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Let K be a skewfield, E a left vector space over K, r an integer > 1 and G(E)
the set of all r-dimensional subspaces of E, called the Grassmannian of index r.
The function d(4, B) = r — dim(A4 N B) is a distance on G,(E). If K’ is a skewfield
and E’ a left vector space over K’, then any semilinear isomorphism u: E - E’
(relative to an isomorphism K — K’) induces a distance preserving bijection
G,(u): G(E) —» G,(E’). When E has finite dimension n and 2r = n, another example
of such a mapping is obtained by taking K’ = K°?, E’ = E* and defining
w,: G(E) - G,(E*) to be w(4) = {fe E*|f(4) = 0}.

In 1949, Chow [2] proved the following converse:

THEOREM. Suppose E and E' both have finite dimensionnand2 <r<n-—2.
Let ¢ be a distance preserving bijection G(E)— G,(E’). Then if 2r # n there
exists a semilinear isomorphism u: E — E' such that ¢ = G (u), while in the case

2r = n, ¢ may also be of the form G (v)w,, where v is a semilinear isomorphism
E* > E’.

The proof consists of a reduction to the case r = 1, followed by an application
of the fundamental theorem of projective geometry. The purpose of this note is
to place the first part of Chow’s argument in a lattice-theoretic setting and apply
it to some other examples.

Let L be a lattice with 0; we assume that L is discrete i.e. that for all a, be L,
the supremum of lengths of chains from a to b is finite. Such a lattice has a height
function h: L —» N, defined by h(a) = sup. of lengths of chains from 0 to a. The
supremum of all numbers h(a), which may be infinite, is denoted by h(L). We shall
assume furthermore that L is atomic and modular; the height function then
satisfies the identity

h(a \/ b) + h(a A b) = h(a) + h(b).
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For every integer r = 1, the set L, of all elements of height r in L is a metric space
under the distance d(a, b) =r — h(a A b).

Atoms p, q,r € L, are called collinear if they are all contained in some element
of L,. If L' is a lattice with the same properties as L, a bijective mapping
u: L, —» L] is called a collineation provided that atoms p, q,r € L, are collinear if
and only if their images in L] are collinear.

LEMMA 1. A collineation u: L, — L induces a distance preserving bijec-
tion u,: L.~ L, by defining ufa) = u(p,) \V --- V u(p,), where a=p V- Vp,
is some representation of a as a join of atoms.

Granted this lemma, our principal result can be stated as follows:

THEOREM. Suppose L and L' are discrete atomic modular lattices such that
h(L)=h(L") and 2<r<h(L)y—2. Let ¢ be a distance preserving bijection
L,— L,. Then if 2r # h(L) there exists a collineation u: L, — L} such that ¢ = u,,
while in the case 2r = h(L), ¢ may also be of the form wv,, where w is a particular
exceptional mapping L, — L] and v is a collineation L, — L,.

Taking L (L) to be the lattice of all finite dimensional subspaces of E (E’),
one recovers essentially the theorem of Chow, with the added observation that
it remains valid for infinite dimensional spaces (in an even simpler form). Another
interesting example is obtained when L is the lattice F(S) of all finite subsets of a
set S; in this case, the theorem simplifies to read as follows:

COROLLARY. If S and S' are sets, any distance preserving bijection
¢: F(S)— FAS’) is induced by a bijection u: S — S’ unless both S and S’ are
finite of cardinality n, and 2r = n, when ¢ may also be of the form ¢(A)
= u(S\ A).

It is curious to note that, just as the fundamental theorem of projective
geometry is used [3,p.93] in determining the automorphisms of GL,(K), so can
a special case of the above corollary be applied to the automorphisms of finite or
infinite symmetric groups Sy. Indeed, one first shows by some means that for
card(X) # 6 ,the set of transpositions is left invariant by an automorphism and
then remarks that the distance between transpositions (regarded as elements of
F,(X)) is 0,1 or 2 according to whether the order of their product is 1,3 or 2.
Since automorphisms preserve order, the corollary shows that for card(X) # 4 the
automorphism is induced, at least on transpositions, by conjugation with an
element u € Sy. The argument is then concluded as in [4].

Finally, we remark that if L satisfies h(L) < oo in addition to the other hypo-
theses, a theorem of Birkhoff [1, p. 93] says that L must be a product of a boolean
algebra with projective geometries. In this case, Chow’s theorem covers the simple
Desarguean factors, while the corollary above takes care of the boolean algebra.
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We now turn to the proofs. Elements a, b € L, are called adjacent if d(a, b) = 1.

LemMA 2. If d(a,b) =k, there exists a sequence cg,---,c, of elements in
L, such that ¢, =0, ¢, = b and ¢, is adjacent to c; for 1 £i L k.

PrROOF. An argument of Birkhoff [1, p. 88] shows that a lattice satisfying
our assumptions is relatively complemented. Therefore a =(a A b) V x,
b=(a A b)V y for some x and y disjoint from a A b and from each other. If
x=pVx', y=qV y for some atoms p and g, the element ¢,_, =(@a Ab) V p
\V y’ satisties d(a,c,_,) =k—1 and d(c,_1,b) = 1; the argument is now
concluded by induction.

LEMMA 3. A bijection ¢: L, — L, preserves distance if and only if both ¢
and ¢~ preserve adjacence.

PRrOOF. Suppose d(a, b) = k. Then, with the notation of lemma 2, the sequence
P(cg), -+ Plcy) is such ¢(c;_,) and ¢(c,) are adjacent for 1 £ i < k. The triangle
inequality implies d(¢(a), ¢(b)) £ d(a, b). (Actually, this inequality in turn implies
that ¢ preserves adjacence, for if d(a, b) = 1, d(¢(a), ¢(b)) cannot be 0 since ¢ is
injective and must therefore be 1.) Since ¢~ ! also preserves adjacence, we conclude
that d(¢~'(a), ¢~ (b)) < d(a, b) and together the two inequalities imply that ¢
preserves distance.

ProoOF OF LEMMA 1. If a€ L, is written as a join p; V- \V p, of r atoms,
the latter are necessarily independent. We show by induction that an atom
qsp V- Vp.ifand onlyif u(q) £ u(p,) V -+ V u(p,). This is clear if g = p, or
ifg=<p,V:-Vp,,; otherwise, q \/ p, intersects p, VV - \V p,_ in an atom ¢.
We must have g =gV p, =tV p, and thus u(q) < u(f) VV u(p,) since u is a
collineation; however, the induction assumption shows that u(t) < u(p,)V -
V u(p,-4). The converse follows by applying the same argument to u~!. We
conclude in particular that the atoms u(p,),---,u(p,) are independent so that
u(py) V -+ Vu(p,) € L; secondly, if py V- V p, 1s another representation of a as
» join of atoms, u(p;) < u(p}) V - V u(p,) s0 that u(py) V -+ V u(p) = u(py)
V - V u(p,). Thus u, is well-defined, with inverse (u™1),. If a, b € L, are adjacent
then, since u,(a) and u(b) clearly contain u,_;(a A b), they must be adjacent or
equal, but the latter is impossible. We conclude by lemma 3 that u, preserves
distance.

We now come the the theorem itself. The first step is to determine the structure
of a maximal set M of pairwise adjacent elements of L,. Since k < h(L), M must
have at least two elements a and b. If there exists some ¢ e M which does not
contain a A b, then every element of M is contained in a \/ b. Indeed, if de M
does not contain a A b, then a Ad#b Ad so that d=(@AdVd A
Z(aVb)Adie dZLaVb. If, on the other hand, de M does contain a A b,
then ¢ A d must be distinct from a Ad=a A b so that d=(c Ad) V{(a Ad)
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<(cVa)Ad = (aVb)Ad and again d < a \/ b. This argument shows that M
iseither of the form C, = {aeL,|a 2 x} forsomexe L,_; or C* = {acL,|a < y}
for some y € L, , since such sets consist of pairwise adjacent elements. If a set C,
is not maximal, it is contained in another set of the form C, or C”. The first alterna-
tive is clearly impossible and the second is ruled out by the condition r £ A(L) — 2.
Indeed, if p is an atom not contained in y, then p VV xe C,\ C”. Similarly, the
condition r = 2 shows that sets of the form C” are maximal.

Now suppose that ¢: L, — L, is a distance preserving bijection. If xe L,_q,
#(C,) is a maximal set of pairwise adjacent elements and thus of the form C, or
C?. If the first alternative holds for a particular x € L,_,, then it holds for all
elements of L,_,. To see this, it suffices to remark that if x # x', C, N C,. consists
of at most one element (x \/ x’), while an intersection of a set C, with a set c”
has at least two elements, namely y \/ p and y \/ ¢, where p and g are distinct
atoms contained in y’ but not in y.

It follows that ¢ induces either a bijection Y: L,_; > L._or L,_, - L. ;.
Since x and x' are adjacent precisely when C, N C, # & or C* N C¥# g, it
follows that both s and ! preserve adjacence and hence distance. Unless k(L)
< oo and 2r = h(L), the second alternative is impossible. If 2r < h(L), the distance
between elements of L,_, is at most » — 1, while the distance between elements
L, ; can be as high as r. If 2r > h(L), the second distance is at most h(L) — r — 1,
while the first can be h(L) — r.

The original mapping ¢ can be recovered from i through the equation /(C*)
= C*9, which also shows that even if 2(r — 1) happens to be h(L),  still maps
sets of the form C, to sets of the same form and thus induces a mapping L,_,
— L,_,. Eventually, we obtain a collineation u: L, — L, such that ¢ = u,.

If there does exist, when 2r = h(L), an exceptional mapping w which induces
a mapping L,_; — L., then for every other such mapping ¢, w™ !¢ induces a
mapping L,_, —» L,_; and thus comes from a collineation v: L, - L,. This
completes the proof.
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