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CREEP- VELOCITY BOUNDS AND GLACIER-FLOW PROBLEMS 

By ANDREW C. P ALMER 

(Department of Mechanical Engineering, University of Liverpool , Liverpool, England) 

ABSTRACT. A general result due to M a rtin can be used to find upper and lower bounds on veloc iti es in 
steady-creep problems. This method can be applied to glacier Aow if ice can be assum ed to sat isfy a power­
law stress- stra in-rate re lation . Bounds on the mean ve locity over the g lacier cross-section and on the mean 
veloci ty on the surface a re de termined for a particular example (a uniform parabolic channel , with power­
law exponent 3) and they are shown to b ound quite closely the exact solutions due to Nye. Bounds can b e 
found rapidly by hand calcula tion . The method can be applied to real glac ier cross-sect ions measured in the 
fi e ld. 

R ESUME. Limites fluage- vitesse et problemes de l 'ecoulement des glaciers. Un resultat g en era l dD. a Martin peut 
etre utili se pour trouver les limites superieures e t inferieures des vitesses dans les probl emes de Auage 
stationnaire. Cetle m ethode peut etre app liquee a I'ecoulement des glaciers si I'on peut admettre que la 
g lace sati sfa it a une fonction de puissance entre la tension et la vitesse de d eformation. Les limites d e la 
vitesse moyenne d'un sect ion transversa le d 'un glac ier et de la vitesse moyenne a la surface sont d etermin ees 
pour un exemple particulier (lit uniforme parabolique, avec une fon ction de puissance 3) e t elles approchent 
d e tres pres les solutions exac tes de Nye. Les lim ites peuvent etre obtenues rapidement pa r un calcul manuel. 
La m ethode peut etre a ppliquee aux sec tions transversales de g laciers reels mesurees in situ. 

Z USA MM ENFASSUNG . Schranken der Kriechgeschwincligkeit unci Probleme cIer Cletscherbewegung. Ein a llgemeiner 
Ansatz von Martin kann zur Bestimmung der oberen und unteren Schranke d er Geschwindigkeit b ei 
Problemen des stetigen Kriechens benutzt werden . Diese M ethode kann auf di e Gle tscherbewegung unter 
der Vorausse tzung angewandt werden , dass di e Deformat ionsgeschwindi gkeit e inem Potenzgesetz fo lgt. 
Die Schranken der mittleren Geschwindigkeit in einem Querschnitt des G le tschers und der m ittleren 
Geschwindigkeit an d er OberA ache werden fur ein spezie lles Beispiel (gle ichform ig parabolisches 
G letsch erbett, Exponent 3 fur das Potenzgese tz) bes timmt und es ~ird geze ig t, class sie sehr na he an cler 
exakten Losung nach Nye li egen. Di e Schranken konnen rasch clurch U berschlagsrechnung gefunden werden. 
Die Methocle ist zu r Anwendung aufGletscher-Querschnitte, clie im Felde gemessen werden, gee ignet. 

I NTRODUCTION 

In a recent paper, Nye (1965) has extended the existing theory of a valley glacier to take 
into account drag by the sides of the valley. H e analysed the steady rectilinear flow of ice 
down a cha nnel with uniform cross-section a nd uniform slope, and in his theoretical model 
assumed a power-law stress- strain-rate relation for steady creep consistent with Glen 's 
(1955) experiments. The glacier was assumed not to slip over its bed, but Nye pointed out 
that this effect could be included in the theory when more was known about it, and that 
several of his results appear to hold independently of whether or not slip occurs. Analytical 
solutions exist only for four special channel cross-sections (channels infinitely wide with 
uniform depth, semi-circular, infinitely deep with uniform width, a nd slightly elliptical ), 
a lthough through a careful use of symmetry and dimensional arguments some useful results 
on flow in elliptical channels can be found. 

Further progress requires numerical solution of the governing differential equations, 
using a digital computer, and in this way Nye found stress and velocity distributions for a 
number of distinct symmetrical channel shapes (rectangular, parabolic a nd semi-elliptical) 
of different proportions. A lthough this method gives very complete informat ion, its use requires 
considerable programming effort and a large amount of computer time. 

In the present paper we apply to glacier-flow problems a theorem due to Martin ( 1966) 
for obtaini ng upper bounds on displacement rates in steady creep, a nd a development of 
Martin 's approach to find lower bounds (Pa lmer, in press). Through this method one can 
find close upper and lower bounds on the mean velocity over the cross-section of the glacier, 
on the m ean velocity on the surface and on certain other velocities. It can be applied to 
glaciers of arbitrary cross-section, not necessarily symmetrical, and to a ny power-law stress­
strain-rate relation, whether the exponent is integral or non-integral. C lose bounds can be 
found rapid ly by comparatively simple hand calculations, or computed still more quickly 
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using standard programmes. In no way, of course, can this method replace exact numerical 
solutions; it tells us nothing of the stress or of the fine details of the velocity distribution, and 
it gives only bounds on mean velocities, although these bounds are frequently close enough 
for most purposes. It is suggested here, however, that close bounds on mean velocities will 
yield useful information about real glaciers and that, because it makes trial solutions for 
different assumed flow laws much less laborious, this method may be helpful in linking field 
observations with the results of laboratory tests. 

NOTATION: GENERAL THEOREMS 
In order that the bound theorems can be stated concisely, Cartesian tensor notation will 

be used in the description of velocities, stresses and strain-rates. The position of a point is 
defined by its Cartesian coordinates XI, X2, x3' and the velocity by its components 
Ui (i = I, 2, 3) in the I, 2 and 3 directions. The strain-rate Eij (i, J = I, 2, 3) is defined by 

(I ) 

Stress is described by Uij (i,J = 1,2,3), so that UII is the component o[stress acting in the 1 
direction on a plane normal to the 1 axis, UI2 the component of stress acting in the 2 direction 
on a plane normal to the 1 axis, and so on. Body forces, referred to unit volume, are denoted 
Fi ; surface tractions, referred to unit area, are denoted Ti • The repeated subscript summation 
convention (Prager, 1961 ) is used frequently, so that 

TiUi = T1uI + T 2U2+ T 3u3, 
UijEij - UIlEIl + UI2EI2 + UI3EI3+U2IE2I + .. .. + U33 E33, (2) 
Ukk - UIl + U22 + u33. 

Martin (1964, 1966) considered steady creep in materials whose stress-strain-rate law has 
the form 

(3) 

where Eo, Uo and n are constants, rP (Uij!Uo ) is homogeneous of degree one, and rPn+ I is a convex 
function of its argument. As a special case of a more general result, he showed that for a body 
composed of such a material 

_ 1_ fU;/E;/dV+ -
n
- fUi/E;fdV > fT/ u,CdA + fF/uNV, (4) 

n+ 1 n+ I 
v v A V 

where u;/, T/ and F/ are any set of stresses, surface tractions and body forces which satisfy 
equilibrium, and Uio, Ei/ any compatible set of velocities and strain-rates. The integrals are 
taken over the volume V and surface area A of the body. Here Ei/ is related to u;/ only 
through the stress-strain-rate relation (3), and need not be integrable ; u;/ is related to Ei/ 
only through (3), and need not satisfy equilibrium. In addition, from virtual work 

J Ui/Ei/"dV = J T/u/*dA + J F/u/*dV (5) 
v A v 

for any Ui/, T/, Fi" which are in equilibrium, and any compatible Ui , E;/". This 
inequality can be used to find bounds on velocities in the solution of the following mixed 
boundary-value problem: surface tractions Ti are prescribed on one part AT of the boundary, 
while on the remainder A u the velocity Ui is zero; body forces Fi are prescribed throughout 
the body. In what follows quantities Ui, Eij, Uij, Ti, Fi without any superscript will refer to the 
solution of this problem. 
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Since the solution velocities and strain-rates certainly satisfy the conditions imposed on 
Ujc, E;/ we can set 

(6) 

throughout (4) . Applying (5) to the solution velocity and stress fields, substituting into (4) 
and re-arranging (Martin, 1966) 

_ I Ju"SE .. SdV ::;;, f(7-S- _n T..)U .dA +J(P.S- _n F)U.dV. (7) n+ I IJ IJ "P' 1 n+ I 1 1 1 n+ I 1 1 

V A V 

This inequality gives upper bounds on velocities. If instead we identify u;/, T/ and F/ 
with corresponding quantities in the solution of the boundary-value problem, which must 
certainly satisfy equilibrium, if, that is 

u;/ = Uij, F/ = Fi, E;/ = Eij in V, 
Tt = Ti on A u, 

(8) 

then we can again apply (5) to the solution velocity and stress fields, substitute in 
re-arrange, to arrive at 

_n fU . .cE . .cdV ~fT.. (u o __ 1 U.)dA +JF(u.c - - I U.)dV. (9) n+ I I} I} "P' " n+ I I 1 1 n+ I ' 

V A V 

In the glacier-flow problem about to be considered J Ti(Uic - n~ I Ui)dA is zero for 
A 

a wide class of admissible velocity fields UiG ; it follows that (9) can be used directly to find a 
lower bound on the mean velocity over the glacier cross-section. 

THEORETICAL MODEL 

Ice flows steadily under gravity down a straight uniform channel of uniform slope ex. 
Position is defined by coordinate axes aligned in the manner illustrated in Figure I; the 
I-axis is directed along the channel, at an angle (X to the horizonta l. If the channel is 
symmetrical the X l and Xz axes lie in the plane of symmetry; otherwise their position is 
chosen arbitrarily. The plane X z = 0 coincides with the upper surface of the ice. 

Stated in terms of a simple shear deformation in which each material point has a velocity 
only in the I-direction, Glen's stress- strain-rate relation takes the form 

OUr OUr 
:l"' = CTn- rUr z, - = CT"- rur3, (10) 
UXz oX3 

--+------------.------------~--~X3 

Fig. 1 
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where C and n are constants and T = ( a'2 2 + a'32)~. A generalization of this which relates the 
stress to the strain-rate for an arbitrary deformation is 

Eij = !C(!s"Sij) (1l-I )/ 2sij, (I I) 

where Sij is the deviatoric stress tensor a" - !UkkOij; in this Oij is the Kronecker delta, 0" = 1 

when i = j, Oij = 0 when i f= j. This is an appropriate form for an incompressible material. 
Note, however, that in what follows the stress- strain-rate relation is applied only to stress 
fie lds which give velocity distributions of the "simple shear" pattern to which (2) refers. As 
Nye has pointed out, it is not necessary in this problem to assume a full generalization of the 
flow law for simple shear. 

UPPER BOUNDS 

The upper and lower bound inequalities are now applied in turn to a section of the glacier 
cut between two planes unit distance apart and parallel to the X2, x3 plane (Fig. I). This 
section is bounded by the following surfaces : the up-stream cross-section of the glacier 
(denoted A, ), the down-stream cross-section (denoted A2 ) , the part of the glacier surface 
lying between the two sectioning planes (denoted A3) , and the corresponding part of the 
glacier bed (denoted A4)' The ice is acted on by a gravity force pg on unit volume, where pis 
the density and g the acceleration due to gravity; resolving this in the coordinate directions, 
the body-force components Fi are 

F, = pg sin ex, 
F2 = pg cos ex, (12 ) 
F3 = o. 

If a stress field satisfies equilibrium, at each point 

aUij 
axj+Fi= o. (13) 

Since the upper surface of the glacier is free, 

T; = 0 on A3· (14) 

From the assumed condition that there is no slip between the glacier and its bed 

Ui = 0 on A4 . 

Since each section of the glacier is identical, in the sense that the flow is uniform along its 
length, the surface traction at a point on the up-stream face A, is equal and opposite to that 
at the corresponding point on the down-stream face A 2 , and the ve locities at the two points 
are identical. It follows that 

J T iui dA + J Tiu, dA = o. 
AJ: .1:1 

In order to use the inequalities, we have to choose the stress field ul-which only has to 
satisfy equilibrium-in such a way that " unwanted" velocity components do not appear; 
this can be done by choosing Tt and F/ so that the multipliers of unwanted velocities in (7) 
vanish. If we set F/ = Fi , choose any equilibrium stress field which satisfies 

Tt = 0 on A3, 

aal + F/ = 0 in V, ( 17 ) 
aXj 

and take account of the boundary conditions expressed in (14) , ( 15) and (16), it follows from 
(7) that 

( rS) 
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But since the section we are considering has unit length in the flow direction 

J F iUi dV = J (pg sin ex)u1 dV = (pg sin ex) uA*, 

where A* is the cross-sectional area of the glacier and i1 is the mean velocity over the cross­
section.t Thus 

If we let 

u .;;;; . 1 )A* f u/ EidV. (pg sm ex 
v 

U, / = U22S = U33s = -pgxz cos ex, 
uu8 = - pg(3X2 sin ex, 
u'/ = - pg( 1 - (3 )x3 cos ex, 
u23s = 0, 

where (3 is a constant sti ll to be found, the equilibrium and boundary conditions on ul are 
satisfied. These stresses produce a simple shear deformation 

E'3 = -Hpg sin ex)"{(r - (3)2x32 + (32X22}("-' j/2( r - (3 )Cx3' 
E12 = - t( pg sin ex)"{( 1 - (3 )2x32+ (32x22}(n-t) /2(3CX2 . 

Then, from inequality (20), 

u ';;;; ~.( pg sin ex )"f U1 - (3) 2X32 + (3 2X22}("+ IJ /2dx2dx3; 

A, 

an upper bound on the mean velocity in a channel of arbitrary cross-section. In order to 
compare it with Nye's exact numerical solution, we apply it to a symmetrical parabolic 
channel of depth a and half-width Wa, and let n = 3. Evaluating the integra l, 

it .;;;; 335 a 4C( pg sin ex)3{ (r _ (3)4 W4 + H(32 ( I - (3) 2 W2 + 'N (34}. 

If (3 = I, we have an upper bound 

u <;; [1[25
8r;a4C (pg sin ex )3 

identical to the solution for an infinitely wide pa rabolic channel (Nye, 1965). If (3 = 0, 

u <;; 335 a 4C( pg sin ex)3 W4 (26) 

which approaches the exact solution as W o. Although any value of (3 gives a n upper 
bound on U, one naturally seeks to minimize this bound through an appropriate choice of (3; 
this is found by differentiating (24) with respect to (3, setting the derivative zero, and for each 
W of interest solving the resulting cubic equa tion in (31(1 - (3). In Table I and Figure 2 the 
bounds found by this procedure are compared with values from the numerical solutions. 

Although more complex stress fie lds than (2 I) can be applied in a search for even closer 
bounds, further improvement is only gained after much more extensive calculation, which is 
hardly repaying. It is interesting that such good bounds are given by this simple stress fi eld, 
in which the shear stress on the surface increases steadil y towards the edge. The exact solution 
of the problem shows that the actual stress distribution is quite different, and that the shear 
stress at the surface reaches a maximum at about 0 ·6 Wa from the centre line and thereafter 
decreases. 

t Since the Fi a re the same at each point, this would ho ld true even if the ve loc ity components U2 and U3 

perpendicular to the channel direc tion did not van ish. If the Row pattern is uniform a long the leng th of the 
glac ier, there can b e no net flow in the 2 - a nd 3-directions, a nd so f F2 112 dV and f F311, dV vanish . 
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TABLE I. BOUNDS ON DIMENSIONLESS MEAN VELOCITY il/a4C(pg sin 0< ) 3 FOR PARABOLIC CHANNELS (/I = 3) WITH 

D I FFERENT VALUES OF W, THE HALF-WIDTH TO D EPTH RATIO 

PI 

w 

I 

2 

3 
4 

OCJ 

'? 
c 
'in 
er> 

~ 
U .,. 
g 

0·12 

0 '08 

~0.04 
1:1 

o 

Lower bound 

0'0062 
0 ' 0286 
0'0497 
0' 0648 
o· 11 08 

il/a4C(pg sin 0<)3 

Exact Upper bound 
(Nye, (965) 

0' 01 49 
0'0440 
0' 0637 
0 ' 0757 
o· I 108 

• EXACT VALUES 
(NYE , 1965) 

0' 01 53 
0'0463 
0 ' 0673 
0'0801 
o· I 108 

Fig. 2. Upper and lower boullds on il, the meall velocity, as junctions of W , the ratio ~f half-width to depth, jor parabolic 
channels 

In order to find an upper bound on the mean velocity on the upper surface of the glacier, 
a different choice of al in inequality (7) is required. If we let 

TIB = yo/a(~ pg sin ex), T/ = T3s = 0 on A3, n+ 1 
s n 

F; = --F; 
n+ I 

in V, 

where y and 0/ are positive constants still to be determined, then, if we take account of \14), 
(15) and (16), inequality (7) reduces to 

~- Jal El dV :> Jyo/a (~ pg sin ex) uIdA = 2 Wyo/a 2 (~ pg sin ex) US' (28) 
n+ 1 n+ 1 n+ 1 

v A, 
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Here Us is the mean velocity on the surface, a is the depth of the channel on the centre line 
(or at some arbitrarily chosen point) and W the half-width/depth ratio. Then 

1 J s· s us ';;;; HI: l/J a ij €oij dV. 
2n a 2y 

v 

A simple a;/ stress field which satisfies (27) and the equilibrium condition (13) is 

a,/ -y(~ pg sin ex) (x2 + ifa), n+ 1 

al3s = -( I -y) (~ pgSinex)X3' n+ 1 
8 S S n all = an = a33 = - - pgxz COS ex, n+ 1 

aZ3 = o. (30 ) 

This stress distribution again corresponds to a simple shear deformation; the strain­
rates are given by (10). Applying this to the parabolic cross-section described earlier, and 
again letting n = 3, 

1 4 • {y3 25 6 1 28 3 2 2 1 6 3 2.1.4) 
Us ,;;;; 'la C(pg sm 0:)3 f (3T6s+-3Tsif+TIif +TIl/J +3'1-' + 

+ 1\ 1'(1 l/J Y)~ W2(-!3+tif+if2) + 325 ( I ~;) 4 W4}. (31) 

This bound can now be optimized for each W by an appropriate choice of y and if ; the 
smallest upper bound can be found either analytically or by one of the standard methods for 
optimum search (Wilde, 1964). A close bound can be located quite rapidly, since near to the 
optimum the expression (31 ) alters only slowly with changes in y and if. A comparison 
between upper bounds on Us and the exact solution is given in Table II and Figure 3. 

This technique can also be used to find a direct bound on Us - 11, or on the mean velocity 
of any region (such as the middle third of the glacier surface), but not to bound the velocity 
of single points. This would require a dummy concentrated force at the point, which would 
give rise to a singularity in the dissipation function. 

LOWER BOUNDS 

A lower bound on the mean velocity 11 can be derived from inequality (9). If the velocity 
field Ujc satisfies the condition that there is no slip on the glacier bed, and is independent of 
X " it follows that 

J T juNA + J ~ujCdA = 0 , 

Al A;l 

and Jr..(u .c _ _ 
I 

UO)dA = 0 
I I n+ 1 I • 

A 

Inequality (9) then gives 

J FjujdV ;> (n+ l ) J Fju/'dV- n J a/ E/ dV, 
v v 

(pg sin ex)11A' ;> (n+ l ) J (pg sin ex) u/dV- n J al E/ dV. 
v 
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TABLE n. UPPER BO UND ON D[MENS[ONLESS S U RFACE V E LOCITY us/a4C(pg sin 1X ) 3 FOR PARABOLIC CHANNELS ( 11 = 3) 
W[TH D[FFE R E NT VALU ES OF W 

I'l 

7 
c: . ;;; 

'" ~ 
U 

'f 
o 

....... 

0·12 

0 ·08 

.. 0 ·04 
" 

o 

W 

1 

2 

3 
4 

00 

• 

Exact 
(Nye, [965) 

0'0[78 
0'0449 
0' 0639 
0'0753 
o· [016 

• 

3 

W 

us/a4C(pg sin 1X ) 3 

Upper bound 

0'0[80 
0'049[ 
0' 0679 
0 ' 0802 
o · [057 

U. B. ASYMPTOTE -------- -

• EXACT VALUES 
(NYE. 1965) 

5 

Fig. 3. An upper bound 011 us, the meall velocity 011 the surface, as afunction of W , the ratio of half-width to depth , for parabolic 
channels 

Any velocity field which satisfies (34) then gives a lower bound on u; the strain-rate 
Eij is derived from (I ) , and by inverting the stress- strain-rate relation it can be shown that 

GijEij = C-Tfn( 2 EijEij ) (n + 1)/2". (36) 
We again apply this method to find a lower bound on u in a parabolic channel when 

n = 3. If the half-width/depth ratio were large, the surface velocity at a point where the 
depth is H would be the same as that in an infinitely wide channel of uniform depth H, and 
since n = 3 this velocity is proportional to H4. The boundary of the channel is the parabola 

~ = I-(~J 2. (37) 

If the velocity on the centre line at the surface is >. and a velocity distribution identical to 
that in a very wide channel is chosen for U jlJ, 

UtO = >'{(I-[~arr- (x~r} 
(38) 
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Then Oi oE/ = C - I/3 16'/3 - +-- - 1---(")4/3 f(X2 ) 6 4 (X3 )2( x32 )6}'/3 
J J a \ a W2 Wa W 2a' 

and from (35) 

I I 

where I (W ) = J J (u6 +~:r/3( I -V2) 5dUdV. 
o 0 

Minimizing the right-hand side of (40) with respect to ", and simplifying 

- 1 2 8 ( 256 ) 3 4C( . ) u :> 115 5 3465I ( W ) a pgsmcx 3. 

If W -+ CtJ , I ( W ) -+ 256/3465, and we have the exact solu tion, identical with the lower 
bound. Numerical integration of I ( W ) for finite W gives a lower bound on u. This is compared 
with Nye's exact numerical solu tion and with the upper bound in Table I and Figure 2. 

The lower bound on u represented by the right-hand side of inequality (40) is rather 
ill-conditioned, in the sense that it is a small difference between large quantities. As one 
might expect from this, these lower bounds are more sensitive to the choice of the velocity 
field Ui

c than are the upper bounds found earlier to the choice of 0 ;/. Since even for W = 4 
the exact velocity distribution across the glacier width is rather different from that across an 
infinitely wide parabolic channel, the lower bound given by the ve locity distribution 1.s8) is 
not very close. It is, however, close enough to give useful information about the effect of the 
valley sides. 

Inequality (9) cannot be used directly to locate a lower bound on the mean surface 
velocity Us> since it is not possible to choose ut so that the unwanted velocity components do 
not appear. It is however possible to proceed in the following way: multiply (7) by a positive 
quantity A (still to be determined), add to it inequality (9) and then re-arrange. The re­
su lting inequality (Palmer, in press) contains both an unknown equilibrium stress field and 
an unknown velocity field. An appropriate choice of T/ and F/ then eliminates unwanted 
velocity components. If the velocity field is defined by one parameter ')', and the stress field 
by one parameter (:3, this gives a lower bound velocity which has to be minimized with respect 
to the three variables A, ')' and {3. In the present problem the advantage in simplicity of the 
method is then lost, and accordingly it will not be pursued further. 

ApPLICATION TO REAL GLACIERS 

The technique for finding velocity bounds described in this paper can be applied to actual 
glaciers whose cross-sections have been determined by sounding. Finding upper bounds 
requires statically admissible stress fields which satisfy a boundary condition on the upper 
surface of the ice , whereas to find lower bounds one needs a kinematically admissible velocity 
field which satisfies the " no slip" boundary condition on the lower surface. Since the upper 
surface- or a reasonable idealization of it- will generall y be the geometrically simpler, it 
will probably be easier to find upper bounds. If, for example, the upper surface is level in the 
cross-stream direction, the stress field (2 I) is suitable. When the section is asymmetric, a 
coordinate origin can be chosen arbitrarily. If the stress- strain-rate exponent n is 3, a 
determination of a lower bound on 11 then requires only the integration of X24, x34 and X22X32 
over the measured cross-section. The calculation is only a little more complicated for other 
values of n. 

MS. received 9 August 1966 

https://doi.org/10.3189/S0022143000019699 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000019699


JOURN AL OF GLACIOLOGY 

REFERENCES 
Glen, J. W. 1955. The creep of polycrystalline ice. Proceedings of the Royal Society, Ser. A, Vo!. 228, No. 1175, 

p. 5 1 9- 38 . 
Martin, J. B. 1964. A displacement bound technique for elastic continua subjected to a certain class of dynamic 

loading. Journal of the Mechanics and Physics cif Solids, Vo!. 12, No. 3, p. 165- 75. 
Martin, J. B. 1966. A note on the determination of an upper bound on displacement rates for steady creep 

problems. Journal oJ Applied Mechanics, Vo!. 33, No. I, p. 216- 17. 
Nye, J. F . 1965. The flow of a glacier in a channel of rectangular, elliptic or parabolic cross-section. Journal oJ 

Glaciology, Vo!. 5, No. 4[, p. 66[ - 90. 
Palmer, A. C. In press. A lower bound on displacement rates in steady creep. Journal of Applied Mechanics. 
Prager, W. [961. Introduction to mechanics of continua. Boston, Mass. , Ginn . 
Wilde, D . J. [964. Optimum seeking methods. Englewood, N. J., Prentice-Hal!. 

https://doi.org/10.3189/S0022143000019699 Published online by Cambridge University Press

https://doi.org/10.3189/S0022143000019699

	Vol 6 Issue 46 page 479-488 - Creep-velocity bounds and glacier-flow problems - Andrew C. Palmer

