ E(T ).

3.3. Measures and the Poisson transform

In order to integrate continuous functions with respect to the measure μf [τ∞], the value

group E(K∞) needs to be p-adic completed. We will denote the p-adic completion of the
(infinitely generated) Mordell-Weil group E(K∞) by

Ê(K∞) := lim←−
n

E(K∞)⊗Z/pnZ.

Viewing μf [x] (for x ∈ Σ) as an Ê(K∞)-valued measure on P1(Qp), the Teitelbaum
transform of μf [x] gives a collection of elements

ωf [x] :=

∫
P1(Qp)

dz

z− t
dμf [x](t) ∈ Ω1

rig(Hp)⊗̂Ê(K∞). (19)

For any x ∈ Σ, let

ιx :K −→M2(Q)

be the algebra embedding that sends K to the fraction field of the order Ox. The group

Γ acts on Ω1
rig(Hp)⊗̂Ê(K∞) by translation on Hp, and the Galois group G∞ acts via its

natural action on Ê(K∞).

Proposition 3.2. The Ê(K∞)-valued rigid differentials ωf [x] satisfy the following

properties:

• For all γ ∈ Γ and x ∈ Σ,

γ∗ωf [γx] = ωf [x].

• For all α ∈K×
p,1,

ιx(α)
∗(ωf [x]) = rec(α) ·ωf [x].

Proof. The first part of the proposition follows from the Γ-invariance of the measure
μf [x], the triviality of its total mass, and the equality

1

γz−γt
=

(cz+d)2

z− t
+

1

γz−γ∞ .

To prove the second claim, note that the first part of the proposition implies

ιx(α)
∗(ωf [x]) = ωf [ιx(α)

−1x].

https://doi.org/10.1017/S1474748025000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000179


Mock plectic points 17

Thus, it suffices to show that

cf [ιx(α)
−1x](e) = rec(α) · cf [x](e) ∀ e ∈ E(T ).

As x ∈Σ, we can write x= γ−1τ∞ for some γ ∈ Γ and obtain γ · ιx(−) = ιτ∞(−) ·γ. Then,
the Γ-invariance of the harmonic cocycle together with (18) allow us to establish the

claim:

cf [ιx(α)
−1x](e) = cf [(γιx(α))

−1τ∞](e)

= cf [τ∞](α ·γe)
= rec(α) · cf [τ∞](γe)

= rec(α) · cf [x](e).

3.4. The mock plectic invariant

Following the same ideas as in the proof of Lemma 1.4, a well-defined system of
multiplicative primitives

Ff [x] ∈ (A×/K×
p )⊗̂Ê(K∞)

can be attached to the elements ωf [x], satisfying

dlog(Ff [x]) = ωf [x] for all x ∈ Σ.

The torus ιτ (K
×
p ) has two fixed points τp, τp acting on Hp, and they are interchanged by

the action of Gal(Kp/Qp). This circumstance leads to the definition of the multiplicative
Nekovář–Scholl mock plectic invariant attached to the CM point τ , by setting

Q×(τ) :=
Ff [τ∞](τp)

Ff [τ∞](τp)
∈ Ê(K∞)⊗̂K×

p,1.

Since p is inert in K, the group K×
p,1 consists of p-adic units and the invariant Q×(τ) is

determined, up to (p2−1)-torsion, by its p-adic logarithm

Q(τ) := logQ×(τ) =

∫ τp

τp

ωf [τ∞] ∈ Ê(K∞)⊗̂Kp.

Lemma 3.3. The mock plectic invariant Q(τ) belongs to
(
Ê(K∞)⊗̂Kp

)G∞
.

Proof. For all α ∈K×
p,1, we have

rec(α)Q(τ) =

∫ τp

τp

rec(α)ωf [τ ] =

∫ τp

τp

ιτ (α)
∗ωf [τ ] =Q(τ),

where the penultimate equality follows from the second assertion in Proposition 3.2, and

the last from the change of variables formula and the fact that ιτ (K
×
p ) fixes both τp

and τp.

3.5. Anticyclotomic p-adic L-functions

We will now give a formula for the mock plectic invariant Q(τ) in terms of the first

derivatives of certain ‘anticyclotomic p-adic L-functions’ in the sense of [1, Section 2.7].
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Recall that the CM point τ = (τp,τ∞) determines an embedding Kp ⊆ M2(Qp) and

hence an action of K×
p on P1(Qp). Let

A : P1(Qp)−→K×
p,1, A(x) =

x− τp
x− τp

(20)

be the Möbius transformation that sends (τp,τ̄p,∞) to (0,∞,1), and let μf,K be the

pushforward of the measure μf [τ∞] to K×
p,1 via A:

μf,K :=A∗μf [τ∞].

The anticyclotomic p-adic L-function attached to (E,K) is the Mazur-Mellin transform

of the measure μf,K :

Lp(E,K,s) :=

∫
K×

p,1

〈α〉s−1dμf,K(α). (21)

It can be viewed as a p-adic analytic function from 1+pZp to Ê(K∞)⊗̂Kp.

Theorem 3.4. The p-adic L-function Lp(E,K,s) vanishes at s= 1 and

Q(τ) = L′
p(E,K,1).

Proof. The vanishing of Lp(E,K,1) follows from the fact that μf [τ∞], and hence also

μf,K , have total measure zero. By the definition of Q(τ) combined with (19),

Q(τ) =

∫ τp

τ̄p

ωf [τ∞] =

∫ τp

τ̄p

(∫
P1(Qp)

1

z− t
dμf [τ∞](t)

)
dz.

Interchanging the order of integration and integrating with respect to z gives

Q(τ) =

∫
P1(Qp)

log

(
τp− t

τ̄p− t

)
dμf [τ∞](t) =

∫
P1(Qp)

logA(t) ·dμf [τ∞](t).

The change of variables α=A(t) can be used to rewrite this last expression as an integral
over K×

p,1,

Q(τ) =

∫
K×

p,1

log(〈α〉) ·dμf,K(α) = L′
p(E,K,1),

where the last equality follows directly from (21).

As explained in [2], the quantity L′
p(E,K,1) is directly related to the Kolyvagin

derivative of the norm-compatible collection yn = cf [τ∞](en) ∈E(Kn) of Heegner points,

where {en}n≥1 ⊂ E(T ) is the sequence of adjacent edges that was fixed in Section 3.2.

More precisely, for every n ≥ 1, the collection {α ·Uen}α∈K×
p,1

is a finite covering of

P1(Qp) by compact open subsets, which are equal to the cosets {α ·Un}α∈K×
p,1

under the

homeomorphism (20). Rewriting L′
p(E,K,1) as the limit when n → ∞ of the Riemann

sums attached to these coverings, equation (18) gives
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Q(τ) =

∫
K×

p,1

log(α)dμf,K(α)

= lim
n→∞

∑
α∈K×

p,1/Un

cf [τ∞](α ·en)⊗ log(〈α〉)

= lim
n→∞

∑
α∈K×

p,1/Un

yrec(α)n ⊗ log(〈α〉)

(22)

(see [3, §6] for related discussions).

3.6. Kolyvagin’s cohomology classes

After choosing a topological generator of K×
p,1, Lemma 3.3 allows the mock plectic

invariant Q(τ) to be viewed (non-canonically) as an element of Ê(K∞) fixed by G∞.

Consider the natural injective map

E(K)⊗Zp −→ Ê(K∞)
G∞

.

It need not be surjective in general: the group Ê(K∞) fails to satisfy the principle of
Galois descent. Moreover, while it is relatively straightforward to establish the infinitude

of Ê(K∞)
G∞

, the Birch and Swinnerton-Dyer conjecture predicts the finitude of E(K)

when L(E/K,1) �= 0. Even when L(E/K,s) vanishes at s = 1, and hence has a zero of
order ≥ 2, establishing that E(K)⊗Zp is infinite seems very hard to do unconditionally.

A useful handle on the group Ê(K∞)
G∞

is obtained by relating it to Galois cohomology.
Let H1(Km,E[pn]) be the first Galois cohomology of Km with values in the module of

pn-division points of E, and let

H1(Km,Tp(E)) = lim←−
n

H1(Km,E[pn]),

the inverse limit being taken relative to the multiplication by p maps E[pn+1]−→E[pn].

Lemma 3.5. The module E[pn](Km) is trivial for all m and n.

Proof. Since E is semistable of prime conductor p≥ 11, its mod p Galois representation

is surjective ([22], Theorem 4). It follows that the mod p Galois representation has non-
solvable image, and therefore, E[p](L) is trivial for any solvable extension L/Q.

Lemma 3.6. The restriction map

H1(K,E[pn])−→H1(Km,E[pn])Gm

is an isomorphism.

Proof. The kernel and cokernel in the inflation-restriction sequence

H1(Gm,E[pn](Km)) �� H1(K,E[pn])
res �� H1(Km,E[pn])Gm �� H2(Gm,E[pn](Km))

are trivial by Lemma 3.5, and the claim follows.
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Denote by δn the mod pn Kummer map

δn : E(Km)/pnE(Km)−→H1(Km,E[pn]),

and by

δ∞ : E(Km)⊗Zp−→H1(Km,Tp(E))

the map induced on the inverse limits. Let P∞ = {Pn}n≥1 ∈ Ê(K∞)
G∞

, where

Pn ∈ (E(Kmn
)⊗Z/pnZ)Gmn

for suitable integers mn ≥ 1. Lemma 3.6 shows that each δn(Pn) ∈H1(Kmn
,E[pn])Gmn

is the restriction of a unique class κn ∈H1(K,E[pn]). The κn are compatible under the
natural multiplication by p maps from E[pn+1] to E[pn], and the assignment (Pn)n≥1 �→
(κn)n≥1 determines a canonical inclusion

Ê(K∞)
G∞

↪−→H1(K,Tp(E)).

It will be convenient for the rest of this note to identify Q(τ) with its image in

H1(K,Tp(E)) under this map.

3.7. Local properties of the mock plectic invariant

For each place v of K, let

resv :H
1(K,Tp(E))−→H1(Kv,Tp(E))

be the local restriction map to a decomposition group at v. The local cohomology group

H1(Kp,Tp(E)) is equipped with a natural two-step filtration

0−→H1
f (Kp,Tp(E))−→H1(Kp,Tp(E))−→H1

sing(Kp,Tp(E))−→0,

where H1
f (Kp,Tp(E)) := δ∞(E(Kp)⊗Zp).

Definition 3.7. The pro-p-Selmer group of E is the group, denoted H1
f (K,Tp(E)), of

global classes κ ∈H1(K,Tp(E)) satisfying

resp(κ) ∈H1
f (Kp,Tp(E)).

The reader will note that in the setting of pro-p Selmer groups, no local conditions

need to be imposed at the places v �= p because the Kummer map δv : E(Kv) ⊗
Zp−→H1(Kv,Tp(E)) is an isomorphism. The only possible obstruction for a global class
to lie in the pro-p Selmer group therefore occurs at the place p. Let

Qp(τ) := resp(Q(τ)) ∈H1(Kp,Tp(E))

denote the restriction of the global class Q(τ) to the decomposition group at p. The first
important result about the mock plectic invariant is that it is non-Selmer precisely when

L(E/K,1) �= 0.

Theorem 3.8. The class Qp(τ) lies in H1
f (Kp,Tp(E)) if and only if L(E/K,1) = 0.
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Proof. Recall that the ring class field Kn of K of conductor pn is a cyclic Galois extension
of K with Galois group Gn

∼=K×
p,1/Un. The Kolyvagin derivative of the Heegner point

yn ∈ E(Kn) is defined as

Dnyn :=
∑

α∈K×
p,1/Un

yrec(α)n ⊗α ∈ E(Kn)⊗K×
p,1/Un

and is fixed by the action of Gn because TrKn/K(yn) = 0 (cf. [1, (8)] and [16, Proposition

3.6]). Then, just as in equation (22), one sees that

Q×(τ) = lim←−
n

Dnyn.

By choosing a topological generator of K×
p,1, we can consider the image of Q×(τ)

in H1(K,Tp(E)) and study its local properties via the following diagram taken from

[16, (4.2)]:

0

��
0

��

H1(Gn,E(Kn))

Inf

��
E(Kn)

TrKn/K=0

Dn

����
���

���
���

��
H1(K,E[pn−1])

Res

��

�� H1(K,E)

Res

��
0 ��

(
E(Kn)/p

n−1
)Gn δ �� H1(Kn,E[pn−1])Gn

��

�� H1(Kn,E)Gn

0 .

By construction, the image of Dnyn in H1(K,E) belongs to the image of H1(Gn,E(Kn))

under inflation, and it can be represented by the following 1-cocycle [25, Lemma 4.1]:

Gn � σ �→ − (σ−1)Dn(yn)

pn−1
, (23)

where (σ−1)Dn(yn)
pn−1 denotes the unique pn−1-th root of (σ− 1)Dn(yn) in E(Kn). Now,

we can use the explicit description (23) to study the image ∂pQ×(τ) of Q×(τ) in

H1
sing(Kp,Tp(E)).

Denote by Φn the group of connected components of the special fiber of the Néron

model of E over the p-adic completion Kn,p of Kn. By [2, Lemma 6.7], the reduction
map E(Kn,p)→ Φn produces an injection

H1(Gn,E(Kn,p))[p
n−1] ↪−→ Φn[p

n−1],

where H1(Gn,Φn) = HomZ(Gn,Φn) is identified with Φn by evaluation at a generator of

Gn. A direct computation using (23) and [16, (3.5)] then shows that ∂pQ×(τ) vanishes
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exactly when the compatible collection of Heegner points {yn}n≥1 maps to a finite order

element in the projective limit {Φn}n≥1. By adapting the proof of [2, Theorem 5.1], one

sees that this happens precisely when the L-value L(E/K,1) vanishes.

Interestingly, when L(E/K,1) �= 0, the mock plectic invariant Q(τ) suffices to prove

that the Mordell-Weil group of E′ – the quadratic twist of E attached to K – is finite.

Theorem 3.9. If L(E/K,1) �= 0, then E′(Q) is finite.

Sketch of proof. We follow the proof of [2, Corollary 7.2]. By Theorem 3.8, we know

that Q(τ) is a global class ramified only at p. The claim is then that the localization map
E′(Q)⊗Qp ↪→ E′(Qp)⊗Qp – which is always injective – is the zero morphism.

Under our assumptions, the hypothesis L(E/K,1) �= 0 also implies that E has split

multiplicative reduction at p; hence, the class Q(τ) lives in the minus-eigenspace for the

action of complex conjugation [2, Prop. 6.5], and its image in H1
sing(Kp,Vp(E)) satisfies

H1
sing(Qp,Vp(E

′)) =Qp ·Qp(τ). The claim then follows because local Tate duality induces

the identification

E′(Qp)⊗Qp
∼−→H1

sing(Qp,Vp(E
′))∨ Q �→

〈
Q,−

〉
p
,

and Poitou–Tate duality implies that any point P ∈ E(K)⊗Qp satisfies

0 =
∑
�

〈
res�(P ),res�(Q(τ))

〉
�
=
〈
resp(P ),Qp(τ)

〉
p
.

(See [2, Prop. 6.8].)

Remark 3.10. To obtain the finiteness of E(K) from L(E/K,1) �= 0, one also needs to
consider tame deformations of mock plectic invariants (cf. [2, Rem. p.132]).

3.8. Elliptic curves of rank two

When L(E/K,1) = 0, the local class Qp(τ) belongs to H1
f (Kp,Tp(E))⊗Kp (i.e., the global

class Q(τ) lies in the pro-p Selmer group of E over K ). It is not expected to be trivial in

general: in fact, as we now proceed to explain, it should provide a nontrivial Selmer class
in settings where L(E/K,s) = L(E,s)L(E′,s) has a double zero at s= 1, and even when

the factor L(E′,s) admits such a double zero.

Since the first derivative of the p-adic L-function Lp(E,K,s) computes the mock plectic
invariant Q(τ) according to Theorem 3.4, we can predict when L(E/K,1) = 0 and Q(τ)

does not vanish by analyzing the anticyclotomic Birch and Swinnerton-Dyer conjecture of

[1, Conj.4.1]. In the terminology of [1, Introduction & Definition 2.3], the triple (E,K,p)

falls into the non-split exceptional indefinite case, where the adjective non-split exceptional
refers to the fact that the elliptic curve has multiplicative reduction at the prime p inert

in K (and not to the fact that E has necessarily non-split multiplicative reduction at p).

If we set E+ :=E, denote by E− =E′ the quadratic twist of E attached to K, and define

δ± =

{
1 if ap(E

±) = +1

0 if ap(E
±) =−1,

https://doi.org/10.1017/S1474748025000179 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748025000179


Mock plectic points 23

then [1, Conjecture 4.1] suggests that the order of vanishing of Lp(E,K,s) at s= 1 is

�=max
{
1, ralg(E

±/Q)+ δ±−1
}
, (24)

which satisfies 2�≥max
{
2, ralg(E/K)

}
.

Remark 3.11. The p-adic L-function Lp(E,K,s) can be obtained from the p-adic L-

function considered in [1, Conj.4.1] by collapsing the extended Mordell–Weil group to the
usual Mordell–Weil group. This explains the discrepancy between (24) and [1, Conj.4.1].

We deduce that, when L(E/K,1) = 0, we should expect Q(τ) to be nontrivial only
when ralg(E/K) = 2 and the rank is distributed in the two eigenspaces for the action of

complex conjugation according to a rule depending on reduction type at the prime p:

Conjecture 3.12. Suppose that L(E/K,1) = 0. Then

Q(τ) �= 0 ⇐⇒
{
ralg(E/Q) = 0, ralg(E

′/Q) = 2 if ap(E) = +1,

ralg(E/Q) = 1, ralg(E
′/Q) = 1 if ap(E) =−1.

In order to make explicit the relation between the mock plectic invariantQ(τ) and global

points in E(K), denote by log
ap

E : E(Kp)→Kp the composition of the p-adic logarithm
of E with the endomorphism (1−ap(E) ·σp) of E(Kp), where σp ∈Gal(Kp/Qp) denotes

the nontrivial involution.

Conjecture 3.13. Suppose that L(E/K,1) = 0. Then Q(τ) is in the image of the

regulator ∧2E(K)→H1
f (K,Tp(E))⊗Zp

Kp given by

P ∧Q �→ δ∞(P )⊗ log
ap

E (Q)− δ∞(Q)⊗ log
ap

E (P ).

Remark 3.14. Given the analogy between mock plectic points and the plectic p-adic

invariants of [13], [11], the reader is invited to compare Conjectures 3.12 and 3.13 with
[13, Conjectures 1.5 & 1.3].

The fact that the plectic invariant is forced to lie in a specific eigenspace for complex

conjugation and can sometimes vanish for trivial reasons (for example, when E(Q) has

rank two) suggests that it is only ‘part of the story’ and represents the projection of a

more complete invariant which should be nontrivial in all scenarios when E(K) has rank
two. The authors believe that a full mock analogue of plectic Stark–Heegner points can be

obtained by exploiting the p-adic deformations of f arising from Hida theory, and hope to

treat this idea in future work. These ‘mock plectic points’ should control the arithmetic
of elliptic curves of rank two over quadratic imaginary fields, and be unaffected by the

degeneracies of anticyclotomic height pairings that plague [1, Conjecture 4.1].

The approach of this article might also be exploited to upgrade the plectic Heegner
points of [11] from tensor products of p-adic points to global cohomology classes. Such

an improvement would take care of the degeneracies of the original construction (evoked,

for example, in [11, Remark 1.1]) and, in light of Theorems 3.8 and 3.9, it would help
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explain the arithmetic meaning of plectic Stark–Heegner points in the setting considered
in [11, Remark 1.3]. (See also the paragraph before [13, Conjecture 1.6].)
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[28] Nekovář J and Scholl A (2016) Introduction to plectic cohomology. In Advances

in the Theory of Automorphic Forms and Their L-functions, vol. 664. Contemp. Math.
Providence, RI: Amer. Math. Soc., 321–337.

[29] Oda T (1982) Periods of Hilbert Modular Surfaces, vol. 19. Progress in Mathematics.
Boston: Birkhäuser.
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