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Abstract

We consider several methods for solving the linear equations arising from finite difference
discretizations of the Stokes equations. The two best methods, one presented here for the
first time, apparently, and a second, presented by Bramble and Pasciak, are shown to have
computational effort that grows slowly with the number of grid points. The methods work
with second-order accurate discretizations. Computational results are shown for both the
Stokes equations and incompressible Navier-Stokes equations at low Reynolds number.

1. Introduction

The steady-state Stokes equations in Rd are

V2M - Vp = f, V • w = g, in Q c Rd. (1.1)

In almost all applications the function g in the second equation of (1.1) is zero, but
the methods discussed here do not require that g be zero, so we include this slightly
more general case. We consider only the Dirichlet boundary condition, u = b on 9£2.
The methods discussed here should be easy to extend to other boundary conditions.
The velocity u is a vector of dimension d and the pressure p is a scalar. The domain
of our computational examples is the unit square in R2. In current research we are
using these methods on more general domains.

Let Ah, Gh and Dh be the matrices generated by discretizations of the differential
operators (—V2), V and (—V-), respectively. The discretization of (1.1) may be written
as
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[2] Fast solvers for finite difference approximations 275

In some formulations of the difference equations, for example, staggered grids and
finite element formulations, the matrix Dh is the transpose of Gh, that is, Dh = Gh.
However, in many cases this is not true, either because of boundary conditions or
because of the difference schemes. In this paper we do not assume that Dh = Gh.
Note that

= det(AA)det(O-DAiVG*).

Hence (1.2) is solvable if Ah and Qh are invertible, where

Qh = DhA~lGh.

The methods we discuss here are based on the operator Qh. We note that

uh = A-\fh~GhPh) (1.3)

from the first row in (1.2). Using the second row, we have

DhA^\fh - Ghph) = gh.

Thus (1.2) can be solved by first solving

Qhph = hh (1.4)

for ph where
hh = DhA~x fh - gh.

After ph is obtained, uh can be recovered from (1.3). The operator Qh is the Schur
complement of the system (1.2).

The operator Qh often has several rather desirable properties. As we show in the
next section, Qh is close to being a symmetric, positive definite operator. Moreover,
in many cases the eigenvalues of Qh can be bounded independently of the mesh
spacing. In this case, one can use the conjugate gradient method to solve (1.4), and
the number of conjugate gradient iterations required to solve (1.4) should be relatively
independent of the grid parameters. We call the iterative method based on solving
(1.4) by the conjugate gradient method the pressure equation method, and refer to it
as the PE method.

The PE method requires that Ah needs to be inverted in each iteration of the
conjugate gradient method. This must be done efficiently in order for the overall
method to be efficient. Multigrid methods or preconditioned conjugate gradient
methods are two possible methods. The price for inversion of Ah would be essentially
independent of the grid size when the multigrid method is used, and would grow
slowly if a preconditioned conjugate gradient method were used.
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276 Dongho Shin and John C. Strikwerda [3]

The Uzawa iterative method, see [1], can be viewed as solving (1.4) by a fixed
point iteration. This method can be written as,

= -Ghpl + fh (1.5)

The method converges for y in some interval (0, y) depending on the scaling of the
operators.

A potential disadvantage of these methods is the necessity of inverting Ah at each
iteration. There have been a number of iterative methods that avoid the inversion of
the operator Ah as required by the Uzawa method. We describe only a few here. For
other methods see [1], and [8].

Bramble and Pasciak [3] proposed an iterative method using a preconditioned con-
jugate gradient method to solve finite element approximations to the Stokes equations.
To avoid the inversion of Ah, Bramble and Pasciak used a preconditioner A^o'. With
the preconditioner, (1.2) is transformed to

M, w
where

Mh =

They assumed that G*h = Dh and

h

f

(1.6)

0 < ((Ah - Ah0)uh, uh) < a{Ahuh, uh) (1.7)

for all «A 7̂  0 and for some a with 0 < a < 1. If (1.7) is satisfied, the Mh is symmetric
and positive definite with the inner product

f "h ) , ( Vh ) \ - (Ahuh, vh) - AhQuh, vh) + (ph, qh)

where (•, •) is the usual inner product in the discrete space.
Under an assumption equivalent to the inf-sup condition (see [2]) which implies

that the condition number K(MH) of Mh is bounded by a constant independent of h,
they showed that

0 < C, (1.8)
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[4] Fast solvers for finite difference approximations 277

for some positive constants C\ and C2 and for all (uh, Ph)J • This implies that ic{Mh) is
bounded by a constant independent of h and the conjugate gradient is a good method
to solve (1.6). We refer to the above iterative method suggested by Bramble and
Pasciak as the BP method.

Strikwerda [12] avoided the inversion of Ah by using one step of successive-over-
relaxation. If Ah is written as

Ah = Ah - Lh - Uh

where Ah is the diagonal of Ah and Lh and £//, are strictly lower and upper triangular
matrices respectively, then the method introduced in [12] is

C 1 = u\ - coA-l(AhU; - Lhu»h
+1 - UhK + GhPl ~ /*)

)

We refer to this method as the SOR method.
The number of iterations required by the SOR method is, at best, proportional to

h~] where h denotes mesh size, and this requires a great amount of time to get a
solution for small mesh sizes. For example, Strikweda and Scarbnick [14] pointed out
that the SOR method was quite slow when they used domain decomposition methods.
An advantage of the SOR method is the relative simplicity of coding the algorithm.

The PE method is the fastest of the methods we compare here. Both the PE and
the BP method have work that is proportional to the number of grid points, but the
PE method is faster. In part this is because the PE method needs to invert Ah just
once in each conjugate gradient step, while the BP method needs to operate with A Ĵ
twice. The other reason is that the inner product used in the BP method requires
considerable work to compute. This extra work cancels out the advantage of using
the preconditioner. The exact comparison of efficiency is performed in Section 4.

The PE method does not require parameters. On the other hand, the SOR method
needs some effort to find good values of the parameters co and y. The BP method
also needs a scaling parameter in the preconditioning and, in our experiments, the
method was very sensitive to the scaling parameter. In the two subsequent sections,
we discuss the PE method and the BP method.

2. Analysis of the PE method

To analyze the PE method, we first examine the analogous problem for the partial
differential equations. Define the operator Q for p in L2(Q,)/R as

Qp := V -i,
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where
V2\jr = Vp with VHan=O.

Q can be expressed symbolically as (—V-)(—V2)"1^)- Crozier [7] has proved the
following theorem, see also [9].

THEOREM 2.1. If Q, is a connected, bounded domain in R2 with smooth boundary,
then the operator Q is a bounded, positive-definite operator, with bounded inverse,
on L2(Q)/R.

The norm of Q is actually bounded by 1. So the above theorem can be expressed
mathematically as

0 < C\\p\\2 < (Qp, p) < \\p\\2 (2.1)

for some positive constant C and for all p. Moreover the operator Q is self-adjoint.
Even more can be said about the eigenvalues of Q. The eigenvalue 1 occurs with

infinite multiplicity. This is on the orthogonal compliment of the harmonic functions
in L2(f2). We conjecture, based on some evidence, that the rest of the eigenvalues are
clustered around one-half.

CONJECTURE. The operator Q has the eigenvalue 1 with an infinite multiplicity, and
the remaining eigenvalues have a cluster point at 1/2 with no other cluster point.

If Qh is a consistent and regular finite difference approximation to Q, then one can
expect that Qh is positive-definite and has its condition number bounded by a constant
independent of h.

If one uses the usual central difference scheme for Dh and Gh, then Qh is symmetric.
However, if central difference formulas are used for Dh and Gh then the scheme is
not regular, see [11], and Qh will either be singular or be nearly singular.

If the regularized central difference scheme (see [11]) is used for Dh and Gh,
then the symmetry of Qh is lost. However Qh is close to being symmetric. As
our numerical solutions show, the ordinary conjugate gradient method, applied to Qh

discretized by this scheme, works very well.
The following is the conjugate gradient method we used to find the pressure ph, see

[13]. Let (u°, p°) be an initial solution with u°h having the true boundary values. Let

c° — f° — h n n°sh-rh~hh- QhPh

where sh and rh denote the search vector and residual vectors, respectively. Define
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[6] Fast solvers for finite difference approximations 279

The conjugate gradient method for the PE method is

C = r?1 + Ml
ql+X = QHC + Ml

When Ah is inverted, the boundary values must be assigned to obtain a unique
solution. The residual vector rh in the conjugate gradient method is defined to be
hh - QhPh and initially r° = Dh A~h

x (fh - Ghp°h) - gh. The first row in (1.2) implies
that the boundary values of A^1 (fh — Ghp°) have to be the boundary values of uh, the
velocity field of the solution. But, in later steps, when one needs to evaluate Qhrh, the
zero boundary values for A^1 should be used, since the residual vector converges to
zero as the iteration number grows.

The multigrid process using V-cycles was used to invert Ah. The ordinary Gauss-
Seidel iteration was used as the smoother. The number of relaxations in each node
of the multigrid was 2. Injection was used to go to a coarser level and interpolation
was used to go to a finer level. The residual was computed just before the injection
process and at the end of the V-cycles. For the multigrid terminology, refer to [6].

3. BP method

The conjugate gradient method applied to (1.6) is defined as the following, refer to
[3] for details. Let

be an initial approximation to the solution with the true boundary values assigned for

4 = r°h = A -

u°h. With

define for v > 0

h = Jh — MhZh , (i.l)
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280 Dongho Shin and John C. Strikwerda [7]

& = - -

Note that, from [13],

L^.^J and 0 - L * h J (3 2)

Since MA is positive-definite, (3.2) shows that av and fiv are nonnegative. This fact
can be used to test a good candidate for A^. One possible choice for A^ is to let it
be one V -cycle for solving

Ahuh - fh (3.3)

when the boundary values of uh are specified. However this choice of A^ may not
satisfy (1.7). A better choice is to take

A/,0 = a^h\

where A^l is one V-cycle for solving (3.3) and a is a scaling factor. If a is chosen
improperly, then there is a chance for Mh to be indefinite. This is detected in compu-
tation by checking on the positivity of av and y3y. By changing the value of a, one is
able to find a A^ satisfying (1.7).

The parameter a is not hard to find since it is larger than and close to 1 by the
following argument. Since A^Ah « Ih, one has a A^Ah « Ih also for a near 1.
Note that Ah — AhX «s 0. To get Ah — a~lAhl > 0, a needs to be larger than and close
to 1.

The following comments explain how we implemented the BP method. Some care
must be taken to insure good efficiency. From (1.6) and the definition of Mh, the
residual vector is

( Aho(fh ~ AhUh - Ghph)
h \DhA~hl (/* - Ahuh - GhPh) + Dhuh - gh) '

To compute rh, first set and save the vector

Wh •= fh - Ahuh - GhPh (3.4)

for later use. Next the system

= wh (3.5)
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[8] Fast solvers for finite difference approximations 281

is solved for wh with zero boundary condition, and

- J-
In this way the initial residual r° is computed. Also set s° = r°.

In subsequent iterations, the inner product [rA, sh] is computed as

I/A, sh] = ((Ah - Ah0)r,, s,) + (r,,, S,,)

= (Ahr, -wh,s,) + ( m )

where sh = (5/, S//)T. The last expression is used to compute [rh, sh]. Note that Aho
is not used explicitly. To compute [Mhsh, sh], note that

\Mh (*' j , (*' j \ ={AhA-^{Ahs, + GhS,,) - (Ahs, + Ghs,,), s,)

^ - Ah0)s, + DhA^GhSn, S,,).

To simplify this expression, set

wh := Ahs, + GhS,, (3.8)

and solve

AhOwh = wh (3.9)

for wh with zero boundary condition. If

m, := Ahwh-wh, in,, := Dh(wh - s,)

then

\Mh (s,)'

If the vector (w/, m,,)J is saved, then [Mhsh, rh] is computed as

(3.11)

In this whole process, we need to evaluate A^1, and never need to evaluate Ah0

itself, and this is necessary since a multigrid process is used to define A^1. The special
forms of a,, and fiu in (3.1) were chosen to be easily computable.
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4. Analysis of efficiency

In this section the total number of significant operations are estimated, which we
designate as TSO, for each iterative method. These estimates are used to compare
the efficiency of each of these methods. We take as a representative case the Stokes
equations on a square in R2 or cube in R3. If N + 1 is the number of grid points
in a coordinate direction in Rd, then (N — l)d is the number of interior grid points.
TSOS, TSO/. and TSOB are the TSO for the SOR method, the PE method, and the BP
method, respectively. Iters, Iter/>, and Iterfi are defined similarly.

Let NA, NG, and ND be the number of multiplications per grid point to apply Ah,
Gh and Dh, respectively. If uh = {uy,... , ud)

r, then

{Ahuh)Lm = ((V^,),,™,... , {V2
hud\m)\ (4.1)

We used the usual second-order accurate discrete Laplacian for Vjj. Since Ah involves
d scalar Laplacians, NA % (2d + l)d. The regularized central differencing was used
to find any first derivative with respect to any direction, and this requires 4 points to
evaluate. Each of (GhPh)i,m and (Dhuh)tim requires d first derivatives to be evaluated,
so NG ~ Ad and ND « Ad. We consider our "cost" to be the number of multiplications
required.

LEMMA 4.1. TSOX «s Iters -d(2d + 9) • (N - \)d.

PROOF. From (1.9),

TSOS as Iter5 -(NA + NG + ND) • (N - \)d

w Iters -(2rf2 + d + Sd) • (N - \)d

ss Iters -(Id
2 + 9d) • (N - l)d.

LEMMA 4.2. One V-cycle for the scalar second-order Laplacian costs approximately
NV{N - \)d where Nv = 2^(2d - 1)-'(1(W + 6).

PROOF. Going down along a V -cycle, we do 2 smoothing processes, 1 residual finding,
and 1 injection at each level. On the way up, we do 2 smoothing processes and 1
interpolation at each level. So, in a V-cycle, altogether 4 smoothing processes, 1
residual finding, 1 injection and 1 interpolation at each level are needed. On the finest
level, smoothing costs (2d + l)(iV — l)d, computing the residual is about the same,
and injection and interpolation together cost at most (N — l)d operations.

Thus one V-cycle costs roughly

( 1 / 1 \ / 1 \#°fevels\
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[10] Fast solvers for finite difference approximations 283

where d is the dimension of our domain. The above number is approximately 2d / (2d —
- \)d.

LEMMA 4.3. TSO/> *» Iter/> -d(8 + vNv) • {N — l)d, where v is the average number
of V-cycles required per iteration.

PROOF. One needs to apply the matrix Qh in each conjugate gradient iteration. From
(4.1), we see that A^ consists of d multigrid operations. So, we have by Lemma 4.2

TSOp as lter,> \NC + ND + dv- Nv) • (N - \)d

« Iter,. •(&/ + dvNv) • (N - \)d.

LEMMA 4.4. TSOB as Iterfi -2d(4d + 10 + Nv) • (N - \)d.

PROOF. In each iteration, the main effort is in finding rh, [rh, sh~\ and [Mhsh, sh] from
(3.1). By Lemma 4.2 and the equations from (3.4) to (3.6), the cost to get rh is

(NA + Nc + d • Nv + ND)(N - \)d.

Evaluating [rh, sh] costs
NA-(N- 1 )"

by (3.7).
The cost of evaluating [Mhsh, sh] is

(2NA + NG + dNv + ND)(N - l)d

by the equations from (3.8) to (1.6).
Adding these costs, we obtain

TSOB % Iter,, -(4NA + 2NG + 2ND + 2dNv) • (N - l)d

% IterB -(Sd2 +4d+ I6d + 2dNv) • (N - l)d

as IterB -(%d2 + 20d + 2dNv) • (N - \)d.

By (1.8) and (2.1), Iter^ and IterB are bounded by some constants not depending on
mesh size. Moreover, Iters is proportional to N at best. For the test case considered
in Section 6 we find, for N = 64 and d = 2, Iters «s 8(N - 1), Iter/> = 12, and
IterB = 17. Also, v was about 2 for the PE method. So, TSOS «s 208(N - I)3,
TSOP w 1856(A^ - I)2, and TSOB « 3581(/V - I)3.

We see that the PE is the fastest method, with the BP method being about twice as
much work. The SOR method is 7 times as much work as the PE method for the test
case considered here and is even less efficient as N increases. The numerical results
in Section 6 also show that based on CPU time, for this test case, the PE method is
more than 7 times faster than the SOR method and about two times faster than the BP
method, agreeing with our analysis.
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5. The numerical experiments

For the numerical experiment, we used the Stokes equations of the form

7 9/7 j
V u = —In sin nx sin ny + n sin nx sin ny,

dx

V2M = — 2n2 cos nx cos ny — n cos nx cos ny,
ox

du dv

on 0 < x, y < 1 with u and v specified on the boundary.
The exact solution is given by

u = sinnx sinny, v = cos TTX cos ny, p = cosnx smny.

The discretization used a uniform grid with the same number of grid points in each
direction. The second order accurate 5-point Laplacian was used to approximate V2

for the above iterative methods.
We employed, for all the iterative methods, the regularized central difference (see

[11]) given by

^ * 8xOph - ^8X_82
X+Ph,ox b

du h\ 2— % SxOuh - —8x+8;_uh,ox o

— ~ Oy0V), — Oy+0 Vh,

oy o '

where h is the grid spacing and 8x0, 8X+ and 8X_ are the centered, forward, and
backward difference operators in the x-direction. The operators (5^, 8y+ and 8y_ are
defined similarly for the y-direction.

To obtain the pressure on the boundary, we used the quadratic interpolation, for
example,

POm = 2-Plm — Plm,

for all the iterative methods.
The SOR method was stopped when the quantities

IK+1-«JII. IK+1-»ZII. WPT'-PIW (5-1)
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[12] Fast solvers for finite difference approximations 285

were all less than 5 x 10~5, 10~4 and 2 x 1(T4 for mesh sizes 1/32, 1/48 and 1/64
respectively. These values were chosen because the quantities in (5.1) could not be
made much smaller than these values. We did not investigate why these quantities
could not be made smaller. The norms of Uh and vh in (5.1) were the discrete L2

norms, and the norm for ph was the L2 norm in its quotient space (see [12]). The
relaxation parameters co and y were given by

where c0 = 3.14 and c^ = 4.5. See [11] and [12] for more details.
The PE method was stopped when the residual was less that 10~6. In each conjugate

gradient iteration of the PE method, the multigrid process using V -cycles was used
to invert Ah. We found that to achieve good overall accuracy it was only necessary
to do enough V-cycles to reduce the residual in the L2 norm to less than 10~4. Each
multigrid process to solve Ahuh = ft, for uh was stopped when either the number
of V -cycles was 4 or the residual error was less than 10~4. The maximum number
of V-cycles was chosen to be 4 since the residual error didn't change significantly
after 4 V-cycles. Because the reduction factor of the error is small in the multigrid
process, more than 4 K-cycles would rarely be needed. With these stopping criteria,
the average number of V-cycles needed in each conjugate gradient iteration was 2.

The BP method was stopped when the residuals were less than 3 x 10~4, 10~4 and
3 x 10~5 for mesh sizes 1/32,1/48 and 1/64 respectively. These values were chosen
since, similar to the SOR method, the residuals decreased to values slightly smaller
than these values, but could not be made much smaller. In the BP method, several
values were run for a and the value of 1.2 worked well.

6. Test results

Tables 1, 2, and 3 show the errors for the PE method, the BP method and the
SOR method. The column labeled "time" shows the CPU time required for the total
computation.

TABLE 1. Errors and CPU time for the PE method.

N iter u p time
32
48
64

12 6.46(-5) 2.71(-3) 1.617
12 2.35(-5) 1.25(-3) 4.347
12 1.38(-5) 6.91(-4) 8.362
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TABLE 2. Errors and CPU time for the BP method.

N iter time
32
48
64

14 6.34(-5)
16 2.19(-5)
17 U9(-5)

3.04(-3) 2.843
1.36(-3) 8.558
7.83(-4) 17.162

TABLE 3. Errors and CPU time for the SOR method.

N iter time

32
48
64

275 6.33(-5)
399 2.48(-5)
511 1.39(-5)

2.74(-3) 8.546
1.26(-3) 28.150
6.98(-4) 65.214

By comparing CPU times, one can see that the PE method is most efficient, the BP
method takes about twice as much effort, and the SOR method is least efficient, taking
about 7 times as much time as the PE method. Note that the number of iterations
taken by the PE method and the BP method are essentially independent of mesh size,
which supports (1.7) and (2.1).

The next table (Table 4) shows the accuracy of the PE method, the BP method, and
the SOR method. The order of accuracy was obtained from the formula

log(error(/22)/error(/i,))/ \og{h2/ h,)

where hu h2 are mesh sizes. All numerical solutions show that they are second order
accurate.

TABLE 4. Order of accuracy for the computed solutions.

NUN2

64,48
64,32
48,32

PE
u

2.1
2.2
2.3

P
2.0
2.0
1.9

BP
u

1.9
2.2
2.5

P
2.1
2.0
1.9

SOR
u

2.1
2.4
2.6

P
1.9
2.0
2.0

https://doi.org/10.1017/S0334270000000655 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000655


[14] Fast solvers for finite difference approximations 287

7. Navier-Stokes equations

The steady-state Navier-Stokes equations in Rd are of the form

V • u = g in ft C Rd

where R is the Reynolds number. We consider the Dirichlet boundary condition

u = b on dQ.

There are several possible extensions of the PE method from the Stokes equations
to the Navier-Stokes equations, depending on how one linearizes the first equation in
(7.1). To apply the PE method efficiently to (7.1), we used the following algorithm
which worked for R up to about 100.

(1) Start with an initial solution u°, p°.
(2) Given the solution w\ let

dv :=(«"• VA)S\ fi:=f-dv

where Vh is a finite difference discretization of V, so that (7.1) can be expressed
as

- / ? " ' V 2 « + Vp = f ? , V-u = g . (7.2)

(3) The system (7.2) gives an equation for pressure p which is

QHPH = K (7.3)

where the function h\ is generated by / " and gh. Apply the PE method to (7.3),
that is, do several conjugate iterations to update pv+l from p".

(4) Let

£ = /-V+I.
then the first equation in (7.1) is the so-called convection diffusion equation

-/r1V2M + (M-V)M = /2". (7.4)

To update «v+1, solve (7.4) for u. We discuss the solution procedure later. Go to
step (2).

https://doi.org/10.1017/S0334270000000655 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000000655


288 Dongho Shin and John C. Strikwerda [ 15]

For our numerical experiment, we used the Navier-Stokes equations of the form

- / ? " ' V2M + uux + vuy + px = ft,

-R'iV2V + UVX + VVy + Py = f2,

UX+Vy= 0,

on 0 < x, y < 1 where

/i = 2R~ln2sinnx sirury +0.57T sin(27r;t) — n sinnxsinny,

f2 = 2/?~'7r2cos;r;tcos7r;y - O.57T sin(2ny) + n cosnxcosny.

The values of u and v are specified on the boundary.
The exact solution is given by

u = sinnx sinny, v = cos nx cos ny, p = cosnxsinny.

Because of the nonlinearity of (7.4), the Full Approximation Scheme (FAS) was
used for the multigrid solver. See [5] and [15] for a description of FAS. Moreover
the full weighting was used in the fine-to-coarse transfers of both the solution and the
residual functions. To employ a stable discretization, upwind differencing was used
for the first derivatives in (7.4) when the mesh size h was larger than 2/RU, where U is
the maximum value of u on a given domain, see [10]. Otherwise, central differencing
was used to get the overall second-order accuracy. In [4], the authors mentioned that
it is better to employ upwind differencing only in the relaxation sweeps, and central
differencing in the residual transfers, but we obtained the best numerical solution
when the same differencing was used in both relaxation sweeps and residual transfers.
Also, the computation of f2" at coarser levels used upwind differencing.

Tables 5 and 6 show the error and accuracy of the solution when R is 30. Notice
that the method is second-order accurate.

TABLE 5. Errors for R = 30.

N
32
48
64

7.34(-4) 3.65(-4)
2.01 (-4) 1.55(-4)
9.35(-5) 8.94(-5)

8. Conclusion

The PE method has been shown to be an efficient numerical method for solving
the steady Stokes equations. Since the work is essentially proportional to the number
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TABLE 6. Accuracy of the solution R = 30.

NltN2

64,48
64,32
48,32

u
2.7 1.9
3.0 2.0
3.2 2.1

of grid points, the efficiency of this method is exceptional. We have also shown that
the method advocated by Bramble and Pasciak [3] is not as efficient for the finite
difference schemes used here.

The inf-sup condition plays an important role in obtaining the theoretical conver-
gence rate of the PE method. Research is being carried out to obtain inf-sup conditions
for some finite difference approximations of the Stokes equations with isotropic grids.
Our work is not yet finished for anisotropic grids. However, we expect that the
convergence rate for anisotropic grids would be as fast as that of isotropic grids.

The PE method has been extended to the Navier-Stokes equations for low Reynolds
numbers. Research is continuing on improving this method. Work is also being carried
out on applying the method to time-dependent problems and using the method with
domain decomposition.
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