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ABSTRACT. The stability of the asteroid orbits has been studied by the 
method of surface of section. Families of simple symmetric periodic 
orbits of the asteroid and their stability have been computed and this 
served as a guide for the selection of the energy levels for the surface 
of section. In this way all possible cases for the structure of phase 
space have been obtained. It was found that the region in phase space 
around the resonant orbits at the resonances 1/3, 3/5, 5/7,.... is un
stable, but small stability regions of doubly symmetric periodic orbits 
near the above resonances are also present. At the resonances 1/2, 2/3, 
3/4, .... it was found that there exist two separate regions in phase 
space at about the same resonance 1/2, 2/3, 3/4,...., respectively, one 
being stable and the other unstable. At certain energy levels only the 
stable region appears. The above results are consistent with the observ
ed distribution of the asteroids. 

1. INTRODUCTION 

The purpose of this paper is to study the stability of the asteroid or
bits and in particular those orbits whose mean motion is in resonance 
with that of Jupiter. It is well known that the distribution of the 
asteroids is not smooth but gaps exist at some resonances, the most con
spicuous being at 1/3, 1/2, 3/5 and also, to a lesser extend, at 2/5, 
3/7. These are the well known Kirkwood gaps whose explanation is not 
yet clear despite the fact that much work has been done. Several mecha
nisms have been proposed for the explanation of the Kirkwood gaps, but 
recent work based on statistical analysis (Dermott and Murray, 1981) 
supports the gravitational hypothesis, i.e. that the gaps are due to in
stabilities in the asteroid orbits produced by the gravitational pertur
bation of Jupiter. 

Several papers have been published, in which the gravitational hy
pothesis is studied, both from the analytical and the numerical point of 
view. A review of this work is made by Hagihara (1972). We note in 
this respect that the appearance of small divisors in the resonant cases 
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cannot explain the gaps since there do exist groups of resonant aster
oids, for example the Hecuba group and the Hilda group at the 1/2 and 
2/3 resonances, respectively. On the other hand, numerical integrations 
at or near the resonant cases do not always produce the gaps that we 
would expect (Froeschle and Scholl, 1974, 1975, 1979, Lecar and Franklin, 
1973, Sinclair, 1969, 1970). So, the explanation of the Kirkwood gaps 
is still an open problem. 

In this paper we present a global view for the totality of aster
oid orbits. The orbit of Jupiter will be considered as circular and 
the orbits of the asteroids will be considered as coplanar with Jupiter, 
moving in the same direction. This will be done by giving the structu
re of the phase space by the method of surface of section. In this way 
the stable and unstable regions will be presented clearly and the rela
tion between the various resonant cases with stability or instability 
and the corresponding generation of gaps will become evident. 

A different approach to the study of the stability of the asteroid 
orbits can be made by using Hill's stability criterium. This has been 
done by Szebehely, Vicente and Lundberg, 1983. 

We present here the qualitative aspects and the main results of 
this work. The complete work with all the numerical results will be 
presented elsewhere. 

2. FAMILIES OF PERIODIC ORBITS 

The periodic orbits and their stability characteristics determine criti-
caly the structure of the phase space. For this reason we present .here 
families of periodic orbits of asteroids, moving under the gravitational 
attraction of the Sun and Jupiter. The mass of the asteroid will be 
considered negligible and Jupiter will be assumed to describe a circular 
orbit around the Sun. The orbit of the asteroid will be considered with 
respect to a rotating frame whose origin is at the center of mass of 
Sun-Jupiter and the x-axis is the line from Sun to Jupiter. This is 
the well known circular restriced 3-body problem. We shall study planar 
motion only and the orbit of the asteroid will be considered inside the 
orbit of Jupiter and moving in the same direction. 

Families of periodic orbits for the asteroid, in the planar circu
lar restricted 3-body problem have been computed by Colombo, Franklin 
and Munford (1968) and Broucke (1968). We have recomputed these families 
to a high accuracy in order to have reliable results for the stability, 
especially at some critical cases, which have been predicted analytical
ly (Hadjidemetriou, 1982b). The value of the small parameter 
u=mj/(mg+mj) is taken equal to u=0.001, where ms, mj are the masses of 
the Sun and Jupiter, respectively. 

The above families are the continuation, for u^O, from families of 
periodic orbits of the asteroid, in the rotating frame defined above, 
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for the case p=0 (no perturbation from Jupiter). We describe now brief
ly the families for u=0: 
a)- There exists a family of circular orbits, in the rotating frame, 

symmetric with respect to the x-axis. At t=0 we have y=x=0, so 
the initial conditions of such a periodic orbit are the values of 
x and y at t=0. Instead of y we shall use the value C of the Ja-
cobi constant (e.g. Szebehely 1967). This family is shown in Fig. 
1. The normalization of the variables is such that the mean motion 
of Jupiter is n=l. Along this family the value n/n" varies, and 
several resonant (unperturbed) orbits exist, where n" is the mean 
motion of the asteroid, 

b). There exist families of elliptic orbits for the asteroid, which 
bifurcate from the circular resonant orbits 1/2, 2/3, 3/4, ... . 
These are simple periodic orbits, i.e. they close after the first 
intersection with the x-axis. From Keplerian theory it can be 
proved that these elliptic families (Fig.l) are symmetric with re
spect to a line normal to the x-axis, passing through the corres
ponding circular resonant orbit. All along such a family, the 
resonance is constant, equal to the resonance of the generating 
circular orbit, 

c). There exist also families of elliptic multiple periodic orbits (for 
u=0) which bifurcate from resonant circular orbits at the resonance 
p/q (q-p^l), in the same way as the families described in (b) above. 
The multiplicity of such an orbit is equal to q-p. It is clear 
that a dense set of such resonant orbits exists, though of measure 
zero. 

When the perturbation from Jupiter comes into effect, i.e. for u^O, 
the above families are continued to a set of families of periodic orbits 
of the restricted circular 3-body problem, as shown in Fig. 1. The 
existence proof for the continuation of the circular orbits is given by 
Birkhoff (1927) and for the elliptic orbits by Arenstorf (1963) and 
Schmidt (1972a). Also, the form of the continued orbits at the vicinity 
of the resonant circular orbits 1/2, 2/3, 3/4, ... has been studied by 
Guillaume (1969) and Schmidt (1972b). 

We note that there exist several distinct families of periodic or
bits for u^O, three of them shown in Fig. 1. Each family has a part 
which is the continuation of the circular orbits for u=0 (periodic or
bits of the first kind) and two branches (one for the first family, to 
the lower left of the Figure) of resonant elliptic orbits at the reso
nances 1/2, 2/3, 3/4, ... . Along these latter branches the eccentricity 
increases as we move away from the resonant circular orbit 1/2, 2/3,... . 

In particular, we have two resonant elliptic branches at the 1/2 
resonance, denoted by A^ and A2 respectively. The branch A^ corresponds 
to a mean motion n* of the asteroid such that n/n"=l/2 but n/n"<l/2 
and the branch A2 corresponds to n/n"=l/2 but n/n">l/2. 

Apart from the above mentioned families of periodic orbits, which 
are all simple periodic orbits, there also exist families of multiple 
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Figure 1. Families of simple periodic orbits for the asteroid 
(u=0.001). The dotted lines represent the unperturbed families 
(u=0). The resonance on the elliptic branches A^, A2, B]_, B2, 
C , and the stability (s) or instability (u) is indicated. 

resonant periodic orbits of the form p/q (q-p/1) which fill the whole 
space densely. They are not shown in Fig. 1 but some of them will ap
pear on the surface of section, as we shall see in the next section. 

The resonant branches 1/2 and 2/3 can be identified with the Hecu
ba and the Hilda group of the asteroids, respectively. This will become 
clear in the next section when the stability will be studied. 

3. STABILITY 

It can be pro.ved analytically (Hadjidemetriou 1982b) that all the reso
nant circular orbits at the resonances 1/3, 3/5, 5/7, ... are continued, 
for u/0, to periodic orbits of the first kind which are unstable. Note 
from Fig. 1 that to each family for û O there belongs only one such un
stable resonant orbit. This implies that on the extended family for 
û O there exists a small region, around the corresponding resonant or
bit, which is unstable. It was also found that this unstable region ex
tends as the value of u (i.e. the perturbation) increases, and also 
the magnitude of the unstable eigenvalue increases. 

All the other simple periodic orbits of the first kind are stable 
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and no Hamiltonian perturbation exists that could make them unstable. 

The resonant branches A^, A2, B^, B2, C^,.... can be proved to be 
unstable, in the sense that there always exists a Hamiltonian perturba
tion on the unperturbed elliptic orbit which generates instability. 
This however does not mean that all the above branches are unstable when 
u^O. In fact, it is found by numerical integrations that the branches 
A]_, B2 and C^, at the resonances 1/2, 2/3, and 3/4, respectively, are 
stable. 

A similar situation holds for the resonant branches p/q (q-p^l) of 
multiple elliptic periodic orbits. 

A measure of the instability can be provided by the magnitude of 
the unstable eigenvalue, 
of u the magnitude of |X 

X|>1. We obtained that for the same value 
increases, for the resonant orbits n/n'= 

:(2v-l)/(2v+l) as v increases. This is shown in the Table I below (the 
max. value of |x| in the corresponding unstable area is given): 

n/n* 
1/3 
3/5 
5/7 

Table 

-1 
-1 
-1 

I 
X 
005 
076 
257 

As far as the unstable resonant branches A2 and B^ are concerned, 
we found that |X| increases as we proceed outwards to higher eccentri
cities, for the same branch, and also |x| is larger as v in n/n"=v/(v+l) 
increases. The value of |X| is much larger on these brances than at the 
resonant orbits 1/3, 3/5, 5/7, in Table I. This is shown in Table II 
(each orbit on a branch is identified by the initial value x, as can be 
seen from Fig. 1): 

Table II 
Branch A2: n/n"=1/2 Branch Bi:n/n"=2/3 

-.681 
-.691 
-.737 
-.767 

1.101 
1.202 
1.517 
1.823 

-.727 
-.716 
-.697 
-.666 

1.876 
2.745 
4.841 
29.6 

4. THE STRUCTURE OF PHASE SPACE 

The best way to obtain a global view of the totality of orbits and the 
stable or unstable regions in phase space is to consider a mapping on 
the surface of section. We have in our case two degrees of freedom and 
consequently a 4-dimensional phase space. The surface of section is 
now defined by C=constant, y=0, which is the 2-dimensional space, on 
which we use the cartesian coordinates x, x. The periodic orbits are 
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the fixed points of this mapping. 

In order to understand the structure of the phase space on the sur
face of section, we start with the unperturbed case y=0 (Keplerian, cir
cular or elliptic orbit of the asteroid, referred to the rotating frame). 
From Fig. 1 we can see that for each energy level C we have only one 
circular orbit, which corresponds to a central fixed point on the sur
face of section. It can be proved that this is a central fixed point 
which is surrounded by smooth invariant curves, topologically equivalent 
to circles (Hadjidemetriou 1982a). A dense subset of them corresponds 
to resonant orbits p/q, though in general p and q are large integers. 
These resonant invariant curves correspond to the intersections of the 
line C=constant in Fig. 1 with the resonant elliptic branches p/q men
tioned in section 2. As we go outward, starting from the central fixed 
point, the ratio n/n" of the mean motions decreases. The mapping around 
the central fixed point is a twist mapping. 

When the perturbation from Jupiter is applied, u?0, the 
nonresonant invariant curves, p/q=irrational, survive as smooth 
invariant curves, as expected by the Kolmogorof-Arnold-Moser 
theorem. The resonant invariant curves evolve to a set of stable 
and unstable fixed points, and thus dissolution occurs, (e.g. Ar
nold and Avez, 1968). This dissolution however is in most ca
ses negligible, except at the low order resonances. Chaotic be
havior appears near the unstable fixed points with large value 
of the eigenvalue X, as is indeed the case with the orbits of 
the branch B^ (see Table II). 

We present now some representative cases: In all the figures, to
gether with the invariant curves we have plotted the curve y2=o (dot
ted line), which is the boundary of the motion on the surface of section. 

(a). Energy level C=-l.7367295694 

The value of C is so selected that the central fixed point is an unstable 
fixed point at the resonance 1/3. In order to save computer time, we 
used the value u=0.01 instead of u=0.001, so that the eigenvalue X is 
larger at the central fixed point and its effects appear in a shorter 
time. The value of X is in this case X=-1.056. As expected, the map
ping around the central fixed point is a hyperbolic twist mapping (Fig. 
2). One doubly symmetric stable periodic orbit appears. Also, resonant 
orbits at the 2/7 and 3/11 resonances are clearly seen. The stable fi
xed points are surrounded by islands, shown in Fig. 2 and the unstable 
fixed points are indicated (schematically) at the place we should ex
pect them. 

From this diagram we can deduce that the asteroids cannot stay near 
the unstable resonant orbit 1/3, and thus a gap is expected at that re
sonance. A few multiple periodic orbits can still exist at about that 
resonance, trapped around the doubly symmetric periodic orbit at 1/3, 
as shown in Fig. 2. 
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Figure 2. Invariant curves at C=-l.7367295694 for U-0.01. The 
central unstable fixed point is at the resonance 1/3. Reso
nant orbits at 2/7 and 3/11 are also present. 

At the 2/7 and 3/11 resonance stable regions exist, trapped around 
the stable periodic orbits at that resonance, but unstable regions also 
exist. Thus a smaller density of asteroids is expected at the above 
resonance cases, which results in minor gaps in the distribution of the 
asteroids. 

Figure 3. Invariant curves at C=-1.59. Only the stable reso
nant orbit 1/2 appears. 
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(b). Energy level C=-1.59 

At this value of the energy the line C=-1.59 intersects only the 
stable branch A^ at the resonance 1/2 and not the unstable 
branch A2 at about the same resonance. This happens because 
the perturbed branch A^ evolves to a position "lower" than that 
of the unperturbed one (Fig.l) while the unstable branch k^ evolves 
to a position "above" the corresponding unperturbed branch. As a 
consequence, only the stable fixed point at the resonance 1/2 
appears on the surface of section. Clearly, trapping at this reso
nance is possible, and this corresponds to the Hecuba group of the 
asteroids. A similar situation also appears at the 2/3 resonance 
where the line C=-l,525 intersects only the stable branch B2 
(Hilda group of the asteroids). 

(c). Energy level C=-l.574982425 

The central fixed point corresponds to a nonresonand periodic orbit of 
the first kind, which belongs to the second family of periodic orbits 
in Fig. 1. The value of n/n" at this central fixed point is larger than 
1/2 and consequently, as we go outwards, there exists an invariant curve 
at the resonance 1/2 (for u=0) which dissolves when the perturbation y/0 
is applied into a stable and an unstable fixed point (Fig.4). This can 
be clearly seen from Fig.l where the line C=-l.574982425 intersects 
both resonant elliptic branches A^ and A2. The intersection with the 
stable resonant branch Ai corresponds to the stable fixed point and the 

Figure 4. Invariant curves at C=-l.574982425. The central 
fixed point is a nonresonant periodic orbit of the first kind. 
Two resonant orbits near 1/2 appear, one stable and the other 
unstable. 
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intersection with the unstable resonant branch A2 corresponds to the 
unstable fixed point. Both these latter points are at a resonance 
n/n"=l/2. The stable point is however at a resonance slightly smaller 
than 1/2, as already mentioned in section 2. 

As a consequence of the existence of the above mentioned stable fi
xed point at the resonance -1/2, asteroids are expected there. This is 
the Hecuba group. On the other hand, at a resonance n/n slightly lar
ger than 1/2 a quite extended unstable region exists, which corresponds 
to the 1/2 Kirkwood gap. 

Figure 5. Similar to Fig.4, at C=-1.54696142. The central fi
xed point is the resonant periodic orbit at 3/5. The stable 
and unstable resonances at 1/2 are present. 

This case, shown in Fig.5, is completely similar to the case (c) above. 
The only difference is that the central fixed point is now in the un
stable area at the resonance 3/5 (see Fig.l). As a consequence, a hy
perbolic twist mapping appears, which prevents the concentration of as
teroid orbits at this resonance. This is indeed observed in the distri
bution of the asteroids. This situation is similar to the resonant gap 
at n/n"«l/3, shown in Fig.2, but in this case the gap is expected to 
be wider, as the unstable eigenvalue X is, absolutely, larger (see 
Table I). Also, the instability area at the resonance n/n"Kl/2 
is more prominent than that in Fig. 4. This is so because the 
unstable eigenvalue X increases along the unstable resonant 
branch A2 (i.e. as the eccentricity increases). 
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(e). Energy level C=-l.5201681 

This is shown in Fig. 6. The central fixed point is in the unstable area 
at the resonance 5/7 and consequently we have a hyperbolic twist mapping, 
as in the cases 1/3 and 3/5. We have also two fixed points at the re
sonance 2/3, which correspond to the intersection of the line 
C=-l.5201681 with the two resonant elliptic branches B^ and B2. The 
intersection with the stable branch B2 corresponds to the stable fixed 

.5 _ 

0 _ 

-.5 _ 

-.5 
—J T 
-.6 -.7 -.t 

Figure 6. Invariant curves at C=-l.5201681. The central fixed 
point is at the resonance 5/7. Two resonant fixed points ap
pear near the resonance 2/3. The stable one is surrounded by 
smooth invariant curves while dissolution appears at the un
stable fixed point (indicated by x). 

point and the intersection with the unstable branch B^ corresponds to 
the unstable fixed point. Contrary however to the previous cases where 
smooth invariant curves appeared, even in the vicinity of the unstable 
fixed point, in this case we have chaotic behavior generated by the un
stable fixed point. This is so because the unstable eigenvalue X is 
large, as shown in Table II. Note that all scattered points belong to 
the same orbit. But around the stable fixed point a stable area clearly 
exists, which can explain a trapping at the resonance 2/3. This is the 
Hilda group of the asteroids, in accordance with the observations. 

4. DISCUSSION 

From the above study we see that all the observed Kirkwood gaps can he 
explained, at least qualitatively, on the assumption that the gaps are 
due to instabilities generated by the gravitational attraction of Jupiter. 
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Note that no other gaps appear in this study than those observed in the 
actual motion of the asteroids. 

It is also clear that not all resonances are of equal importance, 
and this is not directly related to the order of the resonance. The 
1/3 and 3/5 resonances are more important than the 1/2 or 2/3 resonances. 
The latter type of resonance has been studied extensively, but little 
work has been done for the 1/3, 3/5 resonances, especially the 3/5 reso
nance. Recent work on the 1/3 and 3/5 resonances is by Colombo and 
Franklin (1982). From the present study we find that both these reso
nances are of the same nature qualitatively, but the gap expected at the 
3/5 resonance is wider, because the corresponding unstable eigenvalue 
is larger. This is indeed the case in the actual situation. Note how
ever that stable areas at about the same resonances, 1/3 and 3/5, do 
exist, though small. So one would expect a few such resonant orbits of 
asteroids, librating around the above mentioned stable doubly symmetric 
periodic orbits at the corresponding resonances. These stable areas 
are clearly seen in Figs 2,5 and 6. 

The 1/2 and 2/3 resonances are of different nature than the 1/3 and 
3/5 resonances in that the stable and unstable areas in the 1/2, 2/3 
case are comparable, contrary to the 1/3, 3/5 resonances where the insta
bility character on the surface of section dominates. Compare for ex
ample Fig.5 where both the 1/2 and 3/5 resonance show clearly. As a 
consequence, stable areas at the resonances 1/2, 2/3 do exist. In par
ticular, the stable region at the 1/2 resonance corresponds to mean mo
tions such that n/n" is slightly smaller than 1/2 (corresponding to the 
Hecuba group) and the unstable region at 1/2 corresponds to n/n" slight
ly larger than 1/2, (corresponding to the observed gap at 1/2). The 
same situation, more pronounced, occurs at the resonance 2/3 (Hilda 
group. 

Finally, we note that all resonances of the form (2v-l)/(2v+l) are 
unstable (Hadjidemetriou, 1982a), i.e. the resonances 1/3, 3/5, 5/7,... 
These resonances have an accumulation point at the orbit of Jupiter, 
and for this reason the whole space near Jupiter is dominated by the 
instabilities generated by the above orbits. Thus, no asteroids are 
expected near Jupiter, as is indeed the case. Note that the continuation 
from the above periodic orbits, for u=0, to u/0 is always possible, 
but the max. value of u for which the continuation can be extended de
creases as v increases. This means that no periodic orbits for u=0.001 
exist beyond a certain value of v. This however seems to enhance the 
chaotic situation at the area near Jupiter, but we do not have detailed 
numerical examples. 

Note: The energy constant has been computed from the formula 

C= i (*V)- fal + (1-U)r2] - ̂  - i t 
where 
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r = [(x-l+u)2+y \i , r>2 = [(x+u) +y \k . 
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