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Abstract

We set up the basic theory of P-adic modular forms over certain unitary PEL Shimura
curves M ′

K ′ . For any PEL abelian scheme classified by M ′
K ′ , which is not ‘too super-

singular’, we construct a canonical subgroup which is essentially a lifting of the kernel
of Frobenius from characteristic p. Using this construction we define the U and Frob
operators in this context. Following Coleman, we study the spectral theory of the action
of U on families of overconvergent P-adic modular forms and prove that the dimension
of overconvergent eigenforms of U of a given slope is a locally constant function of the
weight.

1. Introduction

The theory of p-adic modular forms started with the work of J. P. Serre, B. Dwork and N. Katz.
The original motivation for this theory was the problem of p-adic interpolation of special values of the
Riemann zeta function. Serre [Ser73] defined p-adic modular forms as p-adic limits of q-expansions
of classical modular forms of varying weights and he constructed p-adic L-functions by using his
families of p-adic modular forms.

Katz [Kat73] gave a modular definition of Serre’s p-adic modular forms of integral weight.
They are defined as certain functions on the moduli space of test objects consisting of an ordinary
elliptic curve with a level structure. He also gave modular descriptions of the action of Hecke
operators on these modular forms, including the analogue of the classical Up operator of Atkin,
which is called the U operator. This operator takes a p-adic modular form with q-expansion

∑
n anq

n

to
∑

n anpq
n.

Studying the action of the U operator on p-adic modular functions, Dwork introduced the
notion of growth condition and noted that U was a completely continuous operator in his case. Katz
showed that the subspace of p-adic modular forms with growth condition r (which is an element
of the p-adically complete base ring R0) can be defined as certain functions on the moduli of test
objects which are not too supersingular, in the sense that the value of Ep−1 (Eisenstein series of
weight p − 1) at the test object has p-adic valuation at most equal to that of r. If r = 1 (or a
unit), this amounts to being ordinary and hence growth condition r = 1 retrieves the full space of
p-adic modular forms. When r is not a unit in R0, the modular forms of growth condition r are
called overconvergent modular forms. Using the work of Lubin on the theory of canonical subgroups
of formal groups of dimension one, Katz showed that the subspace of the overconvergent modular
forms of growth condition r is invariant under the U operator. The significance of the concept of
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growth condition lies in the fact that for a non-unit r, U is a completely continuous operator on the
subspace of overconvergent modular forms of growth condition r. As a result, one can use Serre’s
Fredholm theory [Ser62] to study the spectral theory of U.

Hida [Hid86a, Hid86b] constructed and extensively studied the ordinary (or slope zero) part
of the space of p-adic modular forms (and of their Hecke algebra). This space is topologically
generated by the eigenforms of U whose eigenvalues are p-adic units (or have valuation zero). Hida
showed that ordinary modular forms are all overconvergent. He also constructed p-adic families of
Galois representations attached to families of ordinary p-adic modular forms. As a result of this
work, Hida could prove that the number of normalized ordinary eigenforms is a locally constant
function of the weight. Gouvêa and Mazur [GM92] conjectured similar results for a general slope
β ∈ Q. These questions were almost settled by Coleman [Col97, Col96]. Coleman uses rigid analytic
geometry to analyze the properties of overconvergent modular forms. He considers rigid analytic
affinoids over L0, the fraction field of R0, obtained by deleting supersingular discs of different sizes
from the modular curve X1(N) and defines overconvergent modular forms as sections of certain line
bundles on these affinoids. These modular forms can be described in terms of Katz’s overconvergent
modular forms. Using the work of Katz, Coleman defines the completely continuous action of U
on these modular forms. He also generalizes Serre’s Fredholm theory for completely continuous
operators of Banach modules over Banach algebras [Col96]. He then applies this theory to families
of overconvergent modular forms parameterized by certain rigid affinoids and obtains results about
the overconvergent eigenforms of U. This leads, among other things, to his proofs of (slightly weaker
versions) of the Gouvêa–Mazur conjectures [Col96].

The current work was inspired by Coleman’s elegant method. One would like to prove similar
results for automorphic forms on GL2 of a totally real field F . In order to avoid complications
arising from high dimension of Hilbert modular varieties one could switch to certain quaternionic
Shimura curves MK . In certain cases the automorphic forms over these Shimura curves correspond
to automorphic forms for GL2 over F via the Jacquet–Langlands correspondence. The automorphic
forms on MK are, in turn, closely related to the automorphic forms on certain unitary Shimura
curves M ′

K ′ defined over F . In this work we develop a P-adic theory for modular forms defined over
the Shimura curves M ′

K ′ , and show how Coleman’s method can be generalized to produce results
about the dimension of various spaces of P-adic eigenforms in this context. As mentioned above, one
of the potential applications of this work is to understanding of the p-adic deformations of (certain)
Hilbert modular forms. The key to passage from our results to results about Hilbert modular
forms is in proving a criterion to decide which P-adic eigenforms are classical. This will make it
possible to restate the results for spaces of classical eigenforms on M ′

K ′ . The relationship between
the curves MK and M ′

K ′ (for example as in Theorem 4.2) allows one to compare dimensions of
spaces of classical eigenforms on these curves and obtain results concerning the dimension of spaces
of eigenforms on the quaternionic Shimura curves. Finally, replacing (normalized) eigenforms with
their corresponding automorphic representations (on both the Hilbert modular variety and the
quaternionic Shimura curve), one could incorporate the Jacquet–Langlands correspondence (when
applicable) to obtain results on the dimension of spaces of Hilbert modular eigenforms.

Coleman [Col96] has proven such a classicality criterion in the context of modular curves.
Work on a similar criterion in this context is in progress.

Let us introduce some notation. Assume F has degree d over Q. Let P be a prime ideal of the ring
of integers OF , which lies over p. Let FP and OP denote the completion of F and its ring of integers
at P. Let π be a uniformizer of OP . Let κ denote the residue field of P of cardinality q. Let R0 denote
a complete discrete valuation ring containing OP , with valuation v, such that v(π) = 1. Let B be
a quaternion algebra defined over F which splits at P. Assume also that B splits at exactly one
infinite place τ : F ↪→ R. Let G = ResF/Q(B∗) be the Weil restriction from F to Q of B∗. To G,
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one can associate a projective system of Shimura curves MK indexed by open compact subgroups
of G(Af ). The connected components of these curves over C can be described as the quotient of
the complex upper half plane by congruence subgroups of B∗. By Shimura’s work these curves have
canonical smooth and proper models over F . Carayol [Car86] explains how to construct canonical
integral models for these Shimura curves. These models are constructed via the integral models for
the Shimura curves M ′

K ′ which are associated to a unitary group G′ obtained from an involution
of the second kind on D = B ⊗F E, where E is a quadratic imaginary extension of F . The curves
M ′
K ′ and their canonical integral models can be described as moduli spaces of abelian schemes

with PEL structures. Carayol [Car86] records the observation of Deligne and Shimura that every
connected component of MK ⊗ F nr

P is isomorphic to a connected component of some M ′
K ′ ⊗ F nr

P .
This is used to construct the canonical integral models of MK . It also establishes the aforementioned
close connection between modular forms over MK and modular forms over M ′

K ′. As hinted before,
we will develop the theory entirely for the Shimura curves M ′

K ′ which are more suitable for our
constructions.

In §§ 2, 3, and 4, we review some background on Shimura curves MK and M ′
K ′ . In § 5 we define

modular forms on M ′
K ′ which, unlike the classical case, do not have q-expansions. Consequently,

we don’t have a canonical Eisenstein series of weight q − 1. In § 6 we construct a modular form H
over κ, the Hasse invariant, which vanishes exactly at the supersingular points of M ′

K ′ . In § 7 we
show that (when q > 3) there is a lifting of this modular form to characteristic zero which, for our
purposes, is as good as the Eisenstein series in the classical context. This lifting will serve to limit
the supersingularity of a test object in our moduli space. Indeed in § 12 we prove that our theory
is independent of the choice of this lifting. This is essentially a corollary of Proposition 6.3 which
states that the Hasse invariant has simple zeros in this case. Using this lifting, in § 8 following Katz,
we define the spaces of P-adic modular forms over M ′

K ′ of growth condition r ∈ R0. When r ∈ R0

is not a unit, we call these modular forms overconvergent.
In § 9 we describe P-adic modular forms using rigid affinoids and formal schemes. In § 10 we

use the Lubin–Katz method to construct the canonical subgroup of a ‘not too supersingular’ test
object in our moduli space. We also explain how to measure the supersingularity of the quotient of
the test object by its canonical subgroup.

The canonical subgroup is essentially a canonical lifting to characteristic zero of the kernel of
Frq in the abelian scheme. In § 11 we use the canonical subgroup to define Frob, the Frobenius
morphism of P-adic modular forms. We also use the rigid theoretic description of P-adic modular
forms to study the properties of Frob. This allows us to define the U operator in § 12 essentially as
a trace of Frob, and to prove that the space of overconvergent modular forms is invariant under U.
In § 13 we study the continuity properties of U and show that U is a completely continuous operator
when r is not a unit in R0. In the last section, § 14, we use Coleman’s method [Col96] to study the
overconvergent eigenforms of U. An overconvergent modular form f is called a generalized eigenform
of U of slope β ∈ Q if there is a polynomial Q(T ) ∈ L0[T ] such that all of its roots (in L̄0) have
valuation β and Q(U)(f) = 0. Let d(K ′, k, β) denote the dimension of space of overconvergent
generalized eigenforms of slope β, level K ′, and weight k. We prove the following theorem.

Theorem 1.1. There exists an M > 0 depending only on β, K ′, and D, such that if for integers
k, k′, we have k ≡ k′ mod pM(q − 1), then

d(K ′, k, β) = d(K ′, k′, β).

Moreover d(K ′, k, β) is uniformly bounded for all k ∈ Z.

We shall mention that the P-adic modular forms defined here are in level ‘away from P’.
These include all modular forms of level ‘divisible’ by P, but with trivial character at P.
We will address the case of ‘level divisible by P’ in a future work.
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Despite the lack of q-expansions in this setting, we can define a notion of congruence modulo
powers of π for P-adic modular forms (of possibly different weights). Our setting is quite suitable to
study such congruences. Indeed in this paper we already prove a congruence modulo π between two
P-adic modular forms (of the same weight), the analogue of which in the classical setting is proven
by the q-expansion principle (see Theorem 14.1). We define and study this notion of congruence in
an upcoming article where we prove an analogue of Theorem A of [Col97] in this context.

2. Notation and setup

Our reference for this section is [Car86]. Let p be a prime number. Let F be a totally real field of
degree d > 1 with τi : F → R for 1 � i � d its embeddings in R (the case F = Q is done in [Kas99]).
We will denote τ1 simply by τ . The primes of F which lie above p are denoted by P1, . . . ,Pm, and
we will call P1 simply P. Let FP denote the completion of F at P. Let OP be the ring of integers
of FP with a uniformizer π and residue field κ of order q. We will assume that q > 3.

Let B be a quaternion algebra over F which is split at τ and ramified at all other infinite places.
We also assume that B is split at P.

Let λ < 0 be a rational number such that Q(
√
λ) splits at p. Define E = F (

√
λ). By choosing a

square root of λ in C, the embeddings τi : F → R can be extended to embeddings τi : E → C for
1 � i � d.

We always consider E to be a subfield of C via τ1 = τ . Choose a square root µ of λ in Qp.
The morphism E → Fp ⊕ Fp which sends x+ y

√
λ to (x+ yµ, x− yµ) extends to an isomorphism

E ⊗Qp
∼−→ Fp ⊕ Fp ∼−→ (FP1 ⊕ · · · ⊕ FPm)⊕ (FP1 ⊕ · · · ⊕ FPm),

which gives an inclusion of E in FP via the first projection

E ↪→ E ⊗Qp
∼−→ Fp ⊕ Fp pr1−→ Fp

pr1−→ FP .

Let z �→ z̄ denote the conjugation with respect to F of E. Define D = B ⊗F E and denote by
l �→ l̄ the product of the canonical involution of B with the conjugation of E over F . Let V denote
the underlying Q-vector space of D with left action of D. Choose δ ∈ D such that δ̄ = δ and define
an involution on D by l∗ = δ−1 l̄δ. Choose α ∈ E such that ᾱ = −α. One can define a symplectic
form Ψ on V : for v,w ∈ V define

Ψ(v,w) = trE/Q(α trD/E(vδw∗)).

The symplectic form Ψ is an alternating nondegenerate form on V and satisfies

Ψ(lv, w) = Ψ(v, l∗w).

Let G′ be the reductive algebraic group over Q such that for any Q-algebra R, G′(R) is group
of D-linear symplectic similitudes of (V ⊗Q R,Ψ ⊗Q R). Let S denote ResC/R(Gm). In [Car86] a
morphism h′ : S → G′

R is defined such that X ′, the G′(R)-conjugacy class of h′, can be identified

with the complex upper half plane, H+, and the composition S h′−→ G′
R → GL(VR) defines a

Hodge structure on VR which is of type {(−1, 0), (0,−1)}. One can choose δ in such a way that Ψ
becomes a polarization for this Hodge structure, which is to say that the form on VR defined by
(x, y)→ Ψ(x, yh′(i)−1) is positive definite.

Let OB be a fixed maximal order of B and fix an isomorphism OB⊗OF
OP

∼−→ M2(OP ). Let OD
be a maximal order of D. Let VZ denote the corresponding lattice in V . The above mentioned
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decomposition of E ⊗Qp induces the following decompositions of D ⊗Qp and OD ⊗ Zp:

OD ⊗ Zp = OD1
1
⊕ · · · ⊕ OD1

m
⊕ OD2

1
⊕ · · · ⊕ OD2

m⋂ ⋂ ⋂ ⋂ ⋂
D ⊗Qp = D1

1 ⊕ · · · ⊕ D1
m ⊕ D2

1 ⊕ · · · ⊕ D2
m

where each Dk
j is an FPj -algebra isomorphic to B⊗F FPj . In particular, D1

1 and D2
1 are isomorphic to

M2(FP ), and l �→ l∗ switches D1
j and D2

j . One can choose OD, α, δ in such a way that the following
conditions are satisfied:

i) OD is stable under the involution l �→ l∗;
ii) each ODk

j
is a maximal order in Dk

j and OD2
1
↪→ D2

1 = M2(FP ) identifies with M2(OP );

iii) Ψ takes integer values on VZ;

iv) Ψ induces a perfect pairing Ψp on VZp = VZ ⊗ Zp.

Each OD ⊗ Zp-module Λ admits a decomposition similar to that of OD ⊗ Zp,

Λ = Λ1
1 ⊕ · · · ⊕ Λ1

m ⊕ Λ2
1 ⊕ · · · ⊕ Λ2

m,

such that each Λkj is an ODk
j
-module. The M2(OP )-module Λ2

1 decomposes further as the direct sum

of two OP -modules Λ2,1
1 and Λ2,2

1 by choosing idempotents e and f = 1− e in M2(OP ).
The finite adelic points of G′ can be described as

G′(Af ) = Q∗
p ×GL2(FP )× (B ⊗F FP2)

∗ × · · · × (B ⊗F FPm)∗ ×G′(Af,p).

As was mentioned earlier, G′(Af ) is the group of D-linear symplectic similitudes of (V ⊗Af , ψ⊗
Af ). We describe how it acts on V ⊗ Af at p. Let

V ⊗Qp = V 1
1 ⊕ · · · ⊕ V 1

m ⊕ V 2
1 ⊕ · · · ⊕ V 2

m

be the decomposition of V ⊗Qp as a D ⊗Qp-module. It turns out that V i
j and V k

l are orthogonal
with respect to Ψ unless i �= k and j = l. Now if (λ, g1, g2, . . . , gm, γ) ∈ G′(Af ), then it acts on V 2

j

by multiplication with gj for 1 � j � m. One can extend the action of gj on V 2
j to V 1

j by the rule
Ψ(gjx1

j , gjx
2
j) = λΨ(x1

j , x
2
j ) for x1

j ∈ V 1
j and x2

j ∈ V 2
j . Finally γ acts on V ⊗ Af,p.

3. Quaternionic Shimura curves over F

In this section we will review some basic facts about certain quaternionic Shimura curves over F .
Our reference is [Car86]. Let G = ResF/Q(B∗). Then G(Q) = B∗ and

G(R) ∼−→ GL2(R)× (H∗)d−1,

where H denotes the Hamiltonian quaternions. The G(R)-conjugacy class of h : S→ GR defined by
h(x+ iy) =

(( x y
−y x

)−1
, 1, . . . , 1

)
can be identified with H± = C \R. Consider the projective system

of Shimura curves over C associated to the pair (G,X), indexed by open-compact subgroups K of
G(Af ) = (B ⊗F Af

F )∗,
MK(C) = G(Q)\G(Af )×H±/K.

Here K acts trivially on H± and by right multiplication on G(Af ). The action of G(Q) on H±

is via G(Q) ↪→ G(R)
pr1−→ GL2(R). There is a canonical model over F for MK(C) denoted by MK

which is smooth and proper. The curves MK are not PEL Shimura curves.
We consider a special class of subgroupsK. Let Kn

P ⊂ GL2(FP ) ∼−→ (B⊗F FP )∗ be the subgroup
consisting of elements of GL2(OP ) which are congruent to identity modulo πn. Let Γ be the restricted
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product of (B ⊗F Fν)∗ for all finite places ν of F but P. Consider subgroups of G(Af ) of the form

K = Kn
P ×H,

where H is an open compact subgroup of Γ. For such K denote MK by Mn,H .
If H is small enough, then M0,H has a smooth and proper model M0,H defined over O(P).

The M0,H for all possible H form a projective system all of whose transition morphisms are étale.
These models are constructed from canonical integral models of certain unitary Shimura curves
which are moduli spaces of PEL abelian schemes. In the next section we will review these curves.

4. Unitary Shimura curves M ′
K′

Let X ′ be the G′(R)-conjugacy class of h′ : S → G′
R. One associates to (G′,X ′) and any subgroup

K ′ ⊂ G′(Af ) which is open and compact, a Shimura curve over C,

M ′
K ′(C) = G′(Q)\G′(Af )×X ′/K ′,

which is a compact Riemann surface. Here K ′ acts on G′(Af ) by multiplication and G′(Q) acts on
X ′ by conjugation. Contrary to the case of modular curves, these curves do not have cusps.

The Riemann surface M ′
K ′(C) has a canonical smooth and proper model M ′

K ′ which is defined
over E. We will use the injection of E in FP defined in § 2 to base change M ′

K ′ to FP . We will
denote this by M ′

K ′ again. The transition morphisms of the projective system {M ′
K ′}K ′ which is

indexed by open compact subgroups of G′(Af ) are étale morphisms.

4.1 Moduli problem over FP

We describe a moduli problem over FP which is represented by M ′
K ′ . We assume K ′ to be small

enough to keep the lattice VẐ = VZ ⊗ Ẑ ⊂ V ⊗ Af invariant.
Let A be an abelian scheme defined over an FP -algebra R which has an action ofOD. Then Lie(A)

is an OD ⊗ Zp-module and hence, from § 2, it admits a decomposition

Lie(A) = Lie1
1(A)⊕ · · · ⊕ Lie1

m(A) ⊕ Lie2
1(A)⊕ · · · ⊕ Lie2

m(A),

where Liekj (A) is a projective R-module with an action of ODk
j
. Furthermore Lie2

1(A) admits a
decomposition

Lie2
1(A) = Lie2,1

1 (A)⊕ Lie2,2
1 (A)

to two isomorphic projective R-modules which have an action of OP . Similarly, any finite flat
subgroup scheme C of A which is killed by a power of p admits an action of OD ⊗ Zp and hence it
decomposes as C1

1 ⊕ · · · ⊕ C1
m ⊕ C2

1 ⊕ · · · ⊕ C2
m. The part C2

1 admits a decomposition C2,1
1 ⊕ C2,2

1

into two isomorphic finite flat subgroups with an OP -action. In particular, (A[pn])kj is defined
for 1 � j � m, and k = 1, 2, and we have a decomposition into a sum of two OP -modules of
(A[pn])21 = (A[pn])2,11 ⊕ (A[pn])2,21 . We will let (A[πn])2,k1 denote the πn-torsion in (A[pn])2,k1 and
define (A[πn])21 := (A[πn])2,11 ⊕ (A[πn])2,21 .

The Shimura curve M ′
K ′ represents the functor

MK ′ : ((FP -algebras)) −→ ((sets))

where for any FP -algebra R,MK ′(R) consists of the isomorphism classes of all quadruples (A, i, θ, ᾱ)
such that:

i) A is an abelian scheme of relative dimension 4d over R with an action of OD via i : OD ↪→
EndR(A), which satisfies

a) the projective R-module Lie2,1
1 (A) has rank one and OP acts on it via OP ↪→ R;
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b) for j � 2, we have Lie2
j(A) = 0;

ii) θ is a polarization of A (of degree prime to p) such that the corresponding Rosati involution
sends i(l) to i(l∗);

iii) ᾱ is a K ′ level structure which is a class modulo K ′ of symplectic OD-linear isomorphisms
α : T̂ (A) ∼−→ VẐ (locally in étale topology).

Here T̂ (A) =
∏
p Tp(A) denotes lim←−nA[n] as a sheaf over Spec(R) in the étale topology and the

symplectic form on T̂ (A) comes from the Weil pairing composed with the polarization θ. Note that
the condition on the Lie algebra is an equivalent form of the trace condition (coming from h′) when
the base is FP .

Let Γ′ = G′(Af,p) × (B ⊗F FP2)
∗ × · · · × (B ⊗F FPm)∗. As shown in § 2, we have G′(Af ) =

Q∗
p ×GL2(FP )× Γ′. We will only consider subgroups of the form

K ′ = Z∗
p ×Kn

P ×H ′ ↪→ Q∗
p ×GL2(FP )× Γ′,

where Kn
P is defined in § 3 and H ′ is an open compact subgroup of Γ′. We sometimes denote such

M ′
K ′ by M ′

n,H′ . For this particular choice of K ′ the above moduli problem can be stated differently.
Let T̂ p(A) denote

∏
l �=p Tl(A) and

Tp(A) = (Tp(A))11 ⊕ · · · ⊕ (Tp(A))1m ⊕ (Tp(A))21 ⊕ · · · ⊕ (Tp(A))2m
be the decomposition of Tp(A) as an OD ⊗ Zp-module. Denote (Tp(A))22 ⊕ · · · ⊕ (Tp(A))2m by TP

p .
Let Ŵ p denote VZ ⊗ Ẑp and WP

p denote the direct sum (VZp)22 ⊕ · · · ⊕ (VZp)2m. The level structure
ᾱ in the description of the functorMK ′ can be replaced with the following data:

1) αP is an isomorphism of OP/πn-modules αP : (A[πn])2,11
∼−→ (π−nOP/OP )2;

2) ᾱP is a class of isomorphisms αP = αP
p ⊕αp : TP

p (A)⊕ T̂ p(A) ∼−→WP
p ⊕ Ŵ p modulo H ′, with

αP
p linear and αp symplectic.

When n = 0 the condition 1 disappears.

4.2 Moduli problem over OP
Let K ′ = Z∗

p ×K0
P ×H ′ be an open compact subgroup of G′(Af ). When H ′ is small enough there

is a smooth and proper scheme M′
K ′ = M′

0,H′ defined over OP such that M′
0,H′ ⊗FP

∼−→M ′
0,H′ and

M′
0,H′ represents the functor

M0,H′ : ((OP -algebras)) −→ ((sets))

such that for any OP -algebra R,M0,H′(R) is the set of all isomorphism classes of (A, i, θ, ᾱP ) such
that:

i) A is an abelian scheme over R of relative dimension 4d equipped with an action of OD given
by i : OD ↪→ EndR(A) such that
a) the projective R-module Lie2,1

1 (A) has rank one and OP acts on it via OP ↪→ R,
b) for j � 2, we have Lie2

j(A) = 0;
ii) θ is a polarization of A of degree prime to p such that the corresponding Rosati involution

sends i(l) to i(l∗);
iii) ᾱP is a class of isomorphisms αP = αP

p ⊕αp : TP
p (A)⊕ T̂ p(A) ∼−→WP

p ⊕ Ŵ p modulo H ′, with
αP
p linear and αp symplectic.

There is a universal (A′
K ′ = A′

0,H′ , i, θ, ᾱP ) defined over M′
0,H′ such that any (A, i, θ, ᾱP ) over

an OP -algebra R is obtained by pulling back the universal quadruple via the corresponding mor-
phism Spec(R) → M′

0,H′ . Let ε : A′
0,H′ → M′

0,H′ denote the structure map. The OM′
0,H′ -module
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ε∗Ω1
A′

0,H′/M′
0,H′

is an OD ⊗ Zp-module. Let ω = ωA′
0,H′/M′

0,H′ denote (ε∗Ω1
A′

0,H′/M′
0,H′

)2,11 . A similar

construction could be done for any (A, i, θ, ᾱP ) defining ωA/R, which could also be obtained by
pulling back ωA′

0,H′/M′
0,H′ via the morphism Spec(R) → M′

0,H′ . We usually drop the subscript and

use ω whenever there is no confusion. The fact that Lie2,1
1 (A′

0,H′) is locally free of rank one shows
that ω is indeed a line bundle over M′

0,H′ . We have the following Kodaira–Spencer isomorphism in
this case.

Proposition 4.1.

i) ωA′
0,H′/M′

0,H′ ⊗ ω(A′
0,H′ )∨/M′

0,H′
∼−→ Ω1

M′
0,H′/OP .

ii) There is a noncanonical isomorphism (ωA′
0,H′/M′

0,H′ )
⊗2 ∼−→ Ω1

M′
0,H′/OP .

Proof. For part i adopt the proof of Lemma 7 in [DT94]. For part ii note that since θ is prime to
p, the rank of the kernel of θ is invertible on M′

0,H′ and hence θ is étale. This gives an isomorphism
ωA′

0,H′/M′
0,H′

∼−→ ω(A′
0,H′ )∨/M′

0,H′ .

Finally, we state Corollary 4.5.4 of [Car86] which relates the Shimura curves M ′
0,H′ and M0,H .

Let F nr
P denote the maximal unramified extension of FP .

Theorem 4.2. Let H ⊂ Γ be a small enough open compact subgroup, and NH a connected com-
ponent of M0,H ⊗ F nr

P . Then there exists an open compact subgroup H ′ ⊂ Γ′, and a connected
component of N ′

H′ of M ′
0,H′ ⊗ F nr

P , such that NH and N ′
H′ are isomorphic over F nr

P .

As we explained in § 1, this establishes a close connection between automorphic forms on the
two types of Shimura curves. From now on we will confine our attention to Shimura curves M ′

K ′ .

4.3 Formal OP-module and π-divisible subgroup of (A, i, θ, ᾱP)
Let R be a π-adically complete OP -algebra. Let (A, i, θ, ᾱP ) over R be as in § 4.2. Let A[p∞] =
lim−→A[pn] be the p-divisible subgroup of A. Then

A[p∞] = (A[p∞])11 ⊕ · · · ⊕ (A[p∞])1m ⊕ (A[p∞])21 ⊕ · · · ⊕ (A[p∞])2m

and we have a decomposition (A[p∞])21 = (A[p∞])2,11 ⊕(A[p∞])2,21 . We call (A[π∞])2,11 := lim−→(A[πn])2,11

the π-divisible subgroup of (A, i, θ, ᾱP ) (see § 4.1).
Since θ is prime to p, θ : A[p∞] → (A[p∞])∨ is an isomorphism. Since the involution ∗ inter-

changes OD1
j

and OD2
j
, θ induces isomorphisms

(A[p∞])1j
θ−→ ((A[p∞])2j )

∨.

Since Lie2
j(A) = 0 for j � 2, we know that A[p∞]2j is étale for j � 2.

4.3.1 Formal OP -modules. By a formal OP -module G over R we mean a formal group law G of
dimension one with an action of OP where 1 acts as identity, and the action of OP on Lie(G) is via
the structural morphism OP → R. The height of a formal OP -module G is an integer ht(G) such
that rk(G[πj ]) = qjht(G) for any j � 0. Let [π]Ḡ denote the power series giving the multiplication
by π in the reduction of G modulo π. Then ht(G) can be characterized as the largest integer n such
that [π]Ḡ is a power series in xq

n
. If π = 0 in R, then there are morphisms Frq : G → G(q) and

V : G(q) → G such that Frq(x) = xq and V(Frq(x)) = [π]G and Frq(V(x)) = [π]G(q) .
Let GA denote the formal completion of A at its identity section. Zariski locally on the base GA

is a formal group law with an action of OD. Since GA has also an action of Zp it decomposes as an

366

https://doi.org/10.1112/S0010437X03000150 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000150


P-adic modular forms over Shimura curves

OD ⊗ Zp-module. By definition of the moduli problem in § 4.2 the component (GA)2,11 is a formal
OP -module of dimension one.

Proposition 4.3. Let R be an OP -algebra and G a formal OP -module over R. There exists a
coordinate x on G such that for each (q− 1)th root of unity ζ ∈ OP we have [ζ](x) = ζx (where [ζ]
denotes the power series in x giving the action of ζ ∈ OP on G). In this coordinate the action of π
takes the special form

[π](x) = πx+ axq +
∞∑
j=2

cjx
j(q−1)+1,

where a, cj(j � 2) ∈ R and cj ∈ πR unless j ≡ 1 mod q.

Proof. This can be proven in exactly the same way as Proposition 3.6.6 in [Kat73] by replacing
F,V by Frq,V in this context.

4.4 Quotient of (A, i, θ, ᾱP) by a finite flat subgroup of A

We will define the quotient of a test object (A, i, θ, ᾱP ) as in § 4.2 by certain finite flat subgroups
of A. Let C ⊂ A be a finite flat subgroup scheme. We assume C to satisfy the following properties:

i) C is killed by q, is OD-invariant, and has rank qdim(A);
ii) the isomorphism θ : A[q] ∼−→ A[q]∨ takes C ⊂ A[q] to (A[q]/C)∨ ⊂ A[q]∨;
iii) CP

p := C2
2 ⊕ · · · ⊕C2

m = 0 or CP
p = (A[q])22 ⊕ · · · ⊕ (A[q])2m.

If C satisfies these conditions, we say C is of type 1 if CP
p = 0 and of type 2 if CP

p = (A[q])22 ⊕
· · · ⊕ (A[q])2m. Note that any C of type 1 or 2 is uniquely determined by C2,1

1 .
Since C is OD-invariant A′ = A/C inherits an action of OD which makes the natural projection

A→ A′ OD-equivariant. We will denote this action by i′.

4.4.1 Definition of θ′. Let (A, i) be an abelian scheme with an action of OD and θ a polarization
of A. We will say that θ is compatible with the action of OD if the associated Rosati involution
coincides with l �→ l∗ on OD.

Lemma 4.4. Let A and A′ be abelian schemes over R each equipped with an action of OD and
f : A → A′ be an OD-equivariant isogeny of kernel C and degree qdim(A). Let θ : A → A∨ be a
polarization compatible with the action of OD. If θ takes C ⊂ A onto (A[q]/C)∨ ⊂ A∨, then there
is a unique polarization θ′ : A′ → (A′)∨ which is compatible with the action of OD and such that
the following diagram is commutative:

A′

θ′

��

g �� A

θ

��
(A′)∨

f∨ �� A∨

where g is the unique isogeny such that g ◦ f = [q] on A. Furthermore deg(θ) = deg(θ′).

Proof. Note that f identifies A′ with A/C. Since Ker(g) ∼−→ A[q]/C, we know that the kernel of
g∨ : A∨ → (A′)∨ is (A[q]/C)∨ ⊂ A∨. This identifies (A′)∨ with A∨/(A[q]/C)∨. Now since θ takes C
onto (A[q]/C)∨, it defines an isogeny (indeed a polarization) θ′ : A′ → (A′)∨ for which the above
diagram is commutative. The compatibility of θ′ with the action of OD is the result of the same
fact for θ and the fact that f is OD-equivariant. Uniqueness is clear from construction. The fact
that rk(C) = qdim(A) implies deg(θ) = deg(θ′).
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4.4.2 Definition of (ᾱP )′. Let f : A→ A′ and g : A′ → A be as above. Since rk(C) is relatively
prime to any prime number different from p, the map T p(g) : T p(A′) → T p(A) induced by g is an
isomorphism. Define

(αp)′ = αp ◦ T p(g).
We define (αP

p )′ depending on the type of C. Let C be of type 1. Then f induces an isomorphism
TP
p (f) : TP

p (A) ∼−→ TP
p (A′) as (Ker(f))Pp = 0. We define

(αP
p )′ := αP

p ◦ (TP
p (f))−1.

If C is of type 2, then Ker(g) is of type 1 and therefore g induces an isomorphism TP
p (g) : TP

p (A′) ∼−→
TP
p (A). We define

(αP
p )′ := αP

p ◦ TP
p (g).

Finally (ᾱP )′ is defined as the class of (αP
p )′ ⊕ (αp)′ modulo K ′. Note that

((ᾱP
p ⊕ ᾱp)′)′ = ᾱP

p ⊕ qᾱp.

In the rest of this section we will define a pullback morphism from ω⊗k
A/R to ω⊗k

A′/R. The pullback
morphism g∗, defined via g : A′ → A, satisfies g∗ ◦ f∗ = qk. We will however need a more refined
pullback.

Proposition 4.5. Let C be of type 1 or 2. Assume C2,1
1 ⊂ (A[π])2,11 . Let f : A → A/C be the

projection. Then for each k � 0 there is a functorial R-morphism

(f ′)∗ : ω⊗k
A/R → ω⊗k

(A/C)/R

such that (f ′)∗ ◦ f∗ = πk and f∗ ◦ (f ′)∗ = πk. Furthermore if π = 0 in R and f = Frq, then
(f ′)∗ = V∗.

Proof. It is enough to construct (f ′)∗ locally. The OD-isogeny f : A → A/C induces a morphism
of formal OP -modules, [f ] : (GA)2,11 → (GA/C)2,11 , whose kernel is the intersection of C2,1

1 with
(GA)2,11 , and hence we have Ker([f ]) ⊂ (GA)2,11 [π] = Ker[π]. Therefore, there is a morphism of
formal OP -modules [f ′] making the following diagram commutative:

(GA)2,11

[π] ��

[f ]

�������������������
(GA)2,11

(GA/C)2,11

[f ′]

��

Therefore, [f ′] ◦ [f ] = [π]. Now just define (f ′)∗ to be [f ′]∗ : ω(GA)2,1
1
→ ω(GA/C)2,1

1
noting

that ωA/R = ω(GA)2,1
1

. Now (f ′)∗ satisfies the desired property since the action of [π] on ω is via
multiplication by π. If f = Frq, then f ′ = V and hence we have (f ′)∗ = V∗ (see § 4.3.1).

5. Modular forms with respect to D

Let H ′ be an open compact subgroup of Γ′ = G′(Af,p) × (B ⊗F FP2)
∗ × · · · × (B ⊗F FPm)∗ and

K ′ = Z∗
p ×K0

P ×H ′ which is an open compact subgroup of G′(Af ). Let R0 be an OP -algebra.
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5.1 Modular forms of level K′ = Zp
∗ × K0

P × H′

A modular form with respect to D of weight k ∈ Z and level K ′ over R0 is a rule which assigns to
any (A, i, θ, ᾱP , ω) over R, where

i) R is an R0-algebra,

ii) (A, i, θ, ᾱP ) is as in § 4.2,
iii) ω is a basis for ωA/R,

an element f(A, i, θ, ᾱP , ω) ∈ R such that

i) f(A, i, θ, ᾱP , ω) only depends on the R-isomorphism class of (A, i, θ, ᾱP , ω),

ii) the formation of f(A, i, θ, ᾱP , ω) commutes with arbitrary base change of R0-algebras,

iii) for any λ ∈ R∗ we have

f(A, i, θ, ᾱP , λω) = λ−kf(A, i, θ, ᾱP , ω).

Alternatively one can define a modular form with respect to D of weight k ∈ Z and level K ′

over R0 to be a rule which assigns to any quadruple (A, i, θ, ᾱP ) as in § 4.2 a section f(A, i, θ, ᾱP )
of ω⊗k

A/R over Spec(R) such that

i) f(A, i, θ, ᾱP ) depends only on the isomorphism class of (A, i, θ, ᾱP ) over R,

ii) the formation of f(A, i, θ, ᾱP ) commutes with arbitrary change of base over R0.

The two definitions are related by f(A, i, θ, ᾱP ) = f(A, i, θ, ᾱP , ω)ω⊗k. We denote the space of
modular forms of weight k and level K ′ over R0 by SD(R0,K

′, k). From the definition it is immediate
that if K ′ is small enough then

SD(R0,K
′, k) = H0(M′

K ′ ⊗R0, ω
⊗k).

6. The Hasse invariant

Let (A, i, θ, ᾱP ) over κ̄ be as in § 4.2, and (GA)2,11 be the associated formal OP -module. The height
of (GA)2,11 as a formal OP -module is either one or two.

We say that (A, i, θ, ᾱP ) is supersingular if ht((GA)2,11 ) = 2. We will construct the Hasse invariant
H which is a modular form of weight q− 1 over M′

K ′ ⊗ κ and vanishes exactly at the supersingular
points. We will construct H as a section of ω⊗q−1 over M′

K ′ ⊗ κ.
Let W = Spec(R) be an open affine subset of M′

K ′ ⊗ κ. Let A be the restriction of A′
K ′ ⊗ κ to

W . Choose a nonvanishing section of ωA/R, say ω, on W . Choose a coordinate on (GA)2,11 such that
ω = (1 + a1x+ a2x

2 + . . . ) dx. From § 4.3.1 we have [π](x) = V(xq) = axq + . . . . Define

H|W := aω⊗q−1.

We show that this definition is independent of the choice of ω and the dual coordinate. Replacing
ω by ω′ = λω where λ is a unit of R amounts to replacing the coordinate x with another coordinate
y = λx+ . . . . This in turn amounts to replacing a with a′ = λaλ−q = aλ1−q. But then

a′ω′⊗q−1 = aλ1−q(λω)⊗q−1 = aω⊗q−1.

This argument shows that the locally defined sections of ω⊗q−1 glue together to give a global
section H of this line bundle on M′

K ′ ⊗ κ which we define to be the Hasse invariant.
Assume that H vanishes at a geometric point (A, i, θ, ᾱP ) of M′

K ′⊗κ. Then for a choice of coor-
dinate x on (GA)2,11 we have [π](x) = V(xq) with V(0) = V′(0) = 0. This implies rk((GA)2,11 [π]) �= q
which means that (A, i, θ, ᾱP ) is supersingular. We have shown the following.

369

https://doi.org/10.1112/S0010437X03000150 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000150


P. L Kassaei

Proposition 6.1. If π = 0 in R0, then there is an H ∈ SD(R0,K
′, q − 1) which vanishes at a

geometric point (A, i, θ, ᾱP ) of M′
K ′ ⊗R0 exactly when (A, i, θ, ᾱP ) is supersingular.

Following Proposition 4.3 we can now show the following.

Proposition 6.2. Let R be an OP -algebra and (A, i, θ, ᾱP ) be as in § 4.2. Let x be a coordinate
on (GA)2,11 as in Proposition 4.3 and ω a differential dual to x. Then

[π](x) = πx+ axq +
∞∑
j=2

cjx
j(q−1)+1,

where a, cj(j � 2) ∈ R and cj ∈ πR unless j ≡ 1 mod q. Furthermore,

a ≡ H(A, i, θ, ᾱP , ω) mod π.

Proof. Reducing [π](x) modulo π and noting that over R/π we have [π](x) = V(xq), we find out
that a ≡ V′(0) mod π. Hence, by the definition of H we get the desired congruence.

As is the case for the classical Hasse invariant, we have the following important property of H.
We will use this in Lemma 8.2 which is itself needed in the proof of Proposition 13.1 and hence
Corollary 13.2.

Proposition 6.3. H has simple zeros on M′
K ′ ⊗ κ̄.

Proof. Let x̄ = (A, i, θ, ᾱP ) be a geometric point of M′
K ′ ⊗ κ̄ at which H has a zero of multiplicity

bigger than one. Let Ox̄ denote the local ring of M′
K ′⊗κ̄ at x̄ andM denote its maximal ideal. Let G

denote the universal formal OP -module at Ox̄. Then by assumption H = 0 in G2 := G⊗ (Ox̄/M2).
So G2 has height two. This implies that V(x) = L(xq) with L′(0) �= 0. So V(x) = xq· (unit in
(Ox̄/M2)[[x]]). Hence, V : G(q)

2 → G2 and Frq : G(q)
2 → G

(q2)
2 (which is given by Frq(x) = xq) have

the same kernel. This implies that

G2
∼−→ G

(q)
2 /Ker(V) ∼−→ G

(q)
2 /Ker(Frq)

∼−→ G
(q2)
2 .

On the other hand, the q2th power map Ox̄/M2 q2−→ Ox̄/M2 kills M and hence factors
through κ̄. This means that G(q2)

2 and hence G2 is defined over κ̄. However, this is impossible
since G2 is reduction moduloM2 of the universal G.

7. Lifting the Hasse invariant

In the classical setting the Eisenstein series of weight p−1, Ep−1(q), which is a modular form of weight
p−1 and level 1 over Zp gives a canonical lifting of the Hasse invariant to Zp (p > 3). Because of the
lack of q-expansions there are no Eisenstein series in this context. However, H can be noncanonically
lifted to a modular form of weight q−1 and level K ′ over OP . This lifting will help us define P-adic
modular forms over our Shimura curves by giving a way to measure the supersingularity of a test
object (A, i, θ, ᾱP ). Here K ′ = Z∗

p ×K0
P ×H ′ is an open compact subgroup of G′(Af ).

Lemma 7.1. If H is small enough, then H1(M′
K ′ , ω⊗k) = 0 for k � 3.

Proof. Assume that H ′ is small enough so that M ′
K ′ has genus bigger than zero. First note that by

Proposition 4.1 we have H1(M′
K ′⊗ F̄P , ω⊗k) = H0(M′

K ′⊗ F̄P , ω⊗2−k)∨ = 0 when k � 3. This shows
that

H1(M′
K ′ , ω⊗k)⊗ FP = 0

and therefore πNH1(M′
K ′ , ω⊗k) = 0 for some N � 0. With the same reasoning we get

H1(M′
K ′ ⊗ κ̄, ω⊗k) = 0.
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Therefore,
0 = H1(M′

K ′ ⊗ κ, ω⊗k) = H1(M′
K ′ , ω⊗k)⊗ κ.

This implies πH1(M′
K ′ , ω⊗k) = H1(M′

K ′ , ω⊗k). However, some power of π kills H1(M′
K ′, ω⊗k).

This proves the lemma.

Proposition 7.2. If H is small enough and q > 3, then there is an EDq−1 in SD(OP ,K ′, q− 1) such
that

EDq−1 ≡ H mod π.

Proof. Let ω denote ωA′
K′/M′

K′ . The obstruction to lifting sections of ω⊗q−1⊗κ to sections of ω⊗q−1

is H1(M′
K ′ , ω⊗q−1) which by the above lemma vanishes under the assumptions.

Fix a lifting once and for all. When there is no confusion we simply denote EDq−1 by Eq−1.
Later, in Corollary 13.2 we will show that our theory is independent of the choice of Eq−1.

8. P-adic modular forms with respect to D

Assume q > 3 and let R0 be a π-adically complete OP -algebra. Let r ∈ R0. Following Katz [Kat73]
we define the R0-module SD(R0, r,K

′, k) of P-adic modular forms (with respect to D) over R0 of
growth condition r, level K ′ = Z∗

p×K0
P×H ′, and weight k ∈ Z. Here H ′ is as in § 4.1 (corresponding

to level structure away from P).

Definition 8.1. An element f ∈ SD(R0, r,K
′, k) is a rule which assigns to any rq-test object

(A, i, θ, ᾱP , Y, ω) where:

i) R is an R0-algebra in which π is nilpotent;
ii) (A, i, θ, ᾱP ) is as in § 4.2;
iii) ω is a basis for ωA/R;

iv) Y is an element of R such that Y Eq−1(A, i, θ, ᾱP , ω) = r;

an element f(A, i, θ, ᾱP , Y, ω) ∈ R such that

i) f(A, i, θ, ᾱP , Y, ω) depends only on the isomorphism class of (A, i, θ, ᾱP , Y, ω) over R;
ii) the formation of f(A, i, θ, ᾱP , Y, ω) commutes with arbitrary base change of R0-algebras in

which π is nilpotent;
iii) for any λ ∈ R∗ we have

f(A, i, θ, ᾱP , λq−1Y, λω) = λ−kf(A, i, θ, ᾱP , Y, ω).

We may equivalently think of f as a rule which assigns to any r-test object (A, i, θ, ᾱP , Y ), where
(A, i, θ, ᾱP ) is as in § 4.2 over an R0-scheme S on which π is nilpotent and Y is a section of ω⊗1−q

A/S

such that Y Eq−1 = r, a section f(A, i, θ, ᾱP , Y ) of ω⊗k
A/S over S such that

i) f(A, i, θ, ᾱP , Y ) depends only on the isomorphism class of (A, i, θ, ᾱP , Y ) over S;
ii) the formation of f(A, i, θ, ᾱP , Y ) commutes with arbitrary base change of R0-schemes on which

π is nilpotent;

It is easy to see that the two definitions are linked by

f(A, i, θ, ᾱP , Y w⊗1−q) = f(A, i, θ, ᾱP , Y, ω)ω⊗k.

From the definition it is evident that

SD(R0, r,K
′, k) = lim←−

n�1

SD(R0/π
n, r,K ′, k).
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One can make the same definitions by allowing R to vary in π-adically complete R0-algebras.
Any modular form f of weight k and level K ′ with respect to D determines an element f � of
SD(R0, r,K

′, k) by defining

f �(A, i, θ, ᾱP , Y ) = f(A, i, θ, ᾱP ),

which we usually denote by f again.
The functor F : ((Schemes/R0))→ ((Sets)), which associates to any scheme S over R0, the set

of all isomorphism classes of (A, i, θ, ᾱP , Y ) over S with (A, i, θ, ᾱP ) as in § 4.2 and Y a section of
ω⊗1−q on S which satisfies Y Eq−1 = r, is representable by Yr ⊗R0 where

Yr ⊗R0 = SpecM′
K′⊗R0

(Symm(ω⊗q−1)/(Eq−1 − r)).

This can be easily seen from the moduli theoretic description of M′
K ′ ⊗ R0. (The R0 in the

notation is to stress the ring of definition, and it is not to suggest that Yr ⊗R0 is obtained by base
extension of a scheme over OP .)

The universal object over Yr⊗R0 is (Br⊗R0, i, θ, ᾱ
P , Yr), where (Br⊗R0, i, θ, ᾱ

P ) is the pullback
of (A′

K ′ ⊗R0, i, θ, ᾱ
P ) under the natural projection Yr ⊗R0

µ−→M′
K ′ ⊗R0 and Yr is the restriction

of the canonical section of µ∗ω⊗1−q on SpecM′
K′⊗R0

(Symm(ω⊗q−1)) to Yr ⊗ R0. We often denote
µ∗ωA′

K′/M′
K′ by ω or sometimes by ωBr⊗R0/Yr⊗R0

if we need to be more specific.

We will use the following lemma a few times.

Lemma 8.2. Assume that R0 is an OP -algebra with a maximal ideal generated by π0, and residue
field κ0. The reduction modulo π0 of Yr ⊗R0, namely Yr ⊗ κ0, is reduced.

Proof. This is clear when r is a unit. Assume v(r) > 0. Let V = Spec(R) be an affine inside M′
K ′⊗R0

such that ω is a nonvanishing section of ω on V and Eq−1|V = aω⊗q−1. Then the pullback of V
under µ in Yr ⊗ R0 is isomorphic to Spec(R[x]/(ax − r)) and hence the reduction modulo π0 of it
is (R/π0)[x]/(āx) where ¯ denotes reduction modulo π0. Assume that f(x)n = 0 in (R/π0)[x]/(āx).
We can assume f(x) to be of minimal degree representing its class. Let b ∈ R/π0 denote the leading
coefficient of f(x). Then ā|bn. However, āω⊗q−1 is the restriction to V ⊗R/π0 of the Hasse invariant
which implies that ā has simple zeros by Proposition 6.3. Therefore, we have ā|b which shows that
f(x) can be represented by a polynomial of lower degree unless f(x) = 0.

Proposition 8.3. If π is nilpotent in R0, then there is a canonical isomorphism

SD(R0, r,K
′, k) ∼−→ H0

(
M′
K ′ ⊗R0,

⊕
j�0

ω⊗k+j(q−1)/(Eq−1 − r)
)
.

Proof. Since π is nilpotent in R0, any R0-algebra is π-adically complete. This implies

SD(R0, r,K
′, k) ∼−→ H0(Yr ⊗R0, ω

⊗k).

Therefore, we have

H0(Yr ⊗R0, ω
⊗k) = H0(SpecM′

K′⊗R0
(Symm(ω⊗q−1)/(Eq−1 − r)), ω⊗k)

= H0

(
M′
K ′ ⊗R0,

(⊕
j�0

ω⊗j(q−1)/(Eq−1 − r)
)
⊗ ω⊗k

)

= H0

(
M′
K ′ ⊗R0,

⊕
j�0

ω⊗k+j(q−1)/(Eq−1 − r)
)
,

which proves the desired result.
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Proposition 8.4. Let R0 be a π-adically complete OP -algebra flat over OP and r ∈ R0 not a zero
divisor. Assume q > 3 and either k = 0 or k � 3. Then the natural map

lim←−
n�0

(⊕
j�0

SD(OP ,K ′, k + j(q − 1))
) ⊗

OP

R0/π
n/(Eq−1 − r) ∼−→ SD(R0, r,K

′, k)

is an isomorphism. The above map is induced by taking inverse limit of the natural maps(
H0

(
M′
K ′,

⊕
j�0

ω(k+j(q−1))

)
⊗R0/π

n

)
/(Eq−1 − r)→ SD(R0/π

n, r,K ′, k).

Proof. Use Lemma 7.1 and adopt the proof of Theorem 2.5.1 in [Kat73].

9. P-adic modular forms in the rigid setting
In § 8 we derived a description of P-adic modular forms as sections of line bundles over certain
schemes when π is nilpotent in the ground ring. To give a similar description for more general
ground rings we have to work with formal schemes and rigid analytic varieties.

We recall some general facts. Let L0 be the field of fractions of R0, an OP -algebra which is a
complete valuation ring with normalized valuation such that v(π) = 1. Let π0 denote a uniformizer
and define | |v = (1/q)v . There exists a functor

an : ((Algebraic Varieties/L0))→ ((Rigid Spaces/L0))
X �→ Xan.

This functor takes any sheaf of modules F on X to a sheaf of modules Fan on Xan. We have
the following rigid GAGA theorem for this functor.

Theorem 9.1. If X is a closed subscheme of Pn, then

i) F �→ Fan is an equivalence of categories between algebraic and rigid coherent sheaves;

ii) H i(X,F) ∼−→ H i(Xan,Fan) for each i;

iii) the functor ‘an’ is a fully faithful functor.

Therefore, we can think of any algebraic variety over L0 as a rigid analytic space via an. Often we
will let X denote its analytification Xan. There are, of course, many rigid analytic spaces which
are not algebraic. Raynaud constructed a functor which associates a rigid analytic space to any
admissible formal scheme over R0. A formal scheme is admissible if it is flat over R0 and is locally
topologically finitely generated. This functor is described in [BL93].

rig : ((Admissible Formal Schemes/R0))→ ((Rigid Analytic Spaces/L0))

X �→ Xrig.

One can associate to any sheaf of modules F on X a sheaf of modules F rig on Xrig.

Theorem 9.2.
i) The functor rig is a faithful functor.

ii) Any rigid algebraic variety over L0 is in the image of this functor.

iii) If X is a variety over R0 and X̃ is its completion in the maximal ideal of R0, then there is an
open immersion X̃rig ↪→ (X ⊗ L0)an which is an isomorphism when X is proper over R0.

9.1 Formal schemes setting
Recall that in § 8 for any r ∈ R0 we defined Yr ⊗R0 to be SpecM′

K′⊗R0
(Symm(ω⊗q−1)/(Eq−1 − r)).

If r = 1, this is an affine scheme. This is a result of existence of supersingular points on M′
K ′ which

is shown in [Car86], or can be seen by using Riemann–Roch to prove that H has zeros.
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Definition 9.3. Let Ỹr⊗R0 denote the formal scheme over R0 defined by the completion of Yr⊗R0

along the closed subscheme defined by π = 0. Denote the completion of Br ⊗R0 and ω on Yr ⊗R0

by B̃r ⊗R0 and ωB̃r⊗R0/Ỹr⊗R0
or simply ω.

Proposition 9.4. SD(R0, r,K
′, k) = H0(Ỹr ⊗R0, ω

⊗k).

Proof.

H0(Ỹr ⊗R0, ω
⊗k) = lim←−

n�0

H0(Yr ⊗R0/π
n, ω⊗k)

= lim←−
n�0

SD(R0/π
n, r,K ′, k)

= SD(R0, r,K
′, k).

Let r′, r′′ ∈ R0 be such that r′ = rr′′. There is a morphism

Ỹr′′ ⊗R0 → Ỹr′ ⊗R0

which is defined by (A, i, θ, ᾱP , Y ) �→ (A, i, θ, ᾱP , rY ) on the moduli level, and a morphism

Ỹr ⊗R0 → M̃′
K ′ ⊗R0

which is obtained by completion of the natural map Yr ⊗R0 →M′
K ′ ⊗R0 along π = 0.

Proposition 9.5. The formal scheme Ỹr ⊗R0 is flat over R0 and Ỹr ⊗R0 is ‘integrally closed’ in
Ỹr ⊗ L0.

Proof. If r = 1 this is an immediate result of smoothness of M′
K ′ ⊗ R0. Let v(r) > 0. Let W =

Spec(R) be an open affine subset of M′
K ′ ⊗R0 over which there is a basis ω for ω. Assume Eq−1 =

aω⊗q−1 over W . Then the restriction of Ỹr ⊗ R0 to W is given by Spf(R̃〈x〉/(ax − r)) where
R̃ denotes the π-adic completion of R. First we show that R̃〈x〉/(ax − r) is flat over R0 and
hence R̃〈x〉/(ax − r) ⊂ (R̃〈x〉/(ax − r)) ⊗ L0. Let f(x) + (ax − r) ∈ R̃〈x〉/(ax − r) be π0-torsion.
Then π0f(x) = (ax− r)h(x) for some h(x) ∈ R̃〈x〉. Reducing modulo π0, we get 0 = āxh̄(x). So for
any coefficient b of h(x) we know that āb̄ = 0 in R. But āω̄⊗q−1 is the restriction of H to W ⊗R0/π0

and hence ā has a finite number of zeros on W ⊗ R0/π0. This implies b̄ = 0 and hence h(x) is
divisible by π0. In other words f(x)/π0 ∈ (ax− r). This proves the flatness.

Next, we show that R̃〈x〉/(ax− r) ⊂ (R̃〈x〉/(ax− r))⊗L0 is integrally closed. Assume f(x)/π0

is integral over R̃〈x〉/(ax− r). We have an integral equation

(f(x)/π0)j + aj−1(f(x)/π0)j−1 + · · ·+ a0 = 0

in (R̃〈x〉/(ax − r)) ⊗ L0. Multiplying by (π0)j and reducing modulo π0, we get f̄(x)j = 0 in
(R̃〈x〉/(ax−r))⊗R/π0 = (R/π0)[x]/(āx). However, by Lemma 8.2, we have f̄(x) = 0, which means
that f(x)/π0 ∈ R̃〈x〉/(ax − r).

9.2 Rigid setting
We continue the assumptions on R0 as in the beginning of this section. Let L∞ denote the completion
of an algebraic closure of L0 and denote its ring of integers by R∞.

Let X be a reduced proper flat scheme of finite type over R0 and L a line bundle on X. Let l be
a global section of L. Coleman [Col96] explains how to associate to this data affinoid subdomains of
X⊗L0. Let x be a closed point of X⊗L0 with residue field Lx which is a finite extension of L0 and
carries a unique extension of norm of L0. Let Rx denote its ring of integers. Then since X is proper,
the morphism Spec(Lx) → X corresponding to x extends to a morphism fx : Spec(Rx) → X.
Now since Rx is a discrete valuation ring, f∗x(L) is a trivial line bundle generated by a section t.
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Let f∗x(l) = at with a ∈ Rx. Define |l(x)|v = |a|v which is independent of the choice of t. For any
s ∈ |L∞|v there is a unique rigid subspace X(s) of (X ⊗ L0)an which is a finite union of affinoids
and whose closed points are points x of X ⊗ L0 such that |l(x)|v � s. Coleman shows that if X is
an irreducible curve and s ∈ |L∞|v, then X(r) is an affinoid subdomain of X ⊗ L0 unless L = OX
and l is nowhere vanishing in which case X(r) = X.

Definition 9.6. Do the same construction as above with X = M′
K ′⊗R0, L = ω⊗q−1, and l = Eq−1

to obtain affinoid subdomains M ′
K ′(s) of M′

K ′ ⊗ L0 for each s ∈ |L∞|v. Denote the analytification
of ω on M′

K ′ ⊗ L0 and its restrictions to any affinoid M ′
K ′(s) again by ω.

When s = 1, M ′
K ′(1) contains all points at which Eq−1 has norm exactly 1. In other words, it

contains all the points x such that H does not vanish at the reduction of x modulo the maximal
ideal of R0. So M ′

K ′(1) (the ordinary part of M′
K ′ ⊗L0) is obtained by removing from the Shimura

curve those (A, i, θ, ᾱP ) which have a supersingular reduction modulo the maximal ideal of R0.
The complement of M ′

K ′(1) is the union of the finitely many supersingular discs (each disc consists
of all points whose reduction is a fixed supersingular (A, i, θ, ᾱP ) over a finite extension of κ).
Allowing s to be less than 1 corresponds to removing smaller supersingular discs from M′

K ′ ⊗ L0.
The ordinary part, M ′

K ′(1), is an affinoid subdomain of M ′
K ′(s) for each s � 1.

By rigid GAGA Theorem 9.1 modular forms of weight k and level K ′ with respect to D over L0

are exactly the sections of ω⊗k on (M′
K ′ ⊗ L0)an. Following Coleman we will consider the sections

of the same line bundle over the smaller affinoids M ′
K ′(s). We define a convergent modular form of

weight k and level K ′ over L0 to be an element of H0(M ′
K ′(1), ω⊗k). An overconvergent modular

form of weight k, level K ′, and growth condition s over L0 is an element of H0(M ′
K ′(s), ω⊗k) for

some s < 1, s ∈ |L∞|v. These modular forms are called overconvergent since they can be partially
extended to supersingular discs. We will see that these modular forms are related to P-adic modular
forms with respect to D.

Proposition 9.7. Let r ∈ R0. Then Ỹr ⊗ R0 is an admissible formal scheme and there is an
isomorphism (Ỹr ⊗R0)rig

∼−→M ′
K ′(|r|v). If r′ = rr′′, then the following diagram is commutative.

(Ỹr′′ ⊗R0)rig ��

��

M ′
K ′(|r′′|v)

��
(Ỹr′ ⊗R0)rig ��

��

M ′
K ′(|r′|v)

��
(M̃′

K ′ ⊗R0)rig �� (M′
K ′ ⊗ L0)an

Proof. Let {Spec(Sj)}j∈I be an open covering of M′
K ′ ⊗ R0, each element of which intersects the

special fibre and such that the restriction of ω⊗q−1 to Spec(Sj) is trivial and generated by the section
tj. Let Eq−1 = ajtj over Spec(Sj). Then Yr⊗R0 has an open covering, {Spec(Sj [tj]/(ajtj−r))}j∈I ,
with gluing data induced by those of the above open covering of M′

K ′ ⊗ R0. Completing along the
π = 0 subscheme, we obtain Ỹr⊗R0 in which the above covering becomes {Spf(S̃j〈tj〉/(ajtj−r))}j∈I
where S̃ denotes the π-adic completion of S. This shows that Ỹr⊗R0 is locally topologically finitely
generated. Also by Proposition 9.5, Ỹr⊗R0 is flat over R0. Therefore, Ỹr⊗R0 is admissible. Now the
image of Ỹr⊗R0 under the Raynaud’s functor is given by a covering {Sp(S̃j⊗L0〈tj〉/(ajtj−r))}j∈I
with the induced gluing data. On the other hand, {Sp(S̃j ⊗ L0)}j∈I with the induced gluing data
gives us (M′

K ′ ⊗ L0)an. But by Proposition 7.2.3.4 of [BGR84], Sp(S̃j ⊗ L0〈tj〉/(ajtj − r)) is the
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affinoid subdomain of Sp(S̃j ⊗ L0) defined by |aj(x)|v � |r|v. Finally to get the diagram first note
that the lower isomorphism is given by Theorem 9.2, part iii as M′

K ′ ⊗ R0 is proper over R0.
The commutativity of the diagram follows by looking at the image of tj in each chart.

We are now able to link the (over)convergent modular forms to P-adic modular forms with
respect to D.

Corollary 9.8. If r ∈ R0, we have SD(R0, r,K
′, k)⊗ L0 = H0(M ′

K ′(|r|v), ω⊗k).

Proof. By Proposition 9.7, we have

H0(M ′
K ′(|r|v), ω⊗k) = H0((Ỹr ⊗R0)rig, ω⊗k)

= H0(Ỹr ⊗R0, ω
⊗k)⊗ L0

= SD(R0, r,K
′, k)⊗ L0.

Corollary 9.9. SD(R0, r,K
′, 0)⊗ L0 is an L0-affinoid algebra and

M ′
K ′(|r|v) = Sp(SD(R0, r,K

′, 0)⊗ L0).

Corollary 9.10. Let r′′ = rr′. The natural morphism

SD(R0, r
′′,K ′, k)→ SD(R0, r

′,K ′, k)

defined from the transformation of functors (A, i, θ, ᾱP , Y ) �→ (A, i, θ, ᾱP , rY ) is injective.

Proof. The map SD(R0, r
′′,K ′, k)⊗L0 → SD(R0, r

′,K ′, k)⊗L0 is the restriction of sections of ω⊗k

from M ′
K ′(r′′) to M ′

K ′(r′) which is injective. Now Proposition 9.5 gives the result.

We end this section by defining the universal family of test objects over M ′
K ′(|r|v). We define

A′
K ′(|r|v) to be the image of B̃r ⊗R0 under Raynaud’s functor rig,

A′
K ′(|r|v) := (B̃r ⊗R0)rig.

This is a family of test objects (A, i, θ, ᾱP ) over M ′
K ′(|r|v).

10. The canonical subgroup

Throughout this section we assume R0 to be an OP -algebra which is a complete discrete valuation
ring of characteristic 0 with a uniformizer π0 and field of fractions L0 such that v(π) = 1. (Recall
that π is our choice of uniformizer in OP .)

In analogy with the classical case, we will construct the canonical subgroup of a test object
(A, i, θ, ᾱP ) which is not ‘too supersingular’. Roughly speaking, the canonical subgroup of (A, i, θ,
ᾱP) is a lifting of the kernel of Frq in the reduction of (A, i, θ, ᾱP ) in characteristic p. It will be used
in defining the Frobenius morphism of P-adic modular forms.

Theorem 10.1 Canonical subgroups.

i) Let r ∈ R0 with v(r) < q/(q + 1). There is a canonical way to associate to every r-test object
(A, i, θ, ᾱP , Y ), where

– (A, i, θ, ᾱP ) defined over an R0-algebra R is as in § 4.2,
– Y is a section of ω⊗1−q

A/R which satisfies Y Eq−1 = r,

a finite flat subgroup scheme C of A such that

a) C has rank q4d and is stable under the action of OD,
b) C depends only on the R-isomorphism class of (A, i, θ, ᾱP , Y ),
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c) the formation of C commutes with arbitrary base change of π-adically complete
R0-algebras,

d) if π/r = 0 in R, then C can be identified with the kernel of Frobenius morphism Frq : A→
A(q),

e) C is of type 1 (as defined in § 4.4).

ii) Let r ∈ R0 with v(r) < 1/(q+1). There is a canonical way to associate to every (A, i, θ, ᾱP , Y )
as in part i, an rq-test object (A′, i′, θ′, (ᾱP )′, Y ′), where

– (A′, i′, θ′, (ᾱP )′) is the quotient of (A, i, θ, ᾱP ) by C (as defined in § 4.4),
– Y ′ is a section of ω⊗1−q

A′/R which satisfies Y ′Eq−1 = rq,

such that

a) Y ′ depends only on the R-isomorphism class of (A, i, θ, ᾱP ),
b) the formation of Y ′ commutes with arbitrary base change of π-adically complete

R0-algebras,
c) if π/rq+1 = 0 in R, then Y ′ is equal to Y (q) on A(q) = A/C.

10.1 Proof of Theorem 10.1
The proof will be in several steps. Since C is supposed to be invariant under OD it will decompose
as C1

1 ⊕· · ·⊕C1
m⊕C2

1 ⊕· · ·⊕C2
m. The component C2

1 will further decompose as C2,1
1 ⊕C2,2

1 . We first
construct C2,1

1 .

10.1.1 Constructing C2,1
1 . The following lemma is due to Lubin and is recorded in [Kat73].

We will rewrite the proof in this context in order to fix the notation.

Lemma 10.2. Let R be a π-adically complete R0-algebra which is flat over OP , and r ∈ R0 with
v(r) < q/(q + 1), and r1 = −π/r ∈ R0. Let G be a formal OP -module over R. By Proposition 6.2
there is a coordinate x on G for which [ζ](x) = ζx for ζ any (q − 1)th root of unity in OP , and
we have [π](x) = πx + axq + · · · . Assume that there are y, b ∈ R such that (a + πb)y = r. Then,
there is a canonical way to associate to this data a subscheme C of G of rank q killed by π such
that C ⊗R/r1 can be identified with the kernel of Frq : G⊗R/r1 → G(q) ⊗R/r1 and its formation
commutes with arbitrary base change of π-adically complete R0-algebras which are flat over OP .
Furthermore, C is independent of the choice of x.

Proof. By Proposition 6.2 [π](x) = πx+ axq +
∑

n�2 cnx
n(q−1)+1. Define

f(T ) := π + aT +
∑
n�2

cnT
n.

It is clear that [π](x) = xf(xq−1). The desired subscheme will be defined by means of a canonical
zero tcan of the power series f(T ). It will consist of ‘0 and the q − 1 solutions of xq−1 = tcan’.
Since v(r1) > 0, we know that 1 + r1by is invertible in R. Let t0 := r1y/(1 + r1by) which satisfies
π + at0 = 0. Now let f1(T ) := f(t0T ). Then f1(T ) = π − πT +

∑
n�2 cnt

n
0T

n.

We study the coefficients of f1(T ). By assumption v(rq+1
1 /π) > 0. Let r2 be a generator of

the ideal generated by rq+1
1 /π and r21 in R0. If n �≡ 1 mod q, then by Proposition 6.2 cn∈πR

and we have (cn/π)tn0 ∈ t20R ⊂ r21R ⊂ r2R. If n ≡ 1 mod q, then cnt
n
0 ∈ cnt

q+1
0 R ⊂ cnr

q+1
1 R.

On the other hand, rq+1
1 /π ∈ R0. Thus, cntn0/π ∈ (tq+1

0 /π)R ⊂ (rq+1
1 /π)R ⊂ r2R. Clearly in each

case cntn0/π tends to zero as n tends to ∞. This shows that we can write f1(T ) = πf2(T ), where
f2(T ) = 1− T +

∑
n�2 dnT

n with dn ∈ r2R and dn → 0 when n→∞.
Now let f3(T ) = f2(1−T ). Then we can write f3(T ) = e0+(1+e1)T+

∑
n�2 enT

n where en ∈ r2R
for all n � 0. Let I = r2R. We now show that there is a unique element t∞ ∈ I such that f3(t∞) = 0.
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If t ∈ I, then f3(t) ∈ I and f ′3(t) ∈ 1 + I and hence f ′3(t) is invertible. The Newton process of suc-
cessive approximation, t1 = 0, . . . , tn+1 = tn−f3(tn)/f ′3(tn), converges to a zero of f3 which lies in I.
If t and t′ = t+∆ are two zeros of f3 in I, then we get −f ′3(t)∆ = f3(t+∆)−f3(t)−f ′3(t)∆ ∈ ∆2R.
Since f ′3(t) is a unit in R, ∆ ∈ ∆2R. However ∆ ∈ I and R is I-adically separated. This proves
∆ = 0 and t = t′.

Going backwards we obtain a zero tcan = t0(1 − t∞) of f(T ). Since t0 ∈ r1R is topologically
nilpotent, we can expand f(T ) in terms of (T − tcan) and deduce that f(T ) is divisible by T − tcan in
R[[T ]]. Therefore, [π](x) is divisible by xq− tcanx in R[[x]]. We define the canonical subscheme C of G
to be the subscheme of G[π] defined by xq−tcanx. Thus, C = Spec(R[[x]]/(xq−tcanx)) which is finite
and flat of rank q over R. Furthermore, C/r1 = Spec(R[[x]]/(xq, r1)) = Spec((R/r1)[[x]]/xq) which
is nothing but Ker(Frq : G/r1 → (G/r1)q). It is an easy exercise to see that this is independent of
choice of x. This ends the proof of the lemma.

We now proceed with the construction of C2,1
1 . Basically, C2,1

1 will be given as the canonical
subscheme of (GA)2,11 as in the previous lemma. The only problem is that the base R0 may not be flat
over OP . To get around this, we proceed as follows. It is enough to construct C2,1

1 for (A, i, θ, ᾱP , Y )
defined over an R0-algebra R in which π is nilpotent. There is a map ν : Spec(R)→ Yr ⊗R0 such
that ν∗(Br ⊗ R0, i, θ, ᾱ

P , Yr) = (A, i, θ, ᾱP , Y ). We will construct C2,1
1 locally Zariski on Spec(R).

Working locally on Spec(R), we may assume that ν lands in an open affine Spec(S) of Yr ⊗ R0

so that (GBr⊗R0)
2,1
1 |Spec(S) is given by a formal OP -module law. Note that still π is nilpotent in

R which implies that R is π-adically complete. Therefore, the induced map ν∗ : S → R factors
through the π-adic completion of S. In other words there is a map ψ : Spec(R) → Spec(S̃) such

that Spec(R)
ψ−→ Spec(S̃) → Spec(S) equals ν. We now apply the previous lemma to obtain a

subscheme of (GBr⊗R0)
2,1
1 |Spec(S) ⊗ S̃ and use ψ to pull it back to Spec(R).

Let x be a coordinate on (GBr⊗R0)
2,1
1 |Spec(S) as in Proposition 6.2. Then we have [π](x) =

πx+ axq + · · · . Let ω be a basis of ω on Spec(S) which reduces to the dual differential with respect
to x in (GBr⊗R0)

2,1
1 |Spec(S). Write Yr = yω⊗1−q. By Proposition 6.2 we have

Eq−1(Br ⊗R0, i, θ, ᾱ
P , Yr, ω) ≡ a mod π.

Thus, Eq−1(Br ⊗R0, i, θ, ᾱ
P , Yr, ω) = a+ πb for some b ∈ S and YrEq−1 = r implies (a+ πb)y = r.

Now S̃ is π-adically complete and flat over OP and therefore we can apply Lemma 10.2 to obtain
a subscheme (Cr)

2,1
1 of (GBr⊗R0)

2,1
1 |Spec(S) ⊗ S̃ which is a finite flat subscheme of rank q of Br ⊗ S̃.

Since A = ψ∗(Br ⊗S S̃) we can define C2,1
1 to be the pullback of (Cr)

2,1
1 under ψ,

C2,1
1 = ψ∗((Cr)

2,1
1 ).

Clearly C2,1
1 is a finite flat subscheme of rank q of (A[π])2,11 ⊂ A which reduces to the (Ker(Frq))

2,1
1

modulo r1.

Proposition 10.3. C2,1
1 is a subgroup scheme of (A[π])2,11 .

Proof. We argue as in § 3.8 of [Kat73]. First we consider the case when r is a unit in R0. This implies
that Eq−1(A, i, θ, ᾱP ) is nowhere vanishing. Hence, in the notation of Proposition 6.2, we have

[π](x) = πx+ axq + · · · a ∈ R unit.

Factorize [π](x) = (xq − tcanx)h(x). Writing h(x) =
∑

n�0 hix
i, we get h0 = tcanhq−1 + a. Since a

is a unit in R and tcan is topologically nilpotent, we see that h0 is a unit in R and therefore
h(x) is a unit in R[[x]]. This implies that when r is a unit in R0 the subscheme C2,1

1 is equal to
Ker([π] : (GA)2,11 → (GA)2,11 ) which is a subgroup scheme of (A[π])2,11 .
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In the general case, let G(x, y) ∈ R[[x, y]] be the power series giving the addition in (GA)2,11 .
Then, C2,1

1 = Spec(R[[x]]/(xp − tcanx)) is a group scheme if

G(x, y)q − tcanG(x, y) = 0 in R[[x, y]]/(xq−tcanx, yq−tcany).
Since tcan is topologically nilpotent in R, R[[x, y]]/(xq−tcanx, yq−tcany) is free of rank q2 with

basis {xiyj}0�i,j�q−1. Write

G(x, y)q − tcanG(x, y) =
∑

0�i,j�q−1

gijx
iyj

in R[[x, y]]/(xq−tcanx, yq−tcany) with gij ∈ R. Note that the formation of gij is functorial. Now, C2,1
1

is a subgroup scheme iff gij = 0 for all 0 � i, j � q − 1.

By construction, it suffices to show that (Cr)
2,1
1 ⊂ (GBr⊗R0)

2,1
1 ⊗Ỹr is a subgroup scheme. We do

that locally Zariski on Ỹr ⊗R0. Let V = Spf(Sr) be an open inside Ỹr ⊗R0. We need to show that
all gij ∈ Sr vanish. Let W = Spf(S1) an open inside Ỹ1 ⊗ R0 such that W → V under the natural
map, whose image under rig is an inclusion of affinoids in M ′

K ′(|r|v). This implies that Sr → S1 is
injective. Since we have already seen that (Cr=1)

2,1
1 is a subgroup, all gij vanish in S1 and hence in

Sr as desired.

Remark 10.4. In the above, we saw that if r is a unit in R0, then we have C2,1
1 = (GA)2,11 [π].

10.1.2 Constructing C. For an r-test object (A, i, θ, ᾱP , Y ) defined over R we construct finite
flat subgroup schemes Cij of (A[q])ij such that

Cij ⊗R/r1 = Ker(Frq|(A[q])i
j⊗R/r1) = (Ker(Frq))ij

for i = 1, 2 and 1 � j � m. First we construct C2
1 . As was explained before, choosing idempotents

e and f = 1 − e in M2(OP) will give a decomposition C2
1 = C2,1

1 ⊕ C2,2
2 ⊂ (A[π])2,11 ⊕ (A[π])2,21 ⊂

(A[q])2,11 ⊕ (A[q])2,21 . If g ∈ GL2(OP) conjugates e and f , then it induces an isomorphism between
(A[q])2,11 and (A[q])2,21 . Define C2,2

1 to be the image of C2,1
1 under this isomorphism. We can then

define
C2

1 := C2,1
1 ⊕ C2,2

2 .

By construction of C2,1
1 and since the action of Frq commutes with that of M2(OP ), we conclude

that C2
1 ⊗R/r1 = Ker(Frq|(A[q])21⊗R/r1) as desired.

When i = 2 and 2 � j � m, we know that (A[q])2j is étale (see § 4.3). Therefore, Frq is injective
on (A[q])2j ⊗R/r1 and we define

C2
j := {0}.

We use the Cartier duality between (A[q])1j and (A[q])2j (from § 4.3) to construct C1
j for 1 � j � m.

Define
C1
j :=

(
(A[q])2j/C

2
j

)∨ ⊂ (
(A[q])2j

)∨ ∼= (A[q])1j .

In particular, C1
j = (A[q])1j if j �= 1. Let Verq denote the Cartier dual of Frq. Then

(
(A[q])2j/C

2
j

)∨
reduces modulo r1 to (((A[q])2j ⊗R/r1)/Ker(Frq))∨. However, Ker(Frq) = Im(Verq) and we have(

((A[q])2j ⊗R/r1)/Im(Verq)
)∨ = Ker(Frq|((A[q])2j⊗R/r1)∨) ∼= Ker(Frq|(A[q])1j⊗R/r1),

which shows that C1
j reduces to Ker(Frq|(A[q])1j⊗R/r1) modulo r1. We now define the canonical sub-

group of (A, i, θ, ᾱP , Y ) to be

C := C1
1 ⊕ · · · ⊕ C1

m ⊕ C2
1 ⊕ · · · ⊕ C2

m.
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Proposition 10.5. The canonical subgroup C of (A, i, θ, ᾱP , Y ) is a finite flat group scheme of
rank q4d, which is stable under the action of OD and reduces to the kernel of Frq modulo r1R.
Furthermore, it is of type 1 (see § 4.4).

Proof. Since Cij reduces to Ker(Frq) in (A[q])ij⊗R/r1, as we showed above, C will reduce to Ker(Frq)
in A. The rank of C over R equals its rank after reduction modulo r1 which is qdim(A/r1) = q4d.
To prove that C is stable under the action of OD, we show that each Cij is stable under the action
of ODi

j
. This is clear for j �= 1. We claim that when j = 1 we only need to prove this for i = 2.

We have a commutative diagram (see §§ 4.1 and 4.3)

(A[q])11
θ ��

l

��

((A[q])21)
∨

(l∗)∨

��
(A[q])11

θ �� ((A[q])21)
∨

By definition of C we know that θ takes C1
1 isomorphically onto (A[q]21/C

2
1 )∨. To show that C1

1 is
invariant under l ∈ OD1

1
amounts to proving that (A[q]21/C

2
1 )∨ is invariant under (l∗)∨. But l∗ ∈ OD2

1

and it is enough to show that C2
1 ⊂ A[q]21 is invariant under OD2

1
= M2(OP ).

To show that C2
1 is invariant underM2(OP ), it is enough to show that C2,1

1 is invariant under the
action ofOP . We will prove this in the formal group. By construction, C2,1

1 = Spec(R[[x]]/(xq−tcanx))
and [π] kills C2,1

1 . We therefore need to show that OP/π = κ keeps C2,1
1 invariant. Let ζ be a

primitive (q − 1)th root of unity in OP . Then κ = Fp(ζ̄), where ζ̄ denotes the reduction modulo π
of ζ. The action of Fp comes from that of Z and hence keeps C2,1

1 stable. So we only need to show
that C2,1

1 is invariant under ζ. But by our choice of coordinate we have

ζ[x]q − tcanζ[x] = ζqxq − tcanζx = ζ(xq − tcanx)
which proves the claim. The fact that C is of type 1 is a consequence of the above discussions and
the definition of C.

10.1.3 Constructing Y ′. We will proceed as in § 3.9 of [Kat73]. Let R be an R0-algebra in
which π is nilpotent and (A, i, θ, ᾱP , Y ) be an r-test object with v(r) < 1/(q + 1). Let C be the
canonical subgroup of (A, i, θ, ᾱP , Y ). Let (A′, i′, θ′, (ᾱP )′) denote the quotient of (A, i, θ, ᾱP ) by
C as described in § 4.4. We can assume there is an open affine subset Spec(S) of Yr ⊗ R0, and a
morphism ψ : Spec(R)→ Spec(S̃) such that the pullback of (Br|Spec(S) ⊗ S̃, i, θ, ᾱP , Yr) under ψ is
equal to (A, i, θ, ᾱP , Y ). Hence, we only need to do the construction over Br ⊗ S̃ for which the base
scheme is flat over OP (see Proposition 9.5). For simplicity we denote Br⊗ S̃ by B and its canonical
subgroup by C. Let (B′, i′, θ′, (ᾱP )′) be the quotient of (B, i, θ, ᾱP ) by C as in § 4.4. Let ω be a
basis of ωB/S̃ on Spec(S̃). Write Yr = yω⊗1−q on Spec(S̃). It follows from properties of C that B′

reduces to B(q) modulo r1S̃. Let ω′ be any basis of ωB′/S̃ which reduces to ω(q) on B(q) modulo

r1S̃. We have
Eq−1(B′, i′, θ′, (ᾱP )′, ω′) ≡ (Eq−1(B, i, θ, ᾱP , ω))q mod r1S̃,

which implies
Eq−1(B′, i′, θ′, (ᾱP )′, ω′) = (Eq−1(B, i, θ, ᾱP , ω))q + r1.c

for some c ∈ S̃. Since v(r) < 1/(q+1) we know that r1 is divisible by rq in R0 and hence r3 = r1/r
q

lies in R and is topologically nilpotent. Define

y′ := yq/(1 + r3cy
q).
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Since yEq−1(B, i, θ, ᾱP , ω) = r by calculation we deduce that y′Eq−1(B′, i′, θ′, (ᾱP )′, ω′) = rq. So we
can define

Y ′
r = y′(ω′)⊗1−q.

Clearly Y ′
r reduces to Y (q) modulo r3. The fact that S̃ is flat over OP uniquely determines Y ′.

This concludes the proof of Theorem 10.1. �

Remark 10.6. Let r′, r′′ and r be elements of R0 such that r′′ = rr′. It is easy to see that all the con-
structions in this section are compatible with the maps induced by (A, i, θ, ᾱP , Y ) �→ (A, i, θ, ᾱP , rY )
from r′-test objects to r′′-test objects.

11. The Frobenius morphism of P-adic modular functions

Using canonical subgroups, we will define the Frobenius operator, Frob, which is the analogue of
the Vp operator on the classical modular forms. The U operator will then essentially be defined as
a trace of Frob.

Definition 11.1. Let r ∈ R0 with v(r) < 1/(q + 1). The Frobenius operator

Frob : SD(R0, r
q,K ′, 0)→ SD(R0, r,K

′, 0)
f �→ Frob(f)

is defined by

Frob(f)(A, i, θ, ᾱP , Y ) = f(A′, i′, θ′, (ᾱP )′, Y ′),

where (A, i, θ, ᾱP , Y ) is an r-test object over an R0-algebra R in which π is nilpotent, and the rq-test
object (A′, i′, θ′, (ᾱP )′, Y ′) is as in Theorem 10.1, part ii (obtained from dividing by the canonical
subgroup).

From Remark 10.6, it is clear that if r′′ = rr′ in R0 and v(r′′) < 1/(q + 1) (in particular, when
r′ = 1 and r′′ = r), then the diagram

SD(R0, (r′′)q,K ′, 0) Frob ��

��

SD(R0, r
′′,K ′, 0)

��
SD(R0, (r′)q,K ′, 0) Frob �� SD(R0, r

′,K ′, 0)

is commutative, where the vertical arrows are the natural inclusions (see Corollary 9.10).
The Frobenius morphism of (convergent and) overconvergent modular functions

FrobL0 : SD(R0, r
q,K ′, 0)⊗ L0 → SD(R0, r,K

′, 0)⊗ L0

is obtained by tensoring Frob with L0.

11.1 Frob in the rigid setting
Define a morphism

Frobn : Yr ⊗R0/π
n → Yrq ⊗R0/π

n

(A, i, θ, ᾱP , Y ) �→ (A′, i′, θ′, (ᾱP )′, Y ′),

where (A′, i′, θ′, (ᾱP )′, Y ′) denotes the rq-test object defined over an R0/π
n-algebra which is obtained

from (A, i, θ, ᾱP , Y ) by dividing by its canonical subgroup.
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For any n � 1, let Cr,n denote the canonical subgroup of the r-test object (Br⊗R0/π
n, i, θ, ᾱP , Yr)

over Yr ⊗ R0/π
n. Let C̃r ⊂ B̃r ⊗ R0 be given by the inverse limit of the group schemes Cr,n ⊂

Br ⊗R0/π
n. From the description of Frobn we have an isomorphism

Frob∗
n(Brq ⊗R0/π

n) ∼−→ (Br ⊗R0/π
n)/Cr,n.

Let φn : Br ⊗ R0/π
n → (Br ⊗ R0/π

n)/Cr,n denote the canonical projection and let ηn : (Br ⊗
R0/π

n)/Cr,n → Brq ⊗ R0/π
n denote the base extension map via Frobn. We have commutative

diagrams

Br ⊗R0/π
n Frobn:=ηn◦φn ��

��

Brq ⊗R0/π
n

��
Yr ⊗R0/π

n Frobn �� Yrq ⊗R0/π
n

which are compatible for varying n. By passing to completion along π = 0, we get the following
commutative diagram:

B̃r ⊗R0
F̃rob ��

��

B̃rq ⊗R0

��

Ỹr ⊗R0
F̃rob �� Ỹrq ⊗R0

Similarly, we have F̃rob
∗
(B̃rq ⊗R0) = (B̃r ⊗R0)/C̃r and the map

B̃r ⊗R0 → F̃rob
∗
(B̃rq ⊗R0)

induced by F̃rob is the canonical projection φ̃ = lim←−n φn. Let η̂ = lim←−n ηn be the base extension map

B̃r ⊗R0/C̃r → B̃rq ⊗R0. Then, we have

F̃rob = η̃ ◦ φ̃.
It is clear from the definition of Frobn and Frob and the above construction that the diagram

H0(Ỹrq ⊗R0,OỸrq⊗R0
) F̃rob

∗
�� H0(Ỹr ⊗R0,OỸr⊗R0

)

SD(R0, r
q,K ′, 0) Frob �� SD(R0, r,K

′, 0)

is commutative. We have so far described the Frobenius morphism in the formal setting. This can
be used to derive a description of Frob in the rigid setting. The canonical subgroup of A′

K ′(|r|v) is
the image of C̃r under the functor rig and is denoted by Cr.
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Proposition 11.2. Let r ∈ R0 with v(r) < 1/(q+ 1). There exists a commutative diagram of rigid
analytic spaces over L0

A′
K ′(|r|v) Frobrig

��

��

A′
K ′(|r|qv)

��
M ′
K ′(|r|v) Frobrig

�� M ′
K ′(|r|qv)

in which the pullback of A′
K ′(|r|qv) under Frobrig is isomorphic to A′

K ′(|r|v)/Cr and the map induced
by Frobrig and the natural map A′

K ′(|r|v)→M ′
K ′(|r|v),

A′
K ′(|r|v) φ−→ Frobrig∗(A′

K ′(|r|qv)) ∼= A′
K ′(|r|v)/Cr,

is the natural projection φrig so that

Frobrig = ηrig ◦ φrig.

Here, ηrig : A′
K ′(|r|v)/Cr → A′

K ′(|r|qv) is the base extension map obtained by rigidification of η.
Furthermore the Frobenius morphism of (convergent and) overconvergent modular functions can be
described as the pullback of Frobrig. In other words, the following diagram is commutative:

H0(M ′
K ′(|r|qv),OM ′

K′ (|r|qv))
(Frobrig)∗ �� H0(M ′

K ′(|r|v),OM ′
K′ (|r|v))

SD(R0, r
q,K ′, 0)⊗ L0

FrobL0 �� SD(R0, r,K
′, 0)⊗ L0

Proof. Apply Raynaud’s functor rig to the construction we have done in the formal setting.

11.2 Frob on points
We will study the action of Frobrig on points of M ′

K ′(|r|v). Let L∞ denote the completion of an
algebraic closure of L0. The following lemma is a standard result of Raynaud’s theory.

Lemma 11.3. LetX be a scheme which is flat and of finite type over R0. Let X̃ denote the completion
of X along the subscheme π = 0. Let Xrig be the rigid analytic space over L0 associated to X̃ under
the Raynaud functor. For any L which is either L∞ or a finite extension of L0 with ring of integers
R, we have a one-to-one correspondence

HomR0(Spec(R),X)↔ HomL(Sp(L),Xrig⊗̂L).

(Note that if [L : L0] is finite then HomL(Sp(L),Xrig⊗̂L) = HomL0(Sp(L),Xrig).)

A closed point ofM ′
K ′(|r|v) gives a map Sp(L)→M ′

K ′(|r|v) for some finite extension L of L0 with
ring of integers R. Thinking of M ′

K ′(|r|v) as an affinoid subdomain of (M′
K ′ ⊗ L0)an we get a map

Sp(L)→ (M′
K ′ ⊗L0)an which, by rigid GAGA, corresponds to a map Spec(L)→M′

K ′ ⊗L0. This is
nothing but (the analytification of) (A, i, θ, ᾱP ) over L. By Lemma 11.3 the map Sp(L)→M ′

K ′(|r|v)
is obtained as the image of a map Spec(R) → Yr under the Raynaud functor. This gives an r-test
object (A, i, θ, ᾱP , Y ) over R. Now since the Raynaud functor agrees with an for proper schemes, we
deduce that (A, i, θ, ᾱP ) is a model for (A, i, θ, ᾱP ) over R. The existence of Y is clearly equivalent
to the condition |Eq−1(A, i, θ, ᾱP , ω)|v � |r|v and Y is uniquely determined from this inequality.
Call a morphism Sp(L∞) → M ′

K ′(|r|v)⊗̂L∞ an L∞-point of M ′
K ′(|r|v). Similarly, by Lemma 11.3

giving an L∞-point of M ′
K ′(|r|v) is equivalent to giving (A, i, θ, ᾱP ) over R∞ (the ring of integers

of L∞) such that |Eq−1(A, i, θ, ᾱP , ω)|v � |r|v.
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Now we investigate the canonical subgroup of a closed or L∞-point of M ′
K ′(|r|v). Assume that

x : Sp(L)→M ′
K ′(|r|v)⊗̂L is such a point giving (A, i, θ, ᾱP ) over R. The fibre of Cr⊗̂L (see § 11.1)

over Sp(L) gives a finite flat subgroup scheme of A⊗ L. By construction of A′
K ′(|r|v) and Cr, this

subgroup is the image of C, the canonical subgroup of (A, i, θ, ᾱP , Y ), under rig. Since C is finite
and flat over R, this equals the (analytification of the) generic fibre of C. Now the description of
F̃rob shows that the image of x under Frobrig is the point given by (A′, i′, θ′, (ᾱP )′) which is obtained
from (A, i, θ, ᾱP ) by dividing by C.

We summarize the above observations in the following corollary.

Corollary 11.4. Giving a closed point (respectively L∞-point) of M ′
K ′(|r|v) is equivalent to giving

(A, i, θ, ᾱP ) (as in § 4.2) over R, the ring of integers of a finite extension of L0 (respectively over
R∞), which satisfies |Eq−1(A, i, θ, ᾱP , ω)|v � |r|v for a basis ω of ω. The fibre of Cr ⊂ A′

K ′(|r|v)
over this point is the generic fibre of C ⊂ A where C is the canonical subgroup of (A, i, θ, ᾱP ).
The image of this point under Frobrig is determined by (A′, i′, θ′, (ᾱP )′) which is the quotient of
(A, i, θ, ᾱP ) by C as defined in § 4.4.

11.3 Properties of Frob
We have seen that the Frobenius morphism of P-adic modular functions can be described as the
pullback of a morphism of rigid analytic varieties. This helps us in the study of the properties of
Frob.

Proposition 11.5. For r ∈ R0 with v(r) < 1/(q + 1),

Frob : SD(R0, r
q,K ′, 0)→ SD(R0, r,K

′, 0)

is a finite morphism. If r = 1, it is finite and flat of rank q.

Proof. This can be proven in exactly the same way as Theorem 3.10.1 of [Kat73].

We have seen that when r = 1, the morphism Frob is finite and flat of rank q. This is not true
for general r. However, the same result holds true after tensoring with L0.

Proposition 11.6. If v(r) < 1/(q + 1), then Frobrig : M ′
K ′(|r|v)→M ′

K ′(|r|qv) is a finite flat map of
degree q between rigid analytic spaces over L0.

Proof. We have already seen that Frobrig is finite. First we prove that it is flat. Since M ′
K ′(|r|v)

is an affinoid subdomain of M′
K ′ ⊗ L0, the completion of the rigid local ring of M ′

K ′(|r|v) at any
closed point of M ′

K ′(|r|v) equals the completion of the local ring of the corresponding closed point
on M′

K ′⊗L0. But M′
K ′⊗L0 is smooth and hence the completion of the local ring of any of its closed

points is regular. Therefore, the local rings of SD(R0, r,K
′, 0) ⊗ L0 at its maximal ideals are all

regular. Hence, SD(R0, r,K
′, 0)⊗ L0 and SD(R0, r

q,K ′, 0) ⊗ L0 are regular rings of dimension one
and hence any finite morphism between them is flat. Therefore, FrobL0 is flat. We have already seen
that Frobrig has degree q over the affinoid M ′

K ′(1). Therefore, Frobrig is finite flat of degree q.

Proposition 11.7. The morphism Frobrig : M ′
K ′(1)→M ′

K ′(1) is étale of degree q.

Proof. By Proposition 11.6, we only need to prove that the fibre of any L∞-point of M ′
K ′(1)

consists of exactly q points. Let (A, i, θ, ᾱP ) be an L∞-point of M ′
K ′(1) as described in § 11.2.

The fibre of Frobrig over this point consists of all (A′, i′, θ′, (ᾱP )′) defined over R∞ such that
Eq−1(A′, i′, θ′, (ᾱP )′, ω′) is a unit in R∞ for a choice of nowhere vanishing section ω′ of ω and

(A′, i′, θ′, (ᾱP )′)/C ′ = (A, i, θ, ᾱP ),

where C ′ is the canonical subgroup of (A′, i′, θ′, (ᾱP )′). Let g : A′ → A be the projection and let
f : A → A′ be the morphism such that g ◦ f = [q]A. Then Ker(f) ∼−→ A′[q]/C ′ ⊂ A′/C ′ ∼−→ A.
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First we study Ker(f). Since C ′ is of type 1 (defined in § 4.4), Ker(f) ⊂ A is of type 2 and is
uniquely determined by the component (Ker(f))2,11 . As a consequence of the properties of canonical
subgroups, the subgroup (Ker(f))2,11 of A has the following properties:

i) A([q/π])2,11 ⊂ (Ker(f))2,11 ⊂ (A[q])2,11 ;

ii) (Ker(f))2,11 has index q in (A[q])2,11 ;

iii) (Ker(f))2,11 is OP -stable.

Subgroups with the above properties are in bijection with OP -invariant subgroups C̄j of rank q
in A[π]2,11 and hence there are exactly q+ 1 subgroups of this form. For 0 � j � q let (Cj)

2,1
1 denote

all such subgroups. The correspondence is via an exact sequence

0 �� (A[q/π])2,11
�� (Cj)

2,1
1

×q/π �� C̄j �� 0.

Furthermore, assume C̄0 = C2,1
1 where C is the canonical subgroup of (A, i, θ, ᾱP ). Denote by

Cj the subgroup of type 2 determined uniquely by (Cj)
2,1
1 . So Ker(f) = Cj for some 0 � j � q and

we have

(A′, i′, θ′) = (A, i, θ)/Cj ,

(ᾱP )′ = (αp)′ ⊕ (αP
p )′ = (1/q)(αj)p ⊕ (αj)Pp ,

where ᾱj
P = (αj)p ⊕ (αj)Pp denotes the induced level structure on (A′, i′, θ′) form f : A→ A′.

Now (A/Cj , i′, θ′, (ᾱP )′) is in the fibre if and only ifA[q]/Cj is the canonical subgroup of A/Cj
∼−→ A′.

Since A[q]/Cj is of type 1, by definition of the canonical subgroup this is to say that (A[q]/Cj)
2,1
1 is

the canonical subgroup of (GA/Cj
)2,11 . Since r = 1, Remark 10.4 implies that the canonical subgroup

of (GA/Cj
)2,11 equals (GA/Cj

)2,11 [π]. We claim that (A[q]/Cj)
2,1
1 = (GA/Cj

)2,11 [π], if and only if j �= 0.
This will show that the fibre has q points and prove the proposition. The image of (A[q]/Cj)

2,1
1

in (GA/Cj
)2,11 is OP -invariant and hence of rank 0 or q, and A/Cj is not in the fibre if and only

if this image is zero. This happens exactly when the image of (Cj)
2,1
1 in (GA)2,11 equals (GA)2,11 [q].

But then, the above exact sequence shows that this occurs if and only if the image of C̄j in (GA)2,11

is (GA)2,11 [π] as we have the following exact sequence:

0 �� (GA)2,11 [q/π] �� (GA)2,11 [q]
×q/π �� (GA)2,11 [π] �� 0.

Since r = 1, Remark 10.4 implies that the image of C̄j in (GA)2,11 is (GA)2,11 [π] if and only if
C̄j = C2,1

1 , where C is the canonical subgroup of (A, i, θ, ᾱP ). That is true only for j = 0.

Remark 11.8. A lengthy but straightforward argument similar to Katz’s proof of Theorem 3.10.7
of [Kat73] shows that Frobrig is also étale for any r with 0 < v(r) < 1/(q + 1).

12. The U operator

We have seen that if v(r) < 1/(q + 1), then FrobL0 is finite flat of rank q. We can therefore define
the trace of FrobL0 as

TrFrobL0
: SD(R0, r,K

′, 0) ⊗ L0 → SD(R0, r
q,K ′, 0) ⊗ L0.

This morphism is compatible with the injection of SD(R0, r
′′,K ′, 0) in SD(R0, r

′,K ′, 0) if r′′ =
rr′. If r = 1, then Frob is already finite and flat of rank q before tensoring with L0 and thus,
in this case, TrFrob : SD(R0, 1,K ′, 0) → SD(R0, 1,K ′, 0) can be defined and we have the equality
TrFrob⊗L0 = TrFrobL0

for r = 1.
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Lemma 12.1. (Frobrig)∗ωA′
K′ (|r|qv)/M ′

K′ (|r|qv)
∼−→ ω(A′

K′ (|r|v)/Cr)/M ′
K′ (|r|v).

Proof. Consider the following diagram:

(Frobrig)∗A′
K ′(|r|qv) ηrig ��

��

A′
K ′(|r|qv)

��
M ′
K ′(|r|v) Frobrig

�� M ′
K ′(|r|qv)

From § 11.1 recall that ηrig : (Frobrig)∗A′
K ′(|r|qv) → A′

K ′(|r|qv) is the base extension of Frobrig.
So, there is an isomorphism (ηrig)∗Ω1

A′
K′ (|r|qv)/M ′

K′ (|r|qv)

∼−→ Ω1
(Frobrig)∗A′

K′ (|r|qv)/M ′
K′ (|r|v)

. On the other

hand, from Proposition 11.2 we have (Frobrig)∗A′
K ′(|r|qv) ∼−→ A′

K ′(|r|v)/Cr. Taking the component
of Ω1 corresponding to O

D2,1
1

, we get the desired natural isomorphism.

We define TrFrobL0
for overconvergent modular forms of arbitrary weight. It is defined as the

trace function on the sections of the sheaf ω⊗k. When k � 0 we define TrFrobL0
by the following

diagram

H0(M ′
K ′(|r|v), ω⊗k

(A′
K′ (|r|v)/Cr)/M ′

K′ (|r|v)
)

Tr
Frobrig �� H0(M ′

K ′(|r|qv), ω⊗k
A′

K′ (|r|qv)/M ′
K′ (|r|qv)

)

H0(M ′
K ′(|r|v), ω⊗k

A′
K′ (|r|v)/M ′

K′ (|r|v))

(φ′)∗

��

SD(R0, r,K
′, k)⊗ L0

TrFrobL0 �� SD(R0, r
q,K ′, k)⊗ L0

Here φ = φrig : A′
K ′(|r|v) → A′

K ′(|r|v)/Cr is the natural projection and the morphism (φ′)∗ :
ωA′

K′ (|r|v) → ωA′
K′ (|r|v)/Cr

is our refined pullback defined in Proposition 4.5. The upper horizontal

morphism, TrFrobrig , is the trace from the global sections of the pullback of ω⊗k
A′

K′ (|r|qv)/M ′
K′ (|r|qv)

on

M ′
K ′(|r|v) to the global sections of ω⊗k

A′
K′ (|r|qv)/M ′

K′ (|r|qv)
on M ′

K ′(|r|qv). For k = 0 we get the same

definition as before. For k < 0 we replace (φ′)∗ with πk(φ∗)∨.
We now define the U operator.

Definition 12.2. Let r ∈ R0 be such that v(r) < 1/(q + 1). We define the U(k) operator of
SD(R0, r

q,K ′, k)⊗ L0,

U(k) : SD(R0, r
q,K ′, k)⊗ L0 → SD(R0, r

q,K ′, k)⊗ L0,

to be the following composite:

SD(R0, r
q,K ′, k) ⊗ L0 ↪→ SD(R0, r,K

′, k) ⊗ L0

(1/q) TrFrobL0−−−−−−−−−→ SD(R0, r
q,K ′, k)⊗ L0.

Here the first arrow is the natural inclusion. Again U(k) is compatible with the natural injection
of SD(R0, (r′′)q,K ′, 0) in SD(R0, (r′)q,K ′, 0)), if r′′ = rr′. In particular, when r′ = 1, and r′′ = r,
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we have

SD(R0, r
q,K ′, k) ⊗ L0

U(k) ��

��

SD(R0, r
q,K ′, k)⊗ L0

��
SD(R0, 1,K ′, k)⊗ L0

U(k) �� SD(R0, 1,K ′, k)⊗ L0

Therefore, we can think of U(k) as an operator on SD(R0, 1,K ′, k)⊗L0, the space of convergent
modular forms, which preserves the subspace of overconvergent modular forms. We will usually drop
the subscript k when the weight is understood and simply refer to this operator as the U operator.
We now define the Frobenius morphism for overconvergent modular forms of general weight.

Definition 12.3. The Frobenius morphism for overconvergent modular forms,

FrobL0 : SD(R0, r
q,K ′, k)⊗ L0 → SD(R0, r,K

′, k)⊗ L0,

is defined as follows. For k � 0 we have

H0(M ′
K ′(|r|v), ω⊗k

(A′
K′ (|r|v)/Cr)/M ′

K′ (|r|qv)
) (φ∗)/πk

�� H0(M ′
K ′(|r|v), ω⊗k

A′
K′ (|r|v)/M ′

K′ (|r|v))

H0(M ′
K ′(|r|qv), ω⊗k

A′
K′ (|r|qv)/M ′

K′ (|r|qv)
)

(Frobrig)∗

��

SD(R0, r
q,K ′, k)⊗ L0

FrobL0 �� SD(R0, r,K
′, k)⊗ L0

and for k < 0 we replace (φ∗)/πk with ((φ′)∗)∨ in the above diagram, where (φ′)∗ (in weight −k) is
defined as in Proposition 4.5. Note that when k = 0 we get the same definition as before.

To conclude this section, we prove a projection formula.

Lemma 12.4. Let r ∈ R0 with v(r) < 1/(q + 1). Assume that f ∈ SD(R0, r
q,K ′, k) ⊗ L0 and

g ∈ SD(R0, r,K
′, k′)⊗ L0. Then, we have

U(FrobL0(f)g) = fU(g).

Proof. For k, k′ � 0 we write

U(FrobL0(f)g) = (1/q)TrFrobrig φ′∗(((φ∗/πk)(Frobrig)∗f)g)

= (1/q)TrFrobrig(((Frobrig)∗f)(φ′∗g))

= (1/q)f TrFrobrig(φ′∗g)

= fU(g).

Here we use Proposition 4.5 which states that φ′∗φ∗ = πk on ω⊗k
(A′

K′ (|r|v)/Cr)/M ′
K′ (|r|qv)

. A similar

argument works for other cases.
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13. Continuity properties of U

In this section we study continuity properties of U. Since SD(R0, r,K
′, 0)⊗L0 is a reduced affinoid

L0-algebra, it carries a canonical L0-Banach space topology which is induced by the supremum norm
| |sup. We also describe | |sup defined on SD(R0, r,K

′, k)⊗L0 for general k. Let f ∈ SD(R0, r,K
′, k)⊗

L0. Cover M′
K ′⊗R0 with finitely many open affines Vi such that on each Vi, ωi gives a basis for ω⊗k.

Write f = aiωi on the intersection of Vi and M ′
K ′(|r|v). Define |f |sup = sup{|ai|sup}. This definition

is clearly independent of choice of the affine covering. It is easy to see that SD(R0, r,K
′, k)⊗ L0 is

complete and separated with respect to this norm (as a result of the same fact for k = 0). One can
also define |f(x)|v for any closed point of M ′

K ′(|r|v) applying Lemma 11.3 and using a construction
similar to the one described in § 9.2. We have |f |sup = sup{|f(x)|v} where x varies over all closed
points of M ′

K ′(|r|v).
Proposition 13.1. SD(R0, r,K

′, k) = {f ∈ SD(R0, r,K
′, k)⊗ L0 | |f |sup � 1}.

Proof. Let f ∈ SD(R0, r,K
′, k) ⊗ L0 = H0(M ′

K ′(|r|v), ω⊗k) with |f |sup � 1. We only need to show
that f ∈ H0(Ỹr ⊗ R0, ω

⊗k) ⊂ H0(M ′
K ′(|r|v), ω⊗k). It is enough to prove this locally. Let W =

Spec(R) be an open affine of M′
K ′ ⊗ R0 on which ω has a nowhere vanishing section ω and write

Eq−1|W = aω⊗q−1. The restriction of Ỹr ⊗ R0 to W is given by Spf(R̃〈x〉/(ax − r)) where R̃ as
usual denotes the π-adic completion of R. The corresponding affinoid in M ′

K ′(|r|v) is given by
Sp((R̃〈x〉/(ax − r)) ⊗ L0). Let f = bω⊗k with b ∈ (R̃〈x〉/(ax − r)) ⊗ L0. By our definition of the
supremum norm for general k, the fact that |f |sup � 1 implies |b|sup � 1. By Theorem 5.2 of [Tat71]
b has to be integral over R̃〈x〉/(ax − r). Thus, Proposition 9.5 implies that b ∈ R̃〈x〉/(ax − r) and
hence f ∈ H0(Ỹr ⊗R0, ω

⊗k) as desired.

This allows us to prove the independence of our theory of the noncanonical choice of the lifting
of H.

Corollary 13.2. The theory is independent of choice of Eq−1 as long as v(r) < q/(q + 1).

Proof. Let E′
q−1 be another lifting. Since Eq−1 ≡ E′

q−1 (mod π), for any closed point x of M′
K ′ we

have |E(x)−E′(x)|v � |π|v = 1/q. On the other hand, v(r) < q/(q+1) implies |r|v > 1/q and hence
|E(x)|v � |r|v if and only if |E(x)|v � |r|v. Therefore, the definition of M ′

K ′(|r|v) is independent
of choice of Eq−1 and hence so is the definition of SD(R0, r,K

′, k) ⊗ L0. Now by Proposition 13.1
SD(R0, r,K

′, k) can be recovered from SD(R0, r,K
′, k) ⊗ L0 independently of choice of Eq−1. It is

straightforward to check that the canonical subgroup of a closed point of M ′
K ′(|r|v) depends only on

the reduction modulo π of Eq−1. This shows that the definition of Frob and U are also independent
of the choice of Eq−1.

We can now study the continuity of U.

Proposition 13.3. Let r ∈ R0 with v(r) < 1/(q + 1). For any k ∈ Z the operator U is continuous
on SD(R0, r

q,K ′, k)⊗ L0.

Proof. First assume k = 0. For any finite flat morphism f : S1 → S2 of affinoid L0-algebras, Trf
takes power bounded elements of S1 to power bounded elements of S2. So if f ∈ SD(R0, r,K

′, 0),
then |TrFrobL0

(f)|sup � 1. Therefore, we have TrFrobL0
(SD(R0, r,K

′, 0)) ⊂ SD(R0, r
q,K ′, 0) by

Proposition 13.1. The definition of U now implies the desired result.
Now assume k > 0. Let Ωr denote SD(R0, r,K

′, k) and let Sr denote SD(R0, r,K
′, 0) for sim-

plicity. Let Ω denote H0(Ỹr⊗R0, ω
⊗k
(B̃r⊗R0/C̃r)/Ỹr⊗R0

). By definition qU is obtained as the following
composite:

Ωrq ⊗ L0
�� Ωr ⊗ L0

(φ′)∗ �� Ω⊗ L0

Tr
Frobrig �� Ωrq ⊗ L0.
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Since (φ′)∗(Ωr) ⊂ Ω and Ωrq ↪→ Ωr, to prove the desired result it suffices to show that

TrFrobrig(Ω) ⊂ (1/πj)Ωrq

for some integer j � 0. From the case k = 0, we know that TrFrobrig(Ωrq⊗̂SrqSr) ⊂ Ωrq . Now the
result follows, since Ω ⊗ L0 = (Ωrq⊗̂SrqSr) ⊗ L0, and Ω is finitely generated Sr-module. A similar
argument works in the case k < 0.

The operator theory of U heavily depends on whether it acts on the full space of convergent
modular forms or just on the subspace of overconvergent ones. It turns out that in the latter case,
apart from the kernel of U, the eigenspaces are all finite dimensional, whereas this does not hold
in the first case. The reason is, as we will see, that when v(r) > 0 the U operator is a completely
continuous operator of orthonormizable L0-Banach spaces.

An operator of L0-Banach spaces is called completely continuous if it is a limit of operators
whose images are finite dimensional over L0. Serre [Ser62] defines a Fredholm determinant Pu(T ) =
det(1−Tu) for a completely continuous operator u : Ω→ Ω, where Ω is an L0-Banach space. This is
a generalization of the usual det(1−Tu) when u is of finite rank and enjoys similar properties. Let β
be a rational number. An element f of Ω is said to be a generalized eigenform of slope β of u if there
exists a polynomial h(T ) in L0[T ] such that h(u)(f) = 0 and all the roots of h(T ) have valuation β.
If h(T ) = (T − λ)n we call f a generalized eigenform with eigenvalue λ. A λ �= 0 is an eigenvalue of
u if and only if Pu(λ−1) = 0 and the dimension of the generalized eigenspace corresponding to λ is
the multiplicity of λ−1 as a root of Pu(T ).

Coleman [Col97] has generalized Serre’s construction for general Banach algebras. Let S be a
Banach algebra and Ω be a Banach module over S. We say that Ω is orthonormizable if it has a
Banach basis over S. In other words if there is a set {fi : i ∈ I} of elements of Ω, for some index
set I, such that every element f ∈ Ω can be uniquely written as

∑
i∈I aifi with ai ∈ S such that

lim |ai| = 0 and |f | = sup{|ai|}i∈I .
Let u : Ω1 → Ω2 be a continuous operator between Banach modules Ω1 and Ω2 over a Banach

algebra S. A completely continuous operator is one which is a limit of operators whose images are
finitely generated over S. Let u : Ω→ Ω be completely continuous and assume Ω is orthonormizable.
Let a ∈ S be a multiplicative element (i.e. |aa′| = |a|.|a′| for all a′ ∈ S). Assume that |u| is at most |a|.
Let S0 denote the set of all elements of S of norm at most 1. Then Coleman shows that there is
a power series Pu(T ) ∈ S0[[aT ]] which is called the Fredholm determinant of u. It is entire in T
(i.e. if Pu(T ) =

∑
m�0 amT

m, |am|Mm → 0 for any real number M). This Fredholm determinant
has similar properties as the one defined by Serre and coincides with it when S = L0. Its formation
commutes with contractive base changes. If u : Ω1 → Ω2 is a completely continuous operator of
L0-Banach spaces and u1 : Ω′

1 → Ω1 and u2 : Ω2 → Ω′
2 are continuous operators then u2 ◦ u ◦ u1

is also completely continuous. Also if u : Ω1 → Ω2 is completely continuous and v : Ω2 → Ω1 is
continuous, then both u ◦ v and v ◦ u are completely continuous and Pu◦v(T ) = Pv◦u(T ). We will
use these results in the next section.

Proposition 13.4. Let R0 be discretely valued. Then SD(R0, r,K
′, k)⊗ L0 is an orthonormizable

Banach module over L0.

Proof. We use Lemma A1.2. of [Col97]. First notice that SD(R0, r,K
′, 0)⊗R0/π0 is reduced since

it injects into H0(Yr ⊗R0/π0,O) which is itself reduced by Lemma 8.2. Thus,

|SD(R0, r,K
′, k)⊗ L0|sup = |SD(R0, r,K

′, 0)⊗ L0|sup = |L0|v
(see § A5 of [Col97] for example). By Proposition 13.1 we only need to show that SD(R0, r,K

′, k)⊗
R0/π0 is free over R0/π0 which is clear.

389

https://doi.org/10.1112/S0010437X03000150 Published online by Cambridge University Press

https://doi.org/10.1112/S0010437X03000150


P. L Kassaei

Proposition 13.5. Assume 0 < v(r) < 1/(q + 1). Then U is a completely continuous operator of
SD(R0, r

q,K ′, k)⊗ L0.

Proof. By definition U is the following composite:

SD(R0, r
q,K ′, k) ⊗ L0 ↪→ SD(R0, r,K

′, k) ⊗ L0

(1/q) TrFrobL0−−−−−−−−−→ SD(R0, r
q,K ′, k)⊗ L0.

We have seen that the second arrow is continuous. Therefore, it is enough to show that

SD(R0, r
q,K ′, k)⊗ L0 ↪→ SD(R0, r,K

′, k)⊗ L0

is a completely continuous homomorphism of L0-Banach spaces.
For the case k = 0, we use Proposition A5.2. of [Col97]. We showed that SD(R0, r,K

′, 0)⊗R0/π0

is reduced in Proposition 13.4. Therefore, we only need to show that the image of the above inclusion
is finite over R0/π0. It is enough to prove the same statement for the map

H0(Yrq ⊗R0/π0,O)→ H0(Yr ⊗R0/π0,O).

We will prove this by showing that the map

Yr ⊗R0/π0 → Yrq ⊗R0/π0

factors through M′
K ′ ⊗R0/π0.

To see this, we use our usual local Zariski picture (for example as in Lemma 8.2) to show that
for f : Yr ⊗ R0 → Yrq ⊗ R0, locally Zariski f∗ is the map R[x]/(ax − rq) → R[x]/(ax − r) which
sends x to rq−1x and hence the reduction of f∗ mod π0 sends x to 0 and factors through R.

For general k, we argue as follows. For simplicity let Ωr denote SD(R0, r,K
′, k) and let Sr denote

SD(R0, r,K
′, 0). Therefore, the inclusion Ωrq ⊗ L0 ↪→ Ωr ⊗ L0 is indeed the natural map

Ωrq ⊗ L0 → (Ωrq ⊗ L0)⊗̂Srq⊗L0Sr ⊗ L0.

Now, we only need notice that Ωrq⊗L0 is a finitely generated module over Srq⊗L0 and therefore
this map can be written as a limit of maps with finite dimensional image, by the case k = 0.

As a corollary of the above, we see that if 0 < v(r) < 1/(q + 1), then there is a Fredholm
determinant PU(T ) ∈ L0[[T ]] for U, in any weight k. The next proposition shows that this power
series is indeed independent of r.

Proposition 13.6. Assume that R0 is discretely valued. The Fredholm determinant of U is inde-
pendent of r, such that 0 < v(r) < 1/(q + 1).

Proof. Let us denote SD(R0, r,K
′, k) by Ωr for simplicity. We will also denote the natural map

Ωrr′ ⊗ L0 → Ωr ⊗ L0 by Rrr
′

r . We will include r in the notation for U and write Ur in this proof.
Let r′ and r′′ be elements of R0 such that 0 < v(r′), v(r′′) < 1/(q + 1). Without loss of generality,
we can assume v(r′′) � v(r′) � qv(r′′). Hence, we can write r′ = ar′′, and (r′′)q = br′ for a, b ∈ R0.
This implies that we have natural inclusions R(r′)q

(r′′)q and R(r′′)q

r′ . Denote TrFrobL0
by Tr for simplicity.

Let T : Ω(r′′)q ⊗ L0 → Ω(r′)q ⊗ L0 be given by Tr ◦R(r′′)q

r′ . We have

T ◦R(r′)q

(r′′)q = Tr ◦R(r′′)q

r′ ◦R(r′)q

(r′′)q = Tr ◦R(r′)q

r′ = qU(r′)q .

On the other hand

R
(r′)q

(r′′)q ◦ T = R
(r′)q

(r′′)q ◦ Tr ◦R(r′′)q

r′ = Tr ◦Rr′r′′ ◦R(r′′)q

r′ = Tr ◦R(r′′)q

r′′ = qU(r′′)q .

Furthermore, R(r′)q

(r′′)q is completely continuous from Proposition 13.5. Therefore, we have

PU(r′)q = P
T/q◦R(r′)q

(r′′)q
= P

R
(r′)q
(r′′)q◦T/q

= PU(r′′)q .
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Definition 13.7. Let β be a rational number. Define dr(K ′, k, β) to be the dimension of generalized
eigenforms of slope β of U acting on SD(R0, r,K

′, k) ⊗ L0 over any L0 in which r is a qth power.
By Proposition 13.5, dr(K ′, k, β) is finite. On the other hand, because of Proposition 13.6 we know
that dr(K ′, k, β) does not depend on r, as long as 0 < v(r) < q/(q + 1). We define d(K ′, k, β) to be
this common value.

14. Eigenforms of U
Coleman uses rigid geometry to study the overconvergent eigenforms of U over modular curves.
We will use this approach to obtain results about the eigenforms of U in this setting. As was
explained earlier, the fact that U is a completely continuous operator of the space of overconvergent
modular forms allows us to use the Fredholm theory of the U operator.

We let Cp denote the completion of an algebraic closure of FP with normalized valuation such
that v(π) = 1, and the corresponding norm | |v = (1/q)v . We assume that L0 is a finite extension
of FP (embedded in Cp), with ring of integers R0.

We will need the following result for a construction. However this result is our first example of
a π-adic congruence between P-adic modular forms (of the same weight). In a future article we will
define and study a notion of congruence between P-adic modular forms of possibly different weights.
One has to remember that these modular forms lack q-expansions. In the case of modular curves, the
following result (for the classical Ep−1) is proven essentially as a result of the q-expansion principle.

First we remark that Frob(Eq−1) ∈ H0(M ′
K ′(|r|v), ω⊗q−1) is a nowhere vanishing section for any

r ∈ R0 with v(r) < 1/(q + 1). The reason is that by § 11.2 we have

|(Frobrig)∗(Eq−1)(x)|v = |Eq−1(Frobrig(x))|v � |r|qv
at any closed point x of M ′

K ′(|r|v), and πq−1Frob(Eq−1) is obtained as a pullback of the nowhere
vanishing differential form (Frobrig)∗(Eq−1) on A′

K ′(|r|v)/Cr, under the étale map

A′
K ′(|r|v) φ−→ A′

K ′(|r|v)/Cr.

Define an element e ∈ H0(M ′
K ′(|r|v),OM ′

K′ (|r|v)) = SD(R0, r,K
′, 0)⊗ L0 by

e := Eq−1/Frob(Eq−1).

Theorem 14.1. Let | |M ′
K′ (1) denote the supremum norm on M ′

K ′(1). We have

|e− 1|M ′
K′ (1) � |π|v .

Proof. We may assume L0 = FP throughout this proof. For notation see § 9. First we show that
Frob(Eq−1) ∈ H0(Ỹ1, ω

⊗q−1) ⊂ H0(M ′
K ′(1), ω⊗q−1). By definition of Frob(Eq−1) we know that

πq−1Frob(Eq−1) = (φ̃∗)(F̃rob
∗
(Eq−1)) ∈ H0(Ỹ1, ω

⊗q−1).

So we have to show that (φ̃∗)(F̃rob
∗
(Eq−1)) is divisible by πq−1 in H0(Ỹ1, ω

⊗q−1). Since locally
we can write F̃rob

∗
(Eq−1) as a tensor product of q−1 differential forms on B̃1/C̃1, it suffices to show

that locally Zariski over Ỹ1, for any γ ∈ H0(B̃1/C̃1,Ω1
(B̃1/C̃1)/Ỹ1

), the pullback φ̃∗(γ) is divisible by

π in H0(B̃1,Ω1
B̃1/Ỹ1

) noting that Ỹ1 is flat over OP .

Since C̃1 (the canonical subgroup of B̃1) modulo π is the kernel of the (qth) Frobenius morphism
of B1 ⊗ κ, by reduction modulo π we get the following diagram from discussions of § 9:

B1 ⊗ κ
Frq ��

������������������������ (B1 ⊗ κ)/C1,1 = (B1 ⊗ κ)(q)

��

η1 �� B1

��
Y1 ⊗ κ Frob1 �� Y1 ⊗ κ
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in which Frob1 is the qth power morphism of Y1 over κ, η1 : (B1 ⊗ κ)(q) → B1 ⊗ κ is the base
extension morphism, and Frq is the relative Frobenius morphism of B1 ⊗ κ (which is the reduction
of φ̃ modulo π). Denote the reduction modulo π of γ by γ̄. We know that

Fr∗q(γ̄) = 0,

which shows that φ̃∗(γ) is divisible by π in H0(B̃1,Ω1
B̃1/C̃1

) as desired.

By Proposition 4.5, φ′∗φ∗ = πq−1 on sections of ω⊗q−1and therefore we know that

φ′∗(Frob(Eq−1)) = (Frobrig)∗(Eq−1) = F̃rob
∗
(Eq−1).

On the other hand, φ′∗ is H0(M ′
K ′(1),OM ′

K′ (1))-invariant and hence

φ′∗(Eq−1) = φ′∗(eFrob(Eq−1)) = eφ′∗(Frob(Eq−1)).

Therefore, we have

φ′∗(Eq−1) = e(F̃rob)∗(Eq−1).

We will prove the theorem essentially by reducing this equality modulo π. Since the desired
result is local on M ′

K ′(1) we will henceforth work locally on Ỹ1 so that we can assume ω to be a
trivial line bundle. Fix generators ω (respectively ω′) of ω

B̃1/Ỹ1
(respectively ω

(F̃rob)∗B̃1/Ỹ1
) such that

ω′ reduces to ω(q) modulo π. Notice that this is possible as the reduction of (F̃rob)∗B̃1/Ỹ1 modulo
π is (B1 ⊗ κ)(q).

Let us denote (B1, i, θ, ᾱ
P , ω) by B1 for simplicity. Write

Eq−1 = Eq−1(B1)ω⊗q−1,

(F̃rob)∗(Eq−1) = λ.(ω′)⊗q−1.

We use ¯ to denote reduction modulo π. Since F̃rob reduces to the qth power morphism, we have

λ ≡ Eq−1(B1)q ≡ H(B1 ⊗ κ)q mod π.

On the other hand, by Proposition 4.5 φ′∗ reduces to V∗ modulo π. Hence, φ′∗(Eq−1) =
φ′∗(Eq−1(B1)ω⊗q−1) reduces to V∗(H(B1 ⊗ κ)ω̄⊗q−1), which is equal to

H(B1 ⊗ κ)(H(B1 ⊗ κ)ω̄(q))⊗q−1

by the definition of the Hasse invariant (see § 6). Combining the above congruences we get

H(B1 ⊗ κ)q = ēH(B1 ⊗ κ)q

in H0(Ỹ1,OỸ1
)⊗ κ and hence

e ≡ 1 mod π.

This proves that |e− 1|M ′
K′ (1) � |π|v .

Let r ∈ L0 be a qth power such that 0 < v(r) < 1/(q + 1). Consider the isomorphism of
L0-Banach spaces defined by multiplication by Eq−1,

SD(R0, r,K
′, k)⊗ L0

∼−→ SD(R0, r,K
′, k + q − 1)⊗ L0

h �→ hEq−1.

This is an isomorphism because Eq−1 is nowhere vanishing on M ′
K ′(|r|v). The pullback of the

operator U(k+q−1) via this isomorphism is an operator on SD(R0, r,K
′, k) given by

h �→ E−1
q−1U(k+q−1)(hEq−1).
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From Lemma 12.4 we have

E−1
q−1U(k+q−1)(hEq−1) = E−1

q−1U(k+q−1)(Frob(Eq−1)eh) = U(k)(eh).

In other words the pullback of U(k+q−1) via the above isomorphism can be written as

U(k) ◦me,

where me denotes multiplication by e. This proves the following lemma.

Lemma 14.2. Let the notation be as above. For each n � 0, we have

PU(k+n(q−1))
= PU(k)◦men .

So studying the operator theory of U in weight k+n(q−1) is equivalent to studying the operator
theory of U ◦men in weight k. Coleman’s idea is to put all the U ◦men for varying n together in a
rigid analytic family of operators, producing a completely continuous operator of a Banach module.
The study of the Fredholm theory of the latter will give us information about that of each of
the original operators. We will use this idea to study d(K ′, k, β). By Definition 13.7 this equals
dr(K ′, k, β) for any r such that 0 < v(r) < 1/(q + 1).

It is easy to check that there are ε > 0 and δ � 1 such that (1 +x)t =
∑

n�0

(
t
n

)
xn is convergent

for all x, t ∈ Cp with |x|v � |π|v + ε, and |t|v � δ.

Since |e− 1|M ′
K′ (1) = lims→1− |e− 1|M ′

K′ ⊗̂Cp(s), there exists an s0 ∈ |Cp|v such that |π|1/(q+1)
v <

s0 < 1 and |e−1|M ′
K′ ⊗̂Cp(s0) � |π|v+ε. We can enlarge L0 to a finite extension of FP such that there is

an element r ∈ R0 which is a qth power with |r|v = s0 (which also implies that 0 < v(r) < 1/(q+1)).
Therefore, for this choice of r, we know that et is convergent on M ′

K ′(|r|v) for any t with |t|v � δ.
Let us fix an integer k0 throughout the discussion. For any t ∈ Cp with |t|v � δ define

ut : H0(M ′
K ′(|r|v), ω⊗k0)→ H0(M ′

K ′(|r|v), ω⊗k0)
h �→ U(k0)(h · et).

Let B = BL0 [0, δ] denote the affinoid subset of the rigid space A1
L0

given by |x|v � δ. Define the
affinoid rigid space Z := B ×M ′

K ′(|r|v). Let us denote the pullback of ω = ωA′
K′ (|r|v)/M ′

K′ (|r|v) to Z
under the second projection again by ω. Then we have

H0(Z,ω⊗n) = H0(B,OB)⊗̂L0H
0(M ′

K ′(|r|v), ω⊗n).

Now consider the operator

id⊗̂U(k0) : H0(Z,ω⊗k0)→ H0(Z,ω⊗k0).

This continuous H0(B,OB)-linear operator is obtained by base extension of U(k0) under the map
L0 → H0(B,OB). Since we can think of et as a rigid function on Z, there is a continuous operator

met : H0(Z,ω⊗k0)→ H0(Z,ω⊗k0)

which is given by multiplication by et. Define

U(k0) := id⊗̂U(k0) ◦met .

This is a continuous operator of the H0(B,OB)-Banach space H0(Z,ω⊗k0). It is clear that for
any t0 ∈ Cp with |t0|v � δ the restriction of U(k0) to the fibre of Z over t0 is the already defined
operator ut0 .

We show that U(k0) is completely continuous. We have seen in Proposition 13.5 that U(k0) is
completely continuous. This shows that id⊗̂U(k0) is completely continuous as it is the base extension
of U(k0) under a contractive map of Banach algebras. Now since mes is continuous, we deduce that
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U(k0) is completely continuous. We also note that H0(Z,ω⊗k0) is orthonormizable over H0(B,OB).
This is because by Proposition 13.4 we know that H0(M ′

K ′(|r|v), ω⊗k0) is orthonormizable and hence
so is its base extension H0(Z,ω⊗k0) (see Proposition A.1.3 of [Col97]). Let PU(k0)

(s, T ) ∈ L0[[s, T ]]
denote the Fredholm determinant of U(k0). Let n be an integer such that |n|v � δ. Letting s = n
corresponds to a base extension H0(B,OB)→ L0. Under this base extension U(k0) becomes

un : H0(M ′
K ′(|r|v), ω⊗k0)→ H0(M ′

K ′(|r|v), ω⊗k0).

Since the formation of Fredholm determinant commutes with contractive base change (see
Lemma A.2.5 of [Col97]) and by Lemma 14.2, we deduce that

PU(k0)
(n, T ) = Pun(T ) = PU(k0+n(q−1))

(T ).

This shows that the number of zeros of PU(k0)
(n, T ) over Cp (counting multiplicities) which have

valuation −β is the same as d(K ′, k0 + n(q − 1), β).
We study the zero locus of the entire series P = PU(k0)

(s, T ). Enlarge L0 so that β ∈ |L0|v.
Let Aβ denote the affinoid subdomain of B × A1

L0
determined by |T |v = |π|−βv . The subspace of

this affinoid determined by P (T ) = 0 is an affinoid over B which we call Zβ . The projection map
f : Zβ → B is quasi-finite as U is completely continuous. For any closed point x of B, f−1(x) is a
scheme of dimension 0 over the residue field of x. Denote the dimension of its ring of functions over
the residue field of x by deg(f−1(x)). By Proposition A.5.5 of [Col97] for each integer i � 0 the set
of closed points x of B such that deg(f−1(x)) � i is the set of closed points of an affinoid subdomain
Bi of B. Furthermore, Bi is empty for large i. A standard argument shows that for any x ∈ B ∩Zp
there is a δx such that if x′ ∈ B∩Zp and |x−x′|v � δx, then deg(f−1(x′)) = deg(f−1(x)). Since Zp is
compact we can find a uniform δ′ which works for any pair of elements of Zp which lie in B. Now for
any integer n such that |n|v � δ the degree of f−1(n) is the number of zeros of PU(k0)

(n, T ) over Cp

which is itself equal to d(K ′, k0 + n(q − 1), β). Choose N such that |p|Nv � min{δ, δ′}. Varying k0

modulo pN(q − 1) implies the following.

Theorem 14.3. Assume K ′ is small enough, and q > 3. There exists an N > 0, depending only on
β, K ′, and D, such that if

k ≡ k′ mod pN (q − 1)
then

d(K ′, k, β) = d(K ′, k′, β).

Moreover, d(K ′, k, β) is uniformly bounded for all k ∈ Z.

As we explained in § 1, the key step to passage from this kind of result to results about (certain)
Hilbert modular forms is proving a criterion for classicality of overconvergent P-adic modular forms.
In presence of such a criterion in terms of slopes, one can prove a similar statement for dimension
of spaces of classical modular forms on M ′

K ′ . That kind of statement could be translated for quater-
nionic modular forms over F using Theorem 4.2. The Jacquet–Langlands correspondence then will
establish the connection with Hilbert modular forms.
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Gou88 F. Gouvêa, Arithmetic of p-adic modular forms, Lecture Notes in Mathematics, vol. 1304 (Springer,

Berlin, 1988).
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