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CREEP-VELOCITY BOUNDS AND GLACIER-FLOW PROBLEMS

By Anprew C. PALMER
(Department of Mechanical Engineering, University of Liverpool, Liverpool, England)

ABSTRACT. A general result due to Martin can be used to find upper and lower bounds on velocities in
steady-creep problems. This method can be applied to glacier flow if ice can be assumed to satisfy a power-
law stress-strain-rate relation. Bounds on the mean velocity over the glacier cross-section and on the mean
velocity on the surface are determined for a particular example (a uniform parabolic channel, with power-
law exponent 3) and they are shown to bound quite closely the exact solutions due to Nye. Bounds can be
found rapidly by hand calculation. The method can be applied to real glacier cross-sections measured in the
field.

REsuME. Limites fluage-vitesse et problémes de Uécoulement des glaciers. Un résultat général dit & Martin peut
étre utilisé pour trouver les limites supérieures et inférieures des vitesses dans les problémes de fluage
stationnaire. Cette méthode peut étre appliquée a 'écoulement des glaciers si 'on peut admettre que la
glace satisfait a une fonction de puissance entre la tension et la vitesse de déformation. Les limites de la
vitesse moyenne d’un section transversale d’un glacier et de la vitesse moyenne 2 la surface sont détermin ées
pour un exemple particulier (lit uniforme parabolique, avec une fonction de puissance ) et elles approchent
de trés pres les solutions exactes de Nye. Les limites peuvent étre obtenues rapidement par un calcul manuel.
La méthode peut étre appliquée aux sections transversales de glaciers réels mesurées in situ.

ZUSAMMENFASSUNG. Schranken der Kriechgeschwindigheit und Probleme der Gletscherbewegung. Fin allgemeiner
Ansatz von Martin kann zur Bestimmung der oberen und unteren Schranke der Geschwindigkeit bei
Problemen des stetigen Kriechens benutzt werden. Diese Methode kann auf die Gletscherbewegung unter
der Voraussetzung angewandt werden, dass die Deformationsgeschwindigkeit einem Potenzgesetz folgt.
Die Schranken der mittleren Geschwindigkeit in einem Querschnitt des Gletschers und der mittleren
Geschwindigkeit an der Oberfliche werden fiir ein spezielles Beispiel (gleichformig parabolisches
Gletscherbett, Exponent 3 fir das Potenzgesetz) bestimmt und es wird gezeigt, dass sie sehr nahe an der
exakten Lésung nach Nye liegen. Die Schranken kénnen rasch durch Uberschlagsrechnung gefunden werden.
Die Methode ist zur Anwendung auf Gletscher-Querschnitte, die im Felde gemessen werden, geeignet.

InTRODUCTION

In a recent paper, Nye (1965) has extended the existing theory of a valley glacier to take
into account drag by the sides of the valley. He analysed the steady rectilinear flow of ice
down a channel with uniform cross-section and uniform slope, and in his theoretical model
assumed a power-law stress-strain-rate relation for steady creep consistent with Glen’s
(1955) experiments. The glacier was assumed not to slip over its bed, but Nye pointed out
that this effect could be included in the theory when more was known about it, and that
several of his results appear to hold independently of whether or not slip occurs. Analytical
solutions exist only for four special channel cross-sections (channels infinitely wide with
uniform depth, semi-circular, infinitely deep with uniform width, and slightly elliptical),
although through a careful use of symmetry and dimensional arguments some useful results
on flow in elliptical channels can be found.

Further progress requires numerical solution of the governing differential equations,
using a digital computer, and in this way Nye found stress and velocity distributions for a
number of distinct symmetrical channel shapes (rectangular, parabolic and semi-elliptical)
of different proportions. Although this method gives very complete information, its use requires
considerable programming effort and a large amount of computer time.

In the present paper we apply to glacier-flow problems a theorem due to Martin (1966)
for obtaining upper bounds on displacement rates in steady creep, and a development of
Martin’s approach to find lower bounds (Palmer, in press). Through this method one can
find close upper and lower bounds on the mean velocity over the cross-section of the glacier,
on the mean velocity on the surface and on certain other velocities. It can be applied to
glaciers of arbitrary cross-section, not necessarily symmetrical, and to any power-law stress—
strain-rate relation, whether the exponent is integral or non-integral. Close bounds can be
found rapidly by comparatively simple hand calculations, or computed still more quickly
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using standard programmes. In no way, of course, can this method replace exact numerical
solutions; it tells us nothing of the stress or of the fine details of the velocity distribution, and
it gives only bounds on mean velocities, although these bounds are frequently close enough
for most purposes. It is suggested here, however, that close bounds on mean velocities will
yield useful information about real glaciers and that, because it makes trial solutions for
different assumed flow laws much less laborious, this method may be helpful in linking field
observations with the results of laboratory tests.

NoraTioN: GENERAL THEOREMS

In order that the bound theorems can be stated concisely, Cartesian tensor notation will
be used in the description of velocities, stresses and strain-rates. The position of a point is
defined by its Cartesian coordinates x1, xi, %3, and the velocity by its components
u; (i = 1, 2, 3) in the 1, 2 and g directions. The strain-rate &; (i, j = 1, 2, 3) is defined by

Ou; | Ouj
=4 (3 +50) (1
Stress is described by oy (i, j = 1, 2, 3), so that g,, is the component of stress acting in the 1
direction on a plane normal to the 1 axis, o1 the component of stress acting in the 2 direction
on a plane normal to the 1 axis, and so on. Body forces, referred to unit volume, are denoted
F;; surface tractions, referred to unit area, are denoted 7;. The repeated subscript summation
convention (Prager, 1961) is used frequently, so that

Ta; = T+ Tauz+ Taus,
O’,’,'é','j = 0’1xél1+U:zérz+013é13+021é21+ e +033é335 (2)
Ok = o11+ 0221033
Martin (1964, 1966) considered steady creep in materials whose stress—strain-rate law has
the form
O (3)
éo a(Ut‘j/O'o),

where &, 0, and n are constants, ¢(a;j/o,) is homogeneous of degree one, and ¢"* " is a convex
function of its argument. As a special case of a more general result, he showed that for a body
composed of such a material

1 s n & ,
1;_1 IG;jSE;J'sd V4 - 4: J O’,‘jge,'jodV >j T utdA +JF;sui°dV, (4)
i :

where o,%, T# and F{ are any set of stresses, surface tractions and body forces which satisfy
equilibrium, and #’, ¢;° any compatible set of velocities and strain-rates. The integrals are
taken over the volume V and surface area A4 of the body. Here ¢ is related to g; only
through the stress—strain-rate relation (3), and need not be integrable; i’ 1s related to €;°
only through (3), and need not satisfy equilibrium. In addition, from virtual work

I O';J"é,'j”dV = j T;Hf"dA{— [F;‘u;"dV (5)
L4 a 4

for any o;', T, Fi' which are in equilibrium, and any compatible «", €. This
inequality can be used to find bounds on velocities in the solution of the following mixed
boundary-value problem: surface tractions T; are prescribed on one part 4, of the boundary,
while on the remainder 4, the velocity u; is zero; body forces F; are prescribed throughout
the body. In what follows quantities ;, €;, oy, Ti, F; without any superscript will refer to the
solution of this problem.
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Since the solution velocities and strain-rates certainly satisfy the conditions imposed on
u, €;° we can set
c
U = u, 6
i S ©
throughout (4). Applying (5) to the solution velocity and stress fields, substituting into (4)
and re-arranging (Martin, 1966)

. oy AL T L
e j aiféfdV = f ( T n+lT,)u,a’A—}- j (F = IF,)u,dV. (7)
v A v

This inequality gives upper bounds on velocities. If instead we identify o, T# and F?
with corresponding quantities in the solution of the boundary-value problem, which must
certainly satisfy equilibrium, if, that is

B = ay, B =F &f = ¢ in V, (8)
7_1'8 = 7: on Au,
then we can again apply (5) to the solution velocity and stress fields, substitute in (4) and
re-arrange, to arrive at

n C: 0 ~ (4 I o 1
L G gt * 5 Flof———ularv.
m— far,, &;°dV }J‘T.(u, n+1u,)dA+j ,(u, = lu,)dV (9)
v A ¥
In the glacier-flow problem about to be considered f 'I}(uf%r;i—lu,-)dA is zero for
A

a wide class of admissible velocity fields #7; it follows that (9) can be used directly to find a
lower bound on the mean velocity over the glacier cross-section.

THEORETICAL MODEL

Ice flows steadily under gravity down a straight uniform channel of uniform slope a.
Position is defined by coordinate axes aligned in the manner illustrated in Figure 1; the
1-axis is directed along the channel, at an angle o to the horizontal. If the channel is
symmetrical the x; and x, axes lie in the plane of symmetry; otherwise their position is
chosen arbitrarily. The plane x; = o coincides with the upper surface of the ice.

Stated in terms of a simple shear deformation in which each material point has a velocity
only in the r-direction, Glen’s stress—strain-rate relation takes the form

al[[ au]
— = (t-T — = -1 10
axz 4 O12, ax3 13, ( )
HORIZONTAL
SLacy
ER s
U,
RFACE \ / 2
X =gy

Fig. r
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where C and n are constants and 7 = (o1.2+013?)t. A generalization of this which relates the
stress to the strain-rate for an arbitrary deformation is

€ = 3C(4syisi) 25y, (11)
where s;; is the deviatoric stress tensor o;; —§oud;;; in this 3; is the Kronecker delta, dy=1
when i = j, 8; = o when i # j. This is an appropriate form for an incompressible material.
Note, however, that in what follows the stress—strain-rate relation is applied only to stress
fields which give velocity distributions of the “simple shear” pattern to which (2) refers. As
Nye has pointed out, it is not necessary in this problem to assume a full generalization of the
flow law for simple shear.

UprERr Bounbs

The upper and lower bound inequalities are now applied in turn to a section of the glacier
cut between two planes unit distance apart and parallel to the x, x; plane (Fig. 1). This
section is bounded by the following surfaces: the up-stream cross-section of the glacier
(denoted A;), the down-stream cross-section (denoted 4.), the part of the glacier surface
lying between the two sectioning planes (denoted A4;), and the corresponding part of the
glacier bed (denoted 4,). The ice is acted on by a gravity force pg on unit volume, where p is
the density and g the acceleration due to gravity: resolving this in the coordinate directions,
the body-force components F; are

Fr = pgsina,
F, = pgcosa, (12)
F3 = 0.
If a stress field satisfies equilibrium, at each point
80;
éﬁUrFi == 0 (13)
¥
Since the upper surface of the glacier is free,
T;=o0 on 4 (14)

From the assumed condition that there is no slip between the glacier and its bed
=0 onAd, (15)
Since each section of the glacier is identical, in the sense that the flow is uniform along its
length, the surface traction at a point on the up-stream face 4, is equal and opposite to that

at the corresponding point on the down-stream face 4., and the velocities at the two points
are identical. It follows that

I'T,-u,— d/l—{—.['ﬂu,- dA = o. (16)
A, B
In order to use the inequalities, we have to choose the stress field o;*—which only has to
satisfy equilibrium—in such a way that “unwanted” velocity components do not appear;
this can be done by choosing 7;* and F® so that the multipliers of unwanted velocities in (7)
vanish. If we set F¥ = F;, choose any equilibrium stress field which satisfies

Tf =0 ond;,

8
aa.—"".—|—1‘7,~":() in V, (17)
dx;
and take account of the boundary conditions expressed in (14), (15) and (16), it follows from
(7) that
j o e dV > IF,u,- dv. (18)
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But since the section we are considering has unit length in the flow direction
JF,-uL- dV:I (pgsin a)u, dV = (pgsin a)iid’, (19)

where 4" is the cross-sectional area of the glacier and 7 is the mean velocity over the cross-
section.! Thus

_ I 8.8
—_— i €5 dV. 20
< i | o =
¥
If we let

('J'];‘[sI = 0’22s — 0'338 = Hpgx;, COS «,

012" = — pgPx; sin q, (ar)
8

O13 — fpg(l—ﬁ).\% COos «,

0‘233 = O,

where 8 is a constant still to be found, the equilibrium and boundary conditions on g, are
satisfied. These stresses produce a simple shear deformation

€3 = —1(pg sin a)"{(1—B) 232 Brea2}n=112(1 —B)Crs,
€12 = —§(pg sin a)"{(1 —B)2x32 -+ Bx,2}"=1)/2BCx,. (22)

Then, from inequality (20),
c y
< g sin o) [{(1—B)sast By (23)
Ay

an upper bound on the mean velocity in a channel of arbitrary cross-section. In order to
compare it with Nye’s exact numerical solution, we apply it to a symmetrical parabolic
channel of depth ¢ and half-width Wa, and let n — 3. Evaluating the integral,

7 < 35atC(pg sin o)3{(1 —B)We+18B2(1 —B)2 W2 | 43884}, (24)
If B = 1, we have an upper bound
@ < 4% a'C(pg sin a)3 (25)
identical to the solution for an infinitely wide parabolic channel (Nye, 1965). If B = o,
i < J%a*C(pg sin a)3 Wt (26)

which approaches the exact solution as W-—so. Although any value of B gives an upper
bound on #, one naturally seeks to minimize this bound through an appropriate choice of 8;
this is found by differentiating (24) with respect to B, setting the derivative zero, and for each
W of interest solving the resulting cubic equation in 8/(1—fB). In Table I and Figure 2 the
bounds found by this procedure are compared with values from the numerical solutions.
Although more complex stress fields than (21) can be applied in a search for even closer
bounds, further improvement is only gained after much more extensive calculation, which is
hardly repaying. It is interesting that such good bounds are given by this simple stress field,
in which the shear stress on the surface increases steadily towards the edge. The exact solution
of the problem shows that the actual stress distribution is quite different, and that the shear

stress at the surface reaches a maximum at about 0+6 Wa from the centre line and thereafter
decreases.

T Since the Fj are the same at each point, this would hold true even if the velocity components uz and uy
perpendicular to the channel direction did not vanish. If the flow pattern is uniform along the length of the
glacier, there can be no net flow in the 2- and g-directions, and so j-]f'zung and | FyudV vanish.
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TasLe I. Bounps on DiMENsIONLEss MEAN VELoGITY #[a4C(pg sin «)3 For ParaBoric CHANNELS (n = 3) WITH
DirrereNT VALUES OF W, THE HaLF-wipTH TO DEPTH RATIO

W i#/a4C (pg sin )3
Lower bound Exact Upper bound
(Nye, 1965)
1 00062 0-0149 0-0153
2 0-0286 00440 0-0463
3 0°0497 0-0637 0-0673
4 0-0648 0:0757 0-08o1
o o-1108 0-1108 0-1108
O-12r-
ASYMPTOTE
oS
08—
m
<
c
]
= 58
X
[§]
<
.
w 004
12
@ EXACT VALUES
k. (NYE, 1965)
| 1 1 1 1
o 1 2 3 4 5

Fig. 2. Upper and lower bounds on i, the mean velocity, as functions of W, the ratio of half-width to depth, Sor parabolic
channels

In order to find an upper bound on the mean velocity on the upper surface of the glacier,
a different choice of o;;° in inequality (7) is required. If we let

n .

T8 = 'y!//a(nil pg sin tx), T =T =0 on 4,
e
n-+1
where y and ¢ are positive constants still to be determined, then, if we take account of (14),

(15) and (16), inequality (7) reduces to

o | e B s — LS
it fcr,, &fdV = f-ya,ba(nJr _pg sin cx)u;dA 2 Wyrha® (ﬁ+  pg sin cx)us. (28)
¥

A

Ff in V, (27)

3
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Here , is the mean velocity on the surface, a is the depth of the channel on the centre line
(or at some arbitrarily chosen point) and W the half-width/depth ratio. Then

T R [P Y
s 2nWa2yz/;fU” Gl (29)
v
A simple ;" stress field which satisfies (27) and the equilibrium condition ( 13) is

o1t = _y(]%lpg sin C!)(xz‘l‘l,ba))

5 n .
Oy = *(T—}’)(E_?IPQ AL 0‘)"3:
0’118I — O’zzs — 0'338 = —‘i pEgx2 COS o
n-t1
023 = 0. (30)

This stress distribution again corresponds to a simple shear deformation; the strain-
rates are given by (10). Applying this to the parabolic cross-section described earlier, and
again letting n = g,

3
u, < }a*C(pg sin a)3 :’; (255 +530 -+ Loy 2y +

Li——ng }i& (1 —)4
L W)+ . (31)
This bound can now be optimized for each W by an appropriate choice of v and y; the
smallest upper bound can be found either analytically or by one of the standard methods for
optimum search (Wilde, 1964). A close bound can be located quite rapidly, since near to the
optimum the expression (31) alters only slowly with changes in y and . A comparison
between upper bounds on %, and the exact solution is given in Table II and Figure 3.

This technique can also be used to find a direct bound on #,—1, or on the mean velocity
of any region (such as the middle third of the glacier surface), but not to bound the velocity
of single points. This would require a dummy concentrated force at the point, which would
give rise to a singularity in the dissipation function.

Lower Bounbps

A lower bound on the mean velocity @ can be derived from inequality (g). If the velocity
field #° satisfies the condition that there is no slip on the glacier bed, and is independent of
X1, it follows that

I Tufdd+ J‘ Tufdd = o, (32)
A, i,
=0 ond, (33)
A 1% R T 7 I
and J‘Tl(uI ¥ [u,)dA 0. (34)

A

Inequality (g9) then gives
J FudV = (n+1) Iﬂu,-”dv_u ]’ 0,0e.cdv,

v ¥V

(pg sin a)@A” = (n41) I (pg sin &)u,"dV—n j o, €;°dV. (35)

¥
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Tapre II. Upper Bounn on DIMENSIONLESS SURFACE VELOCITY us/a4C(pg sin )3 FOR ParaBoLIC CHANNELS (n = 3)
wrTH DIFFERENT VALUES OF W

ug/a+C(pg sin )3

W Exact Upper bound
(Nye, 1965)
I 00178 o-0180
2 00449 0-0491
3 0-0639 0-06%9
4 00753 0-0802
o] 0-+1016 0-1057
012 r
U.B. ASYMPTOTE _
— o
008
m
—
h
c
n
= =
N
L
<
o
~
w 0:04 1
3
@ EXACT VALUES
— (NYE, 1965)
| | | 1 I
o] | 2 3 4 5
w
Fig. 3. An upper bound on us, the mean velocily on the surface, as a function of W, the ratio of half-width to depth, for parabolic

channels

Any velocity field which satisfies (34) then gives a lower bound on 4@; the strain-rate

¢;j is derived from (1), and by inverting the stress-strain-rate relation it can be shown that
oyi€y = C-"{(aé e )eernilem, (36)
We again apply this method to find a lower bound on @ in a parabolic channel when
n = 3. If the half-width/depth ratio were large, the surface velocity at a point where the
depth is H would be the same as that in an infinitely wide channel of uniform depth H, and
since n — 3 this velocity is proportional to H*. The boundary of the channel is the parabola

v () (37)

If the velocity on the centre line at the surface is A and a velocity distribution identical to
that in a very wide channel is chosen for «,

Aol

w” = u” =o. (38)
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. o » A\ 4/3 ool (%2 6 4 (x\2 x3? 6)2/3
'lhcn O’ije;jL N lg(a) l6 h{(?") +—[/V2(Wa) (I B Wj&i‘,) } (39)

and from (35)

A\ 4/3
FWaz(pg sin a)a = $122AWa2 —6C-1/3162/3 (;) WaSI(W) (40)
sl § 402 "
where (W) :ff (uﬁ—l—w2 (1 —v*)5dudp. (41)
Minimizing the right-hand side of (40) with respect to A, and simplifying
i > =128 256 ,,)3 40 i 3 }
U =2 1155(34651(”’) a*C(pg sin o)3. (42)

If W= o, I(W) — 256/3465, and we have the exact solution, identical with the lower
bound. Numerical integration of ( W) for finite W gives a lower bound on 4. This is compared
with Nye’s exact numerical solution and with the upper bound in Table I and Figure 2.

The lower bound on @ represented by the right-hand side of inequality (40) is rather
ill-conditioned, in the sense that it is a small difference between large quantitics. As one
might expect from this, these lower bounds are more sensitive to the choice of the velocity
field " than are the upper bounds found earlier to the choice of a;". Since even for W — 4
the exact velocity distribution across the glacier width is rather different from that across an
infinitely wide parabolic channel, the lower bound given by the velocity distribution (38) is
not very close. It is, however, close enough to give useful information about the effect of the
valley sides.

Inequality (9) cannot be used directly to locate a lower bound on the mean surface
velocity u, since it is not possible to choose #” so that the unwanted velocity components do
not appear. It is however possible to proceed in the following way: multiply (7) by a positive
quantity / (still to be determined), add to it inequality (9) and then re-arrange. The re-
sulting inequality (Palmer, in press) contains both an unknown cquilibrium stress field and
an unknown velocity field. An appropriate choice of 7 and F# then eliminates unwanted
velocity components. If the velocity field is defined by one parameter ¥, and the stress field
by one parameter £, this gives a lower bound velocity which has to be minimized with respect
to the three variables /, y and f. In the present problem the advantage in simplicity of the
method is then lost, and accordingly it will not be pursued further.

APPLICATION TO REAL GLACIERS

The technique for finding velocity bounds described in this paper can be applied to actual
glaciers whose cross-sections have been determined by sounding. Finding upper bounds
requires statically admissible stress fields which satisfy a boundary condition on the upper
surface of the ice, whereas to find lower bounds one needs a kinematically admissible velocity
field which satisfies the “no slip” boundary condition on the lower surface. Since the upper
surface—or a reasonable idealization of it—will generally be the geometrically simpler, it
will probably be easier to find upper bounds. If, for example, the upper surface is level in the
cross-stream direction, the stress field (21) is suitable. When the section is asymmetric, a
coordinate origin can be chosen arbitrarily. If the stress-strain-rate exponent n is 3, a
determination of a lower bound on @ then requires only the integration of x4, x3* and x;2x42
over the measured cross-section. The calculation is only a little more complicated for other
values of n.

MS. received g August 1966
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