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To the Editor—Li et al1 recently published a notable article evalu-
ating the frequency of patients who had a viral respiratory infection
(VRI) confirmed via rapid polymerase chain reaction (PCR) and
were prescribed an antibiotic prior to discharge at 3 distinct emer-
gency departments (EDs) within a single healthcare network.
Antibiotic use is associated with adverse events and leads to
antibiotic resistance.2,3 In the United States, >2.8 million
antibiotic-resistance infections occur annually, which highlights
the importance of research in appropriate antibiotic prescribing.3

In their study, Li et al1 conducted an exploratory analysis using
multivariable logistic regression to evaluate the predictors influ-
encing antibiotic prescriptions in patients with PCR-confirmed
VRI prior to discharge from the emergency department. Their
study reveals 3 notable predictors that we believe are likely to bear
out as meaningful predictors. However, the study is also an excel-
lent example of an underappreciated design challenge.We describe
the challenge and provide some guidance to overcome it.

These authors selected covariates that had univariate associa-
tions with P values <.25 and they then used a stepwise backward
elimination to determine the final multivariable model. The initial
covariates selected were age; immunocompromised status (ie,
chronic kidney disease, diabetes mellitus, human immuno-
deficiency virus, or an active malignancy); receipt of antibiotics
within 7 days prior to their ED visit; duration of symptoms; hemo-
globin levels; abnormal chest x-ray results; and discharge diagnoses
of influenza, upper respiratory tract infection, pneumonia, and
otitis media.1 In table 3 of this article, the final model reported
effect estimates for the following covariates: receipt of antibiotics
within 7 days prior to the ED visit, immunocompromised state,
abnormal chest x-ray results, and discharge diagnosis of pneumo-
nia.1 Readers should use caution when interpreting results like
these because they may be biased due to what is known as the
“Table 2 Fallacy.”5 The “Table 2 Fallacy” is when effect estimates
for multiple exposures and their confounders are estimated from
the same statistical model, results that are often presented in an
article’s “Table 2.”5,6 Specifically, the covariates included in the
final model of this study are secondary exposures of interest and
may be serving as confounders to VRIs and/or antibiotic prescrip-
tions. Therefore, the interpretation of the effect estimates across

the modeled covariates may change if any of those covariates
themselves are confounded by other covariates that are not
included in the model. This can happen even when the primary
study exposure is not confounded.

To illustrate, we have calculated crude odds ratios for the cova-
riates included in the final model. Based on table 3 of Li et al,1 VRI
serves as the primary exposure and the prescription of antibiotics is
the outcome. In this model, all of the covariates are adjusted for the
exposure of viral respiratory infection. However, when creating the
final model through the backward stepwise method, the potential
confounder(s) influencing the other covariates in the final model
may have been dropped. For instance, the variable immunocom-
promised status is likely influenced by the variable age. Because the
final model does not adjust for the confounder age, the results
reported do not provide an unbiased effect estimate for immuno-
compromised status. Additionally, the other covariates reported in
table 3 may have confounders that were not conditioned on in the
final model, thus misrepresenting the true, unbiased effect
estimate. With respect to the criteria the authors used to classify
immunocompromised status (ie, chronic kidney disease, diabetes
mellitus, human immunodeficiency virus, and an active malig-
nancy), with the exception of HIV, these conditions are directly
affected by age. The odds ratio (OR) reported for immunocompro-
mised status was 3.51 (95% confidence interval [CI], 1.44–8.81).
However, when we calculated the crude odds ratio of immunocom-
promised status, the ratio decreased to 1.72 (95% CI, 0.91–3.16)
(Table 1). If age were adjusted for, we could potentially see a differ-
ent effect estimate altogether, even if age was not directly associated
with the outcome.

With the increase of antibiotic resistance, research evaluating
components that contribute to antibiotic prescribing practices is
vital to assist in formulating interventions for limiting inappropri-
ate antibiotic use. Overall, we believe Li et al provide important
contributions toward understanding antibiotic prescribing practi-
ces in the ED. To circumvent the misinterpretation of multiple
effect estimates in future research, we suggest using multiple
models that are tailored to generate unbiased effect estimates for
the exposure(s) of interest.4,5 In addition, we suggest explicitly
specifying between the unadjusted and adjusted effect measures
from a single logistic regression model in the footnotes of the
table.4,5 Conditioning on covariates should be firstly based on a
priori knowledge of how the variables influence the primary
exposure and/or outcome; and secondly on the observed effect
sizes. A statistically nonsignificant covariate may still meaningfully
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reduce bias, and a statistically significant one with a small effect size
may have trivial impact on bias.

Acknowledgments. None.

Financial support. No financial support was provided relevant to this
article.

Conflicts of interest. All authors report no conflicts of interest relevant to this
article.

References

1. Li J, Kang-Birken SL, Matthews SK, Kenner CE, Fitzgibbons LN. Role of
rapid diagnostics for viral respiratory infections in antibiotic prescribing
decision in the emergency department. Infect Control Hosp Epidemiol
2019;40:974–978.

2. Fleming-Dutra KE, Hersh AL, Shapiro DJ, et al. Prevalence of inappropriate
antibiotic prescriptions among US ambulatory care visits, 2010–2011. JAMA
2016;315:1864–1873.

3. Antibiotic/antimicrobial resistance biggest threats and data. Centers for
Disease Control and Prevention website. https://www.cdc.gov/drugresistance/
biggest-threats.html. Published 2019. Accessed December 1, 2019.

4. Westreich D, Greenland S. The table 2 fallacy: presenting and interpret-
ing confounder and modifier coefficients. Am J Epidemiol 2013;177:
292–298.

5. Bandoli G, Palmsten K, Chambers CD, Jelliffe-Pawlowski L, Baer RJ,
Thomspon CA. Revisiting the table 2 fallacy: a motivating example examin-
ing preeclampsia and preterm birth. Paediatr Perinat Epidemiol 2018;
32:390–397.

Role of telehealth in outbreaks—Where the classical healthcare
systems fail

Ata Mahmoodpoor MD, FCCM1 , Mohammad Amin Akbarzadeh2 , Sarvin Sanaie MD, PhD3 and

Mohammad-Salar Hosseini4
1Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran, 2Student Research
Committee, Tabriz University of Medical Sciences, Tabriz, Iran, 3Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran and 4Research
Center for Evidence-Based Medicine, Tabriz University of Medical Sciences, Tabriz, Iran

To the Editor—Outbreaks impose massive burdens on healthcare
systems. For example, >510 deaths were reported among the
healthcare workers (HCWs) during the last Ebola outbreak, and
by February 24, 2020, >3,300 HCWs had been infected with
SARS-Cov-2 in China alone.1,2 This issue represents the essence
of outbreaks—amass of patients who require promptmedical care.
Under these conditions, the classical healthcare system cannot
manage the large number of COVID-19 patients immediately
and effectively.3

Telehealth provides vital services through the application of
information and communication technologies for each stage of
managing diseases, research, and continuing education.4 With
telecommunication, visits are more economical and preserve
government, community, and family resources, which are already
limited during global outbreaks. It can be used to provide rapid
diagnosis, and it enables caregivers to act quickly.5With the appro-
priate utilization of telecommunication, it is possible bring access
to medicine and concurrent therapy in hard-to-reach regions and

communities, facilitating direct-to-patient or specialty consulta-
tion services from a distance, which is cost-effective and improves
the efficacy of follow-up.6

The benefits of implementing telehealth in outbreaks comprise
8 main areas of focus:

1. The available admission capacity and the number of HCWs
are limited, and the hospital infrastructure may not be
adequate to serve all patients. Figure 1 presents an optimum
model of telemedicine that could aid medical and social man-
agement during an outbreak.

2. The more patients referred to healthcare facilities, the more
HCWs are at risk of being infected. Also, most referrals are
unnecessary and merely increase the load on the healthcare
system. Furthermore, people referred to hospitals are at an
incredibly higher risk of infection. More than 40% of the
infections are assumed to be hospital related, though they
should be quite simple to prevent (Fig. 1).7

3. In affected regions, most healthcare facilities are dedicated to
the management of COVID-19 patients. Therefore, noncriti-
cal patients (like patients with chronic and metabolic disor-
ders such as hypertension, diabetes, and hyperlipidemia)
have a lower priority. As a result of self-isolating, these people,
mostly the older adults, cannot attend the healthcare units. A

Table 1. Adjusted Versus Unadjusted Effect Estimates, Highlighting the “Table 2
Fallacy”

Covariate
Adjusted Odds Ratio

(95% CI)
Crude Unadjusted Odds

Ratio (95% CI)a

Antibiotics in the
previous 7 days

7.65 (3.13–19.42) 3.567 (1.79–6.97)

Immunocompromised 3.51 (1.44–8.81) 1.716 (0.910–3.16)

Abnormal chest x-ray 2.54 (1.07–5.98) 5.174 (2.99–9.42)

Discharge diagnosis of
pneumonia

63.3 (15.1–445) 40.55 (13.20–167.85)

Note. CI, confidence interval.
aCrude unadjusted odds ratios were calculated in R studio software with the EpiTools
package (R Foundation for Statistical Computing, Vienna, Austria).
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