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Abstract

The new optima and equilibria discussed in the preceding two papers are compared with
the results of bargaining experiments between two and three players performed by
Fouraker and Siegel. Experiments where players have complete or incomplete informa-
tion are considered. There is clear evidence that the new optima are operating, and that
traditional optima-Cournot, Pareto and competitive (threat)-are less satisfactory in
explaining the course of the whole bargaining process.

Fouraker and Siegel [1] carried out a large number of controlled experiments
which were designed to study the competitive behaviour of firms in a market.
The experiments included quantity variation competition between 2 players
(duopoly) and between 3 players (triopoly). Comparison of the results with
traditional predictions of optimal behaviour-the Cournot, Pareto and competitive
(or threat) optima-were made. In the present paper we show that the extended
optima introduced in papers [2] and [3] give a more satisfactory agreement with
the experimental results, and that, in particular, they can provide a simple and
reasonable description of the bargaining sequence.

The quantity variation competition experiments in [1] take the form of a
continuous game, in which all firms produce the same good, but choose their
own levels of output, the prices paid being determined by the buyers. The profit
to player i in one transaction or business period is

/,(») = 0.04a,.(60 - oT) (1.1)
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cents, where a, is the quantity produced by player i,

a, + a2 for duopoly
al + a2 + a3 for triopoly

and a is (a,, aj) for duopoly, (a,, a2, a3) for triopoly. In each transaction, each
player chooses a value a, for his proposed output without communication with
his competitors or knowledge of their output choices. Then each player receives
a profit given by (1.1). Any cash profit made by a player is his to keep, so it is
reasonable to assume that all players are attempting to maximize their own 7,'s.

Two versions of the game were examined, called complete and incomplete
information games. In the former, each player was presented with the same profit
table, which listed his own profit / , , say, and the profit J2 (or J2 + J3 for
triopoly) of his competition, for a range of values of a, and a2 (or. a2 + a3 for
triopoly). The values of o, tabulated (and hence admissible) were the integers
8, 9, 10 32. The functions (1.1) were not revealed to the players except by
implication from the table. In the game of incomplete information the profit J2

(or J2 + J3) made by the competition was omitted from the table, but the game
was otherwise the same. In all tables, a degree of rounding took place to simplify
the entries; possible effects of this on the games are discussed in Sections 3, 5
and 6.

Fig. 1. Output choices made in the experiments of Fouraker and Siegel in the case of
two player competition with complete information.
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In all games a total of 25 transactions took place, the first 3 being trials not
resulting in a real monetary profit. In each of the two versions of the duopoly
game there were 16 pairs of players, each carrying out the 25 transactions. In
each of the two versions of the triopoly game there were 11 trios, also each
carrying out 25 transactions. No person was a player in more than one game.
The large amount of data resulting from these replications of the four different
experiments provides the raw material for quite a rigorous test of any theory
about bargaining behaviour in such games.

As an example of the results, Figure 1 gives the quantity choices of all 16 pairs
in all 25 transactions of the duopoly game with complete information (here the
size of dot indicates the number of times the pair occurs). We have superim-
posed all this data because it reveals properties of the "average behaviour" of
players which is not as clear from data on individual transactions or individual
pairs. While our theory is generally applicable at an individual level, its effects
may be more apparent in the aggregate.

2. Theories of bargaining behaviour for duopolists

Fouraker and Siegel [1] compare their results with 3 traditional game theory
optima.

(i) The Cournot optimum. Here both players maximize their own profit on the
assumption that their competitor holds his output fixed. This implies that

- ^ = 0 f o r / = 1 , 2 , (2.1)

which, from (1.1), gives

0, = a2 = 20. (2.2)

(ii) The Pareto optimum. In the present case this is just the set of output pairs
which maximizes the joint profit of the 2 players. Thus

4-(Ji + A) = 0for/= 1,2do,.

which, from (1.1), gives

a, + a2 = 30. (2.3)

This optimum is intended to describe the behaviour of cooperating players
since it results in mutual benefit. Clearly, it can also be described as a set of a's
such that any move away from the set results in disadvantage to at least one
player. The manner in which the joint profit (36 cents) is shared remains
unspecified in theory, but is determined in practice by the bargaining process.
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(iii) The competitive optimum. Here at least one player chooses an output
which reduces the profit of each player to zero. Thus

a, + a2 = 60 (2.4)

in this case, while individual outputs remain unspecified. This is sometimes
called a threat optimum or threat curve [5] since it is envisaged that it would only
be realized if imposed by a strong firm, with large assets perhaps, which failed to
gain the compliance of a competitor.

In papers [2] and [3] we introduced several classes of new optima which
happen to coincide for duopolies; more will be said about the different classes in
the triopoly analysis. These optima take account of the possibility that a firm
can be disciplined by its competitor if it tries to make a profit-increasing
adjustment. More precisely, if firm 1 makes a small change e in its output a,
thereby increasing its profit, Jl(ol + e, a?) > Jy(ov aj), then firm 2 can make a
small change 8 in its output a2 so as to restore its own profit, /2(

CTi + e> °2 + ^)
= J2(ax,

 ai)> an<i leave firm 1 with a net reduction in profit, / / o , + e, a2 + 8)
< Jx(ov a^. Firm 2 is said to have disciplined firm 1.

In our new optima, called extended optima, each firm can discipline the other.
Such a state a is an optimum for sophisticated bargainers in the sense that each
firm is reluctant to move through fear of being disciplined, and gains a sense of
stability through the knowledge that it can discipline its competitor if necessary.
For unsophisticated players, or players with inadequate information, it would
seem to influence players over successive transactions through their being
accidentally disciplined for unsuitable moves (a rigorous proof is given in [4] for
a particular adjustment process).

The resulting extended optima comprise (see [3], equation (4.10)) a set O w

with two triangular regions, within a, > 0, a2 > 0,

{ot + o2> 30, a, + 2a2 < 60, 2CT, + a2 < 60} (2.5)

and

{a1 + a2 < 60, a, + 2o2 > 60, 2a, + a2 > 60.} (2.6)

These are shown in Figure 1. They contain all three traditional optima discussed
above. Our optima therefore incorporate a variety of different bargaining
behaviours, and provide a unification and extension of the traditional concepts
of optimal behaviour. From a practical point of view this would seem to offer
advantages, because in predicting gross market behaviour it is unlikely that one
would be able to characterize the set of firms as cooperative, threatening or as
independent maximizers. Different firms are likely to behave differently.
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3. Comparisons with duopoly data

In the game with complete information (experiment 10 of [1]), Fouraker and
Siegel show that there is no statistically significant preference for any of the 3
traditional optima in the data. Although they considered in detail only the 24th
transaction, the same applies to any transaction, or to the whole set of transac-
tions, as is fairly clear from Figure !. It is apparent also from Figure 1 that, on a
per area basis, there is a disproportionately large number of points a in the
triangles (2.5) and (2.6) defining our extended optima, and a distinct paucity of
points in the remaining regions of the admitted production space, namely the
square 8 < a, < 32, 8 < a2 < 32.

To make this more precise, let n(t) be the number of points a not in (2.5) or
(2.6), from all pairs of players, during transaction number /, where / =
1, 2, . . . , 25. Thus a fraction n(t)/\6 are not extended optima. Of the 625
possible points, 259 are not in (2.5) or (2.6). If the &S at transaction t were
purely random, then they should be uniformly distributed among the 625 points,
implying that n(t)/16 would equal 259/625, and hence that

/•(<) = 625«(r)/4144 (3.1)

would equal unity, at least within a calculable statistical tolerance. Table 1
shows that r(i) becomes significantly less than 1 as / increases; the statistical
assessment of this significance is discussed later in Section 6. To clarify the
trend, the proportions

R(t) = (r(l) + r{2) + • • • +r(t)}/t (3.2)

of points from the first t transactions, which are not extended optima are also
listed in Table 1. This shows a fairly smooth decline from /?(1)=^.75 to
R(25) =i .36. The value .75 is barely significantly less than 1, indicating that
initial products could be considered as random. Thereafter the players ap-
parently learn by experience the disadvantage of adopting a a which is not an
extended optimum. Roughly speaking, once the firms have chosen a <r which is
an extended optimum, each firm is likely to be disciplined by its competitor if it
tries to increase its profit. There is therefore an increasing tendency for each
firm not to move from such a a.

The figures offer clear support for the applicability of the extended optimum,
at least when the alternative is the rather implausible hypothesis of uniform
random choice of a at each transaction. Are there any more plausible alternative
explanations of the data? Looking at Figure 1 we see that the most obvious
paucity of points is in the 2 triangles

{a, > 8, a2 > 8, at + a2 < 30} (3.3)
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and

Optima and equilibria

TABLE 1

for games. III

Experiment 10: duopoly, complete information

/
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

{•
One might then entertain
for the region 30 < a, +
the competitive optima o
purely randorr

To test this
region during
these are not

i.

hypothesis,
transaction

r(t]
.75
.60
.60
.60
.15
.75
.30
.30
.15
.60
.15
.00
.00
.45
.15
.15
.00
.60
.45
.45
.15
.45
.30
.45

<

the

i +

let

» * ( 0
.75
.68
.65
.64
.54
.58
.54
.51
.47
.48
.45
.41
.38
.39
.37
.36
.34
.35
.36
.36
.35
.36
.35
.36

32, a2 < 32, o,

hypothesis, HI

s(t)
.76
.89
.71
.89
.22
.94
.44
.44
.22
.71
.22
.00
.00
.66
.22
.22
.00
.71
.25
.47
.22
.47
.44
.47

S(t)
.76
.83
.79
.81
.69
.73
.69
.66
.61
.62
.58
.53
.49
.50
.48
.47
.44
.45
.44
.44
.43
.43
.44
.44

+ a2 > 60}.

, that the
; 60 between the Pareto
o2 = 60, and

215

(3.4)

only distinct preference is
optima o, + c

that within this region

m(i) be the number of
t. There are 510 possible &"$

in the triangles (2.5) and (2.6). If n(t) i

points a which
in the region,

s the number

»2 = 30 and
the a^ are

fall in this
and 144 of

of &s from
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transaction t which lie in 30 < a, + a2 < 60 but not in (2.5) or (2.6) then the
hypothesis implies that the proportion

s(t) = 510^(0/ {144m(/)} (3.5)

of o ŝ, on a per area basis, which are not extended optima should be insignifi-
cantly different from unity. Table 1 shows that, in fact, the s(t) are very
significantly less than unity, and that the accumulated proportions

S(t) = 5102 /*(')/ j 1442 Mr) (3.6)

up to transaction /, decline from early values of about .8 to a final value of
.44. Hypothesis HI, therefore, receives significantly less support from the data
than do the extended optima.

A second hypothesis, H2, is that the Cournot solution alone is preferred,
producing an excess concentration of &s near o, = a2 = 20 and a resulting
paucity of ĉ s near the corners of the square in Figure 1. To test this hypothesis,
one can look at points a contained in discs of various radii centred at o, = a2 =
20. The proportions per area from all transactions, /?, say, that are in such a disc
of radius i but not in the triangles (2.5) and (2.6) are as follows:

i = 2 3 4 5 6 7 8 9 10 11 12
/*, = 0 .23 .54 .58 .62 .69 .55 .61 .57 .53 .47

Since all /?, are very significantly less than 1, H2 also receives significantly less
support from the data than do the extended optima.

Note, however, that a concentration of points a at the Cournot optimum
a{ = a2 = 20 or on the lines a, = 20 and a2 = 20 (corresponding to at least one
player choosing his production at the Cournot value) would favour the extended
optima since such points are contained in the triangles (2.5) and (2.6). Thus
suggests the hypothesis, H3, that at least one player is adopting the Cournot
optimum. To test this one can look at the proportions R[ defined as the /?, above
except that points on the lines a, = 20 and a2 = 20 are omitted. The results are:

/ = 2 3 4 5 6 7 8 9 10 11 12
R! = 0 .57 .97 1.02 .90 .98 .65 .71 .67 .62 .59

These figures are less clear-cut than previously. Once the Pareto optimum point
(15, 15) has entered the disc, at / = 8, the ratios do remain significantly less than
unity. The midrange ratios, however, are compatible with H3, suggesting that if
one or both players are not producing at the Cournot value 20 they are relatively
indifferent as to what a is, provided they are reasonable close to the Cournot
optimum. We suggest one reason why this result should be regarded with
caution in Section 6.
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Clearly, one can continue to construct variations on these hypotheses but they
are likely to become progressively more arbitrary and data-inspired. Without
fresh experiments to examine them, therefore, they must be treated extremely
cautiously.

For the game with incomplete information studied in experiment 7 of Four-
aker and Siegel [1], the same analyses give the results shown in Table 2. Again
R(t) declines from an early value of .75 to a final value of .40, which confirms a
tendency towards the extended optimum. Similarly S(t) declines to .44, which is
significant evidence against hypothesis HI.

TABLE 2

Experiment 7: duopoly, incomplete information

/
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.45

.60
1.21
.30
.30
.60
.60
.90
.60
.15
.00
.30
.60
.30
.15
.30
.15
.15
.90
.15
.15
.30
.15
.30
.30

R(t)
.45
.53
.75
.64
.57
.58
.58
.62
.62
.57
.52
.50
.51
.50
.47
.46
.44
.43
.45
.44
.42
.42
.41
.40
.40

s(t)
.25
.51
.97
.24
.24
.71
.51
1.18
.51
.22
.00
.44
.71
.44
.22
.44
.22
.22
1.33
.22
.22
.24
.22
.44
.44

S(t)
.25
.38
.54
.46
.41
.46
.47
.56
.56
.52
.47
.47
.48
.48
.46
.46
.45
.43
.48
.47
.46
.45
.44
.44
.44
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Fouraker and Siegel [1] found that this experiment offers strong support for
the Cournot optimum. There is a very evident concentration of points a on and
near a, = a2 = 20 in the later transactions, but the following values of /?,:

1 =

R.. =
2

.12
3

.31
4

.35
5

.38
6

.37
7

.57
8

.63
9

.52
10

.48
11

.45
12

.45

continue significantly less than 1, so that hypothesis H2 is inadequate to explain
the data. The vaiues of R-:

/ = 2
= 1.00

3
1.04

4
.98

5
.99

6
.75

7
1.08 1

8
.11

9
.91

10
.85

11
.76

12
.76

lie rather close to one except for large i so that hypothesis H3 might be
considered almost adequate. Inspection of the data (page 256 of [1]), however,
reveals that the behaviour of player pair 14 is anomalous. If this pair is omitted
the new R,'s are

/ =
R! =

2
1.00

3
1.04

4
.98

5
1.00

6
.76

7
.97

8
.83

9
.67

10
.62

11
.57

12
.59

and these cast much more doubt on the adequacy of H3.
It is not surprising that the Cournot optimum is favoured in experiment 7 but

not in experiment 10. In the former, the lack of information makes it fairly
natural to follow the Cournot strategy, namely to maximize one's profit at each
transaction on the assumption that one's competitor's output has its value at the
preceding transaction. This leads precisely to the Cournot solution if followed
exactly (Theocharis [6]). For the experiment 10 with complete information, the
extra information may obscure the obvious strategy, or lead players to try more
subtle cooperative or competitive strategies.

The Cournot strategy has the property that &s initially in the set (2.5) and
(2.6) of extended optima remain therein. Similarly o>s which are initially in the 2
triangles

{<r, + 2a2 > 60, 2a, + a2 < 60} (3.7)

and

{a, + 2a2 < 60, 2a, + a2 > 60} (3.8)

also remain therein. Consequently, this strategy predicts that S(t) = S(\) for all
t. The values of S(t) given previously therefore suggest that the Cournot strategy
does not adequately explain the distribution of tr's; one point of uncertainty is
the rounding which was done in the profit tables for all experiments and which
would certainly induce perturbations on a pure Cournot strategy.
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A further point of interest connected with the Cournot solution is that it
predicts o, + o2 = 40. Fouraker and Siegel [1, pages 131-132] stress the fact
that, in experiment 7, 14 out of 16 totals for transaction 24 support the Cournot
value; they regard the totals as 'more important to the economic theory than the
individual a,', [1, page 135]. This 'Cournot line', however, lies entirely outside
O,w, except for the point (20, 20), and we have seen that O w is favoured by the
data even when Cournot-based alternatives are considered. This highlights the
inadequacy of the simple classification of points used in [1] and some of the
conclusions derived therefrom.

A notable feature of the /?, and R{ is that, broadly, for both experiments, they
initially rise for small i, reach a maximum and then decline, the dependence on i
being reasonably smooth. We have no convincing explanation of this effect, but
suspect it is geometric in origin and of no real economic significance.

4. Triopoly theory

Fouraker and Siegel [1] again compare their results with the 3 traditional
optima:

(i) the Cournot optimum

ot = o2 = o3 = 15, (4.1)

(ii) the Pareto optimum

o, + o2 + o3 = 30, (4.2)

and
(iii) the competitive optimum

o, + a2 + a3 = 60. (4.3)

Our new extended optima described in [2] and [3] are of 4 types, I, II, III and
IV, and the corresponding sets of a's are denoted by O w to O*, respectively.
For the weakest optimum, type I, at least one firm can be disciplined by one or
both competitors, as described in [2] and [3]. The resulting set Ow excludes only
those a's strictly below aT = 30 or strictly above aT = 60, or within the 3
tetrahedra

{2aT - a, < 60, aT + a, > 60} (4.4)

f o r / - . 1 , 2 , 3 .
The optimum set OWj consists of those a's for which every firm can be

disciplined by one or both competitors. Besides the regions excluded by O w it
excludes the 6 regions Tt, T2, T3, Ux, U2 and U3, where

Tf = {2aT - a, > 60, 2aT - a, < 60 for./ ¥= /} (4.5)
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and

U, = {o, + oT< 60, o, + aT > 60 fory =?* i}, (4.6)

(see Table 1 of [3]). Clearly O^, is a subset of Ow.
The other two optima do not seem to play a significant role in the experi-

ments, so they are not enlarged upon here.
It is worth noting here that Fouraker and Siegel appear to use the terms

'competitive' and 'rivalistic' almost interchangeably in the text and data analysis,
despite having made a clear theoretical distinction between them [1, page 97].
While the two concepts coincide for duopolies they are different in the triopoly
case. In fact, they seem always to mean 'competitive' in discussions of the
experiments.

5. Comparison of theory with triopoly results

For their experiment 9, wikth complete information, Fouraker and Siegel [1]
show that the results indicate no significant preference for any single one of the
3 traditional optima: Cournot, Pare to or competitive. To test the new optimum
Ow, we follow the procedure of Section 3. Let n,(t) be the number of trios out of
the 11 whose a does not lie in Ow during transaction t. Of the 15625 possible a
in the cube {8 < a, < 32} from which the players choose, 7703 are not in Ow. If
the value of the proportion

/>(/) = 15625/1//)/ (U x 7 7 0 3 ) (5-1)

of points not in Ow on a per volume basis is significantly less than one, the new
optimum O,w is favoured. The values of r,{t) in Table 3 clearly support our
optimum against the hypothesis of uniform randomness for the &s. The accu-
mulated proportions

(5-2)

up to transaction / decrease from an initial value of 0.74 to a final value of 0.24,
showing the optimum gradually makes its impression on the players, presumably
through the disciplining effects of unfavourable output choices, as in the
duopoly case.

To test O w more stringently we omit the a below aT = 30 and above aT = 60
from consideration in accordance with hypothesis HI of Section 3. Of the
remaining 7991 possible a's only 69 are not in Ow. We find that none of these 69
is ever realized by any of the 11 trios in any of the 25 transactions. This is the
best possible support for Oj*' and provides moderately significant evidence
against HI and in favour of O^.
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TABLE 3

Experiment 9: triopoly, complete information

t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

rM
.74
.74
.74
.00
.00
.00
.00
.37
.18
.37
.00
.00
.18
.37
.18
.00
.00
.00
.18
.37
.18
.18
.37
.55
.18

RM
.74
.74
.74
.55
.44
.37
.32
.32
.31
.31
.29
.26
.26
.26
.26
.24
.23
.22
.21
.22
.22
.22
.22
.24
.24

rM
.80
.80
.57
.00
.00
.00
.00
.40
.00
.20
.00
.00
.00
.20
.00
.00
.00
.00
.20
.20
.00
.20
.40
.20
.20

RM
.80
.80
.73
.55
.44
.37
.31
.32
.29
.29
.25
.23
.21
.21
.20
.19
.18
.17
.17
.17
.16
.16
.17
.17
.18

IIIM

1.16
.00
.00

1.48
.00
.00
.00

1.81
.00
.00

1.48
2.22
1.63
.00
.81
.00
.00

1.48
.00
.90
.00
.00
.90

1.02
.81

QnM
1.16
.58
.39
.76
.57
.45
.38
.55
.48
.44
.55
.70
.78
.73
.73
.68
.64
.69
.65
.66
.63
.60
.62
.63
.64

The hypotheses H2 and H3 of Section 3, that a preference for the Cournot
optimum is the only effect, can be tested by omitting tr's on the 3 surfaces
ax = 15, a2 = 15 and a3 = 15; note that we are not considering points in
concentric spheres on this occasion. The proportions corresponding to r,(t) and
R,(t) with such or omitted are denoted by rJ(O and R',{t) and listed in Table 3.
Again there is a clear and very significant fall in /?,'(')> down to 0.16, which
provides very strong evidence against these hypotheses.

Since states in Ow, correspond to every firm being disciplinable, one might
expect that such states would be favoured among the O w states. There are 7019
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TABLE 4

Experiment 8: triopoly, incomplete information

t

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

.55

.92

.55

.00

.18

.00

.37

.37

.37

.00

.55

.18

.00

.18

.18

.18

.37

.18

.00

.00

.00

.00

.18

.00

.00

.55

.74

.68

.51

.44

.37

.37

.37

.37

.33

.35

.34

.31

.30

.30

.29

.29

.29

.27

.26

.25

.23

.23

.22

.21

r'i(t)

.60

.80

.60

.00

.20

.00

.40

.40

.40

.00

.40

.20

.00

.20

.20

.20

.20

.00

.00

.00

.00

.00

.20

.00

.00

.60

.70

.66

.50

.44

.36

.37

.37

.38

.34

.34

.33

.31

.30

.29

.29

.28

.27

.25

.24

.23

.22

.22

.21

.20

<7///(0
.96
.51
.58
.98
.62
.98
.51
.86
.51
.84
.77

1.08
1.12
.77
.77

1.23
1.03
1.39
.70
.70
.98
.70

1.39
1.12
1.12

G///CO
.96
.77
.70
.79
.75
.80
.76
.77
.74
.75
.76
.79
.82
.81
.81
.84
.85
.88
.87
.86
.87
.86
.88
.89
.91

points in Ow, (described in Section 4) all contained within the set of 7922 points
of O,w. Let mIU{i) be the number of <r's, from the 11 generated in transaction /,
which lie among the 903 which belong to O w but not to Om. Then

qin(t) = 7922 m,,M/ {903( 11 - „,(/))} (5.3)

is the proportion of a, on a per volume basis, which is in O w — Ojf, during
transaction t.
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The values ofqIU(i) and the corresponding accumulated proportions

Qm(t) = 7922 2 mm(r)/ (903 2 (11 - «,(T))1 (5.4)
T = l I T = l I

up to transaction t are also given in Table 3..The individual qin's are highly
variable, as one would expect with such samples, though as pointed out in
Section 6 they do provide some evidence in favour of the type III optimum. The
cumulative proportions decline to a value well below one, thus supporting the
suggestion of preference for Ow,. It would appear that, from about the 12th
transaction, the players have learned through the experience of being disciplined
for unfavourable moves. There is no clear preference for the optima of types II
and IV described in [2] and [3].

In the experiment 8, with incomplete information, Fouraker and Siegel found
some preference for the Cournot optimum compared with the Pareto and
competitive optima, especially when total productions aT are examined. We
analyse the experiment in the same fashion as experiment 9 with the results
shown in Table 4. Again, none of the 69 points in the 3 tetrahedra (4.4) were
ever realized.

The results in the first four columns once again provide very convincing
evidence against all our alternatives (uniform randomness and HI, H2, H3), and
in favour of the type I optima. It is especially interesting that, despite Fouraker
and Siegel's analysis and the conclusions we drew from both duopoly experi-
ments, hypotheses H3, of the preference of at least one player for a Cournot
production, has no support here. This perhaps suggests that the added complex-
ity of a third player obscures the simple maximizing strategy. Of course, the
problems due to rounding in the profit tables mentioned in Sections 3 and 6 also
occur here. Another possiblity is that the data reflect the oscillatory nature of
the Cournot strategy for triopolies (Theocharis [6]).

The figures in the final columns of Table 4 show there is no real evidence of
preference for O m within Ow now. Perhaps the lack of information in experi-
ment 8 means that a player is less able to undertake, or less likely to notice,
disciplining moves.

In the analysis of experiment 7, we mentioned that Fouraker and Siegel's
claim of support for the 'Cournot line' a, + a2 = 40 was inconsistent with our
finding of preference for Ow. For triopolies, the 'Cournot plane' is a, + o2 + o3

= 45 which does lie to a considerable extent within O w (this is perhaps most
easily seen by noting it is equivalent to 2? yt = 3, in the notation of [3]). Thus to
make any similar comparison would take much more analysis, which we shall
not perform.

https://doi.org/10.1017/S0334270000000175 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000175


224 D. J. Gates and M. Westcott [ 1 s I

6. Statistical analysis

At various points in the preceding sections we have made qualitative reference
to the statistical significance of ratios and cumulative ratios calculated from the
experimental data as measures of evidence for a range of hypotheses. Unlike
Fouraker and Siegel, we shall not formally derive significance levels for our
statistics, for the following reasons.
(i) We have a very large number of ratios, and it would be meaningless to

produce an equivalent number of significance levels-for example, 1 in 20 of
the levels around 5% significance will be misleading and there may be a
considerable number of these.

(ii) Individual ratios for different transactions (Tables 1-4), or for concentric
circles of different radii (see Section 3) are likely to be highly correlated,
making the interpretation of the corresponding significance levels very dif-
ficult. The cumulative ratios are certainly correlated,

(iii) If we pick single ratios in each sequence, to overcome the objections in (i)
and (ii), there seems to be no clear objective way of selecting them,

(iv) At least one alternative hypothesis to the extended optima, that of the a,
being independent and uniform random variables, is not really plausible and
is only introduced as a natural base to help concentrate the mind. Formal
significance levels are unlikely to aid this process.
If, however, one does wish to make formal tests, the procedures are quite

straightforward. Each individual ratio can be tested by referring the numerator
observation to a binomial distribution whose index and parameter are clear from
context; the necessary assumptions of independence and homogeneity of players
seem to be true here. For example, from (3.1) and Table 1, the significance level
of r(24) is calculated from a binomial (16, 259/625) distribution, the probability
of an observation from this distribution being less than or equal to «(24)'s
observed value of 3 being .052. This observation, then, provides strong evidence
against the uniformity hypothesis.

Two comments on this follow. First, in some cases the binomial index will
also depend on the data, in (3.5) for instance. Our tests are then performed
conditionally on the observed value of the index, on the assumption that this
value does not contain any information about the hypothesis under test (techni-
cally, it is an ancillary statistic). Secondly, in general we would employ one-sided
tests since we have reason to believe that ratio values significantly greater than
one will occur; the test is also more stringent. A possible exception to the
one-sided rule is the problem described in the penultimate paragraph of Section
3.

Cumulative ratios, such as R(t) in (3.2), will also have a binomial distribution,
if one ignores the probable dependence of summands mentioned in (ii). For
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moderate /, a normal approximation will be quite adequate, except perhaps
when the hypothesized proportion parameter is very near zero.

On occasions a rather more ad hoc analysis may be appropriate. One such
case is the qm(t) sequence of Table 3, which we noted at the time was highly
variable, and for which the proportion of transactions with no Ow points in
Ow - Ow, is perhaps a more meaningful quantity. For each transaction, the
probability of the event is (7019/7922)11~"' under the uniform hypothesis,
ranging from about .26 to .42 on this data. The observed proportion of the event
is .52 which is suggestive evidence against no preference for type HI optima
(though because of the dependence between transactions a formal test is
dubious).

Finally, we have mentioned before that the hypotheses chosen in this paper as
possible alternatives to the extended optima all have the weakness that, apart
perhaps from specifying certain 'target' sets like the Cournot optimum, they
assume individual productions are randomly and uniformly distributed in partic-
ular regions. In the absence of any really plausible notion to the contrary, this
assumption seems the most useful as a basis for comparison and the lack of
support for it from data on any specific occasion should not be regarded as a
fatal flaw in the hypothesis. However, one might argue that the. rounding
introduced in the profit tables in [1] to simplify the numbers could plausibly
induce a degree of uniform dispersion about targets such as the maximum profit
at a fixed production level of the competitors. This effect can cut both ways; the
apparent uniformity suggested by the R,' statistics in experiment 10 is queried
anew while the potential discrepancy of our analysis and that of Fouraker and
Siegel in experiment 8 is partially resolved. In other words, these random
perturbations due to rounding may mask more precise forms of bargaining
behaviour and make the interpretation of formal and informal statistical analy-
sis more uncertain.

7. Discussion of results

At several places in the preceding sections we have discussed the results of our
analysis. In this final section we draw the threads together and add some new
points. - •

The analysis of Fouraker and Siegel [1] concentrates on the three traditional
optima of game theory, examines the relative support for these in the different
experiments and attempts to explain any apparent differences in terms of
variables such as the amount of information available and the number of players
and their psychological characteristics. Our analysis revolves around the weak
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type I optima introduced in [2] and [3] and investigates to what extent this set of
<T'S is preferred by players during the course of a game.

We have already criticized several aspects of the analysis in [1]. However, in
some ways the two approaches look at different parts of the general problem.
Fouraker and Siegel are exclusively concerned with the ultimate targets of the
players, these being of course very small (zero measure) subsets of the produc-
tion space. How the players behave en route is not very relevant for them. In
contrast, our theory describes the broad pattern of the sequence of bargaining
moves, via the concept of discipline, and although the traditional goals are
included in our 'allowed' regions they are treated only as a part of the whole
process. It is this intermediate structure which is perhaps the most novel feature
of our work.

A few other comments on our theory are:
(1) Although the adjustment process inherent in the description of discipline

may appear sequential (player 2 moves after player 1), this is not necessary.
Rather, with knowledge of the market each player knows in theory what can
happen if he tries to move unilaterally in certain directions, so he will be
discouraged from so doing.

(2) It is possible to relate discipline to the psychological states discussed in [1].
Roughly, this is because the lower triangle of O w , (2.5), is involved with
discouraging adjustments of a non-cooperative nature, while in the upper one,
(2.6), the disciplining moves have more of the nature of a threat. Thus
adjustments may be more convincingly related to discipline than to signalling
(see [1, pages 151-154]). We should note, though, that a 'rivalist' will, almost
tautologically, be neither concerned with, nor influenced by, disciplining.

(3) Although our theory does not specifically mention cooperative behaviour it
certainly does not eliminate it; on the contrary, it is in a sense encouraged
because non-cooperative moves are disciplinable, hence not attractive.
While we would not claim that the extended optima are unequivocally

supported by the data, if only because the experimental conditions are not
completely suitable (unrestricted production changes cause the theory some
problems), we feel that there is a considerable amount of evidence in favour of
our new optima. We have mentioned earlier that our alternative hypotheses
( H I , H2, H3) considered are not always completely plausible, and clearly it is
possible to keep on constructing ever more involved hypotheses that try to
explain the observations, but these rapidly become complex and arbitrary. We
have not found any simple, natural alternatives to the extended optima that
convincingly explain the whole pattern of the data.

In [1, pages 150-151] we find: "It seems clear that bargaining by oligopolists
under complete information may lead to results falling all along .the distribution
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of possible outcomes. [Our] theory predicts dispersion as a function of the
combination of bargaining types and signals....". The extended optima provide a
clear and rational explanation of this dispersion.
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