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UNITARY BORDISM OF CIRCLE ACTIONS

by CZES KOSNIOWSKI and MAHGOUB YAHIA

(Received 12th November 1981)

1. Introduction

The purpose of this paper is to describe 2l£, the bordism module of unitary T-
manifolds, where T denotes the circle group S1. We give both an algebraic and a
geometric description. The algebraic result is

where 7 = (i(l),i(2),...,i(2n)) runs through all finite ordered 2rc-tuples (n^O) of non-
negative integers which satisfy the conditions (a) i(l) + i(2n)^0 and (b) if i(2n)^=0 then
i(2n)=jM. The isomorphism is also described geometrically and this leads to geometric
generators of 9l£.

A. Hattori and H. Taniguchi studied 2l£ in [1], our work sheds new light on their
results as well as simplifying some of their descriptions.

2. Background bordism

By a manifold we mean a compact (usually closed) smooth unitary manifold and by a
T-manifold we mean a manifold with a smooth unitary action of T. For a more detailed
account of what follows in this section (but for unoriented manifolds) we refer the
reader to [3].

If H is a subgroup of T then an H module U is a finite dimensional complex vector
space together with complex linear action of H on it. If M is a T-manifold and xeM then
Tv, the isotropy subgroup at x, is the subgroup of T that fixes x (i.e. Tx = {teT;tx = x}).
For each x e M there is a Tx module Vx which is equivariantly diffeomorphic to a
Tx neighbourhood of x. This module Vx decomposes as VX=VX(&V'X where Tx acts
trivially on V'x and no non-zero vector in Vx is fixed by all of Tx (i.e. Vx has no trivial Tx

submodules). We refer to the pair [Tx; KJ as the slice-type of xe M. By a T-slice type we
mean a pair [//; t/] where H is a subgroup of T and U is an H module with no trivial
H submodules. A family of T-slice types J5" is a collection of T-slice types satisfying the
condition that if [HjlTJeJ5" and xeTxHU then the slice type [Tx; Vx~\ at x belongs to
3F. We say that the T-manifold M is of type & if for all xe M the slice type [Tx; Vx~\e&.
A T-manifold-with-boundary M is of type (J*,^) if for all xeM the slice type
[Tx;Vx~\e!F. Two n-dimensional T-manifolds Ml,M2 of type !F are said to be !F
bordant if there is an (n + l)-dimensional T-manifold N of type (J^.J5") such that the
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98 CZES KOSNIOWSKI AND MAHGOUB YAHIA

disjoint union of Mt and — M2 is the T-boundary of N. This equivalence relation on
the set of T-manifolds of type J* leads to a bordism theory denoted by 91 J [ ^ ] . We are
mainly interested in the family "All" consisting of all T-slice types, of course 9l£
is equal to 9IJ[A11].

Let p = [H; C/] be a T-slice type. A T-(complex)-vector bundle E over a manifold N is
said to be of type p if the set of points in E having slice type p is precisely N. We say
that £ is a boundary if there is a T-vector bundle F over M such that F is of type p
with dM = N and F \ dM = E. Bordism of bundles of type p leads to the bundle bordism
group 9l£[p]. In fact 91£[/J] is isomorphic to <m^,_k(BTp) for some classifying space BTp
and some integer k, this was originally proved by Conner and Floyd, see [3; 1.5] for a
proof in the context of slice types.

If jzr'cjf- are families of T-slice types with Jzr = J*'u{p} then there is a natural 21 „
module homomorphism

given by assigning to M the normal bundle of the points in M with slice type p. This
fits into a long exact sequence:

where d(E) = S(E), the sphere bundle of E. This sequence provides an inductive method
of calculating SlJC^], for any family J5" of T-slice types.

3. Circle slice types

The non-trivial irreducible T-modules are

...v_2,v_uvuv2,...

where V} denotes the complex space C with teT acting b y multiplication by tj. We
denote the non-trivial Z/m-modules by

' - 1> V-2>- • ••> ' - n i + 1

where Vj is C with t e Z/m £ T acting by multiplications by tJ. The T-slice types take the
form

lT;Vka)Vki2)...Vk(n)]

[_Z/m;Vkil)Vk(2)...Vk(n)-]

It is sometimes convenient to write the latter in the form

[Z/m; ViL-1
i)V«-2

2\..V«-m1\^
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UNITARY BORDISM OF CIRCLE ACTIONS 99

If we denote this T-slice type by p then

^ [ p ] = «*-i-2E,<-*>(V/(Z/m))x"n BI/,(_t)). (t)

Geometrically, an element £e5l£[p] is a T-vector bundle over some T-manifold X
for which Tx = Z/m for all xeX. Furthermore, £ decomposes as a T-vector bundle, into

where dim cEk = i(k) and t e Z/m c 7 acts on each fibre of Ek by multiplication by tk.
Using this description of E we can now describe the isomorphism (f) above. Since

each point of X has isotropy subgroup Z/m we obtain a T-fibration X->X/S, where S
is T/(Z/m), and we denote the associated complex line bundle by £_m. Let £t be
(Ek® V-k)/S and define £ by

£ = £ _ 1 © £ _ 2 e - - 0 £ _ m + 1 © £ _ m

Then the isomorphism (f) is given by £->£.
To recover £ from £ we may proceed as follows: Give £ a T-action simply by

letting t e T act on each fibre of Ek by multiplication by i\ Now, the fixed point set of
S(£) under the Z/msT action is precisely X and the equivariant normal bundle of X in
S(£) is E. In other words the inverse of the isomorphism (f) is given by

£-vS(£).

4. Finite isotropy

Consider the family J5" consisting of all T-slice types with isotropy subgroup not equal
to T, i.e.

3F = {\Jjm; I/]; m^ 1, U is a Z/m module with t/z/ra = {0}}.

Theorem

The proof of this result is by induction over the elements of !F and to achieve this we
need to order the elements of $F. Suppose p e 3F where

p = [I./m;Vk(l)Vki2)...VkM-]

•• -^fe(«)>-m. We set

d(p) = m,
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100 CZES KOSNIOWSKI AND MAHGOUB YAHIA

that is, 8(p) is the order of the isotropy subgroup defining p and d{p) is the complex
dimension of the slice type plus one. Now if a e S7 is another member with

where 0>/(l)^/(2)^---^/(<z)> -p then we say that p<a if either (i) (<5 + d)(p)<(S + d){a)
or (ii) (d + d){p) = (5 + d){(j) and d(p)<d{a) or (iii) 5(p) = 8{a), d(p) = d{a) and k^<lu or (iv)
S(p) = 5{a), d(p) = d(a), k1 = l1 and k2 < l2 etc.

This process totally orders the elements of ^ which we now denote by pl,p2,p3,.-.,
with pi < pj if i <j.

Lemma. ^j— {Pb i=j} <s a family of T-slice types for all j^l.

The proof is easy and left for the reader.
To prove the Theorem we look at the exact sequence (*) for Jr

J_1sJ5'J-, with
}

If £e9IJ[pj] we let E be the vector bundle determined by the isomorphism (f) of
Section 3 with the action of T as described in that section. It is an easy exercise to
check that S(E) is a T-manifold of type J*, so that we get a homomorphism

E-S(E)

with Vjqj=l. Thus qs splits the exact sequence and the required result follows by simple
induction.

5. Fixed point free actions

For each element p e 3F we define a T ŝlice type e(p) as follows:

elZ/m; Vk(l)Vk(2)... Ft(n)] = [T ; Vk{1)Vk(2)... K4((1)K_ J

where 0>/c1^/c2^---^fcn> —m. We denote the set {e{p);pe^} by e^ and let
= & \j e^. Note that Sfg7 is a family of T-slice types.

Theorem. 9

To prove this let ^^r
2n = {pj,e(p^\^j-gn} and let y j r

2 n + 1 = y j i r
2 n u { p n + 1 } . It is

easy to check that Sf!Fj is a family of T-slice types. Since 91 £[pj] = 51 *Wp)] it follows
by induction that
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UNITARY BORDISM OF CIRCLE ACTIONS 101

Corollary (E. Ossa [4]). / / M is a fixed point free T-manifold then M is a T-boundary.

6. Main result

The next result, the main result, is now not surprising.

Theorem. 2l£s 0 «„[>]

where yST is the set of T-slice types.

Note that

srr-yf={\T\ n, v+ vk{1)vk(2)... vk(n)v_m with

We need to order the elements of y9~. If p e 3F then we have defined d(p) and d(p),
we now define

SIT; Vm)Vkm... Vk(n{] = max{|k(i)|; i = 1,2,..., n)

dLT;Vk(1)Vk(2)...Vkin)-]=n

and note that de(p)=5(p);de(p) = d(p). We may now order the elements of y&~—!F in
the same manner as we ordered 2F, i.e. by first using 8 + d, then <5, then
lexicographically. To obtain a total order on yST we use the ordering of Sf&~ — ̂  and
J5" together with two additional conditions: if p e J5" then we say that p<e(p); if pe ^ ,
p'&¥2T—!F with e(p)>p' then we say that p>p'. Observe that if p,ae^ then p<a if
and only if e(p) < e(o).

Denote the elements of ^ ^ " by 0^,0^,0^..., so that <7j<<7, if i<j. It is easy to check
that the set 6^^~j={ai;i^j} is a family of T-slice types.

The theorem is proved by induction, using the inductive hypothesis

where

Ak = {a e ^^" t ; CT ̂  e(p) for p e ^ ^ " k n J57 or

Look at the exact sequence (*) for

Three cases arise:

(i) (Tj- e c^". In this case v,- = 0 and 5, is injective.
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(ii) Oj e J5". In this case we define, as in Section 4, qjfi) to be S(£) for
(iii) erf ^ST. In this case if £ e 2lJ[<7,-] then S(E) is a fixed point free T-manifold.

Consequently by the Corollary in Section 5 we have S(E) = d{W) for some T-
manifold W of type SfP n tfST;. Define q,{£) to be D(E) KJ -W glued along their
common boundary S(£). This is a T-manifold of type 5*"^ and Vjqj^E) = E.

This completes the proof of the Theorem.

7. Geometric generators

There is a more explicit, geometric, description of the splitting qi of case (iii) in
Section 6 above, not using the results of Section 5. This provides explicit geometric
generators of 2l£ as alluded to in the introduction.

Throughout this section we assume that a is a T-slice type, not belonging to £f^'.
Thus a may be written in the form

where

and each of i{\), i(2),..., i(p), ./(I), j(2),.. .,j(q) are positive integers.

An element E of $l£|V] may be written as

E = E +

where dimc£r
+ = i(r), dimc£,T =j(r) and teT acts on each fibre of £r

+, £r~ by
multiplication by tk(r), t~'{r) respectively. The action of T on the base space of £ is, of
course, trivial.

Given £e$l£[V] we define some T-manifolds in terms of £. First we define
CTP(Cr©£), for any r^O, as follows:

where (T, i/>) is an action of T on S(Cr©£+©£~) induced from an action of T on
C © £ + © £ ~ for which teT acts by multiplication by t in each fibre of Cr©£+ and by
multiplication by t~l in each fibre of E~. Since the action (T,ij/) is a free-unitary action
on the unitary manifold S (C©£ + ©£~) the quotient space is a unitary manifold in a
natural way. We give CTP(Cr©£) a T-action which is the T-action induced from the
original action o f T o n £ = £ + © £ ~ and the trivial action on C.

The above construction appears in [1] and is called a twisted projective space
construction. We have used the symbols CTP to stand for complex twisted projective
space.

Unfortunately this construction is not sufficient to provide us with all the generators
of 91 £, we need a second construction.
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UNITARY BORDISM OF CIRCLE ACTIONS 103

For our second construction we need some more notation. Suppose that £', E" are
vector bundles over the same space, where £' is of real dimension k and E" is of real
dimensions /. Then, by S(£')©S(£") we mean the S ' " 1 xS ' " 1 bundle whose fibre over a
point x is S(E'X) x S(EX).

For £e9l£[a] we define O7(C©£) as follows:

where £~ =£1~©£^©-••©£"_! and (TxT,ij/) is the action determined as follows:

for

(t,s)eTxT, (eo ,e_)x( / o , /+ , /_)x6S((C©£-yxS((C©£+©£-U

We give CTP(C©£©F) the induced unitary structure and a T-action induced by the
original action of T on £ = £ + © £ ~ © £ ~ and the trivial action on C.

Remarks. (1) VTP(C@E) is a CTP(CF*i|i)K^|2)... *"-V«-u) fibre b u n d l e o v e r

CTP(C©£+©£~).

(2) CTP(Cr©£) is a CTP(CrVi^\\Vi\%---Vi\pJ)V
i%)V

i%)---V
i%q)) fibre bundle over

the base space manifold of £.
To obtain a geometric description of the splitting q} we proceed as follows. If

fie^lJO;] where afiy^ then we define

qJ(E)='CTP{£.®E) ifj(«)=l and l{q)>k{\)

= CTP(C©£) otherwise

It is not difficult to check that qJ^E) is a T-manifold of type 9"^j, and that vflf^E) — E.
Thus by the main result of Section 6 we deduce that these manifolds provide geometric
generators of 91 £.

An explicit list of generators may be easily written down using the fact that the
elements

r,n®Vk, n^O, keZ-{0}

multiplicatively generate ©Pe^^9I*[p], where r\n denotes the standard Hopf complex
line bundle over CP". We leave this for the reader to do.

8. An application

Using the geometric description of generators of 2l£ we may easily prove a result
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about the Ty genus of a unitary Tmanifold. This was first proved by C. Kosniowski in
[2], A. Hattori and H. Taniguchi gave a proof in [1], subsequently there have been
many other proofs and variations of the result.

Recall that the Ty genus is the genus associated to the formal power series in t:

(exp(t(l +y))-1)"

Theorem. Let M be a T-manifold, then

Ty(M) I (-yr + 'F)Ty(F)
FeFix

= I (-yf--F)Ty(F).
FeFU

The meaning of the symbols d(±,F) is as follows. For a component F of Fix the fixed
point set, the normal bundle v(F, M) decomposes as

v(F,M)= 0 v/F)
;ez-{0}

where teT acts on each fibre of v/F) by multiplication by tJ. We define

0,
<o

In order to prove the Theorem it is sufficient to check that the formulae hold for
CTP(C©£) and CTP(C©£) for £e0p 6 y^-2lJ[p] since these generate 9IJ.

Now, the Ty genus is multiplicative for fibre bundles as are the expressions on the
right in the Theorem. Hence, by the two remarks made in the last section it is sufficient
to check the formulae for CTP(CK+F_) where

V — T/i(l) T/"(2) yHp) y _ yjd) yj{2) r/j(«)
V+ — K l r ( l ) K *(2 ) -" yk(p)> V~— V -l(l)V -1(2)-•• V -l(q)

for some choice of indices. It is in fact more convenient to check the formulae for
CTP(CrV+ V_). In the case of a semifree T-action, i.e. the case in which V+ = V\ and V_
= Vh-i, it is not difficult to check the formulae using the fact that

This latter fact is just a direct calculation of the Ty genus of a manifold, details are given
in Lemma 3.1 of [1] where CTPiC'VIViJ is denoted by CPfl+rl>.

The general case is done by induction on the dimension of CT+K_. To do this we
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UNITARY BORDISM OF CIRCLE ACTIONS 105

put another T-action, say (7^), on CTP(CV+V_) so that this new action is semifree:

for teT, {zo,z1,zl)eCV+V_. Using this semifree action we reduce the problem to
checking that the formulae hold for CTP(V+V_), induction completes this. Details are
left for the reader.
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