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Abstract. Every compact well-bounded operator has a representation as a lin-
ear combination of disjoint projections reminiscent of the representation of compact
self-adjoint operators. In this note we show that the converse of this result holds,
thus characterizing compact well-bounded operators. We also apply this result to
study compact well-bounded operators on some special classes of Banach spaces
such as hereditarily indecomposable spaces and certain spaces constructed by
G. Pisier.
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1. Introduction. Well-bounded operators are defined as those which possess a
functional calculus for the absolutely continuous functions on some compact inter-
val ½a; b� of the real line. Well-bounded operators were introduced by Smart [17] and
Ringrose [14] in order to provide a theory for Banach space operators that was
similar to the successful theory of self-adjoint operators on Hilbert space, but which
included operators whose spectral expansions may only converge conditionally.

On a general Banach space the integral representation theorems which one
obtains for these operators are much less satisfactory than those obtained for self-
adjoint operators. Nonetheless, even on an arbitrary Banach space, every compact
well-bounded operator can be written in the form

T ¼
X1
j¼1

�jPj; ð�Þ

where �j
� �

is a sequence of real numbers converging monotonely in absolute value
to 0, and Pj

� �
is a uniformly bounded sequence of disjoint projections. (See [3], [11,

Theorem 4.2.3] or the closely related [2, Theorem 5.37].) This sum converges in the
norm of BðXÞ, but possibly only conditionally. The aim of this paper is to provide a
characterization of compact well-bounded operators via such representations. The
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main point that we want to emphasize here is that under rather mild hypotheses on
�j
� �

and Pj
� �

, the sum appearing in the right-hand-side of ð�Þ always converges and
that the limit is always a well-bounded operator. This has been an important ele-
ment in several recent constructions. (See, for example, [4] and [6].)

In Sections 4 and 5, we use these result to examine compact well-bounded
operators on some special classes of Banach spaces, such as hereditarily inde-
composable spaces and certain spaces constructed by G. Pisier in [10].

2. Background and notation. In this section we shall give some of the basic
definitions regarding well-bounded operators. The theory of well-bounded operators
is given in more detail in [5].

Throughout X will denote a complex Banach space with dual space X�. The
Banach algebra of all bounded linear operators on X will be denoted by BðXÞ. The
Banach algebra of absolutely continuous functions on the compact interval
½a; b� � R will be denoted by AC½a; b�.

An operator T 2 BðXÞ is said to be well-bounded if there exist a constant K and a
compact interval ½a; b� � R such that pðTÞ

�� �� 
 Kf pðaÞ
�� ��þ R b

a p
0ðtÞ

�� �� dtg, for all poly-
nomials p. Equivalently, T should possess a bounded functional calculus for
AC½a; b�. That is, there should exist a Banach algebra homomorphism f 7! f ðTÞ
(extending the natural definition for polynomials) such that

f ðTÞ
�� �� 
 Kf f ðaÞ

�� ��þ var
½a;b�
f g � K f

�� ��
AC

:

General well-bounded operators have an integral representation with respect to
a family of projections on X� known as a ‘decomposition of the identity’. This is a
uniformly bounded, increasing family Fð�Þ

� �
�2R

� BðX�Þ that satisfies certain rather
complicated regularity conditions. We refer the reader to [15], [7] or [3] for full
definitions.

Given a decomposition of the identity Fð�Þ
� �

, there exists a unique well-boun-
ded operator T 2 BðXÞ such that

hTx; x�i ¼ bhx; x�i �

Z b
a

hx;Fð�Þx�i d� x 2 X; x� 2 X�ð Þ:

Every well-bounded operator has such a representation, but in general the decom-
position of the identity is not uniquely determined by T. The well-bounded operator
T associated with a decomposition of the identity Fð�Þ

� �
is of type (A) if there is a

family of projections Eð�Þ
� �

� BðXÞ such that Fð�Þ ¼ Eð�Þ� for all � 2 R. (See [1,
Theorem 3.2]). Further, T is said to be of type (B) if E is right continuous in the
strong operator topology and has a strong left hand limit at each point in R. In this
case, Eð�Þ

� �
is called a spectral family concentrated on ½a; b�.

3. Representations of compact well-bounded operators. The sums involved in the
representation theorems are typically only conditionally convergent and so some
care is needed in rearranging things. We shall need the following lemma about
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summation in topological vector spaces. Suppose that xj
� �

and yj
� �

are sub-
sequences of a sequence zj

� �
with xj ¼ zkðjÞ and yj ¼ z‘ð jÞ. Let Nx ¼ kð jÞ : j 2 N

� �
and Ny ¼ ‘ð jÞ : j 2 N

� �
. We shall say that xj

� �
and yj

� �
are complementary sub-

sequences of zj
� �

if Nx and Ny are complementary subsets of N. The relatively
straightforward proof of Lemma 3.1 is left to the reader.

Lemma 3.1. Suppose that zj
� �
is a sequence in a topological vector space Z and

that xj
� �
and yj

� �
are complementary subsequences of zj

� �
. If

P1

j¼1 xj and
P1

j¼1 yj both
converge, then

P1

j¼1 zj converges and
P1

j¼1 zj ¼
P1

j¼1 xj þ
P1

j¼1 yj.

We shall now define hypotheses on a sequence of numbers �j
� �

and a sequence
of projections Pj

� �
so that if T 2 BðXÞ can be written as T ¼

P1

j¼1 �jPj then T
is well-bounded.

(H1) �j
� �

is a sequence of distinct real numbers such that �1j j � �2j j � � � � ! 0.

(H2) Pj
� �

is a sequence of disjoint finite-rank projections.

By disjoint we mean that PiPj ¼ 0 for i 6¼ j. By (H1) we can write �j
� �

¼ �j
� �

[ �j
� �

where �1 > �2 > . . . > 0 and �1 < �2 < . . . < 0. (Of course, one or more of these sets
could be finite, or indeed empty. We shall leave it to the reader to make the neces-
sary notational adjustments for these cases.) Let Pþj be the projection corre-
sponding to the eigenvalue �j, and let P�j be the projection corresponding to �j. For

n � 1 let Qþ
n ¼

Pn
j¼1 P

þ
j and Q�

n ¼
Pn
j¼1 P

�
j . Our third hypothesis is that these

operators are uniformly bounded.

(H3) There exists K such that for all n � 1, Qþ
n

�� �� 
 K and Q�
n

�� �� 
 K.

Clearly (H3) implies that the projections Pj are also uniformly bounded.
The main strength of the above hypotheses is that they ensure that the positive

and negative parts can be summed separately. Once rearranged in this way, the
construction of an AC functional calculus is relatively straightforward.

Lemma 3.2. Suppose that �j
� �

and Pj
� �

satisfy (H1), (H2) and (H3) above. ThenP1

j¼1 �jP
�
j and

P1

j¼1 �jP
þ
j both converge in norm.

Proof. Fix m 
 n. Then standard calculations show that

���Xn
j¼m

�jP
�
j

��� ¼ �nQ
�
n þ ð�n�1 � �nÞQ

�
n�1 þ . . .þ ð�m � �mþ1ÞQ

�
1

�� ��

 Kð �nj j þ �n�1 � �nj j þ . . .þ �m � �mþ1

�� ��Þ
¼ K �n � �mj j:

It follows that the sequence
Pn
j¼1 �jP

�
j is Cauchy and hence it converges. The second

sum is dealt with similarly.

Recall that a Riesz operator is one whose spectral theory mimics that of a
compact operator. We refer the reader to [6, Chapter 3] for a more precise definition.

COMPACT WELL-BOUNDED OPERATORS 469

https://doi.org/10.1017/S0017089501030087 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089501030087


Theorem 3.3 Suppose that T 2 BðXÞ. Then the following are equivalent.

(i) T is a compact well-bounded operator.
(ii) T is a well-bounded Riesz operator.
(iii) T ¼

P1

j¼1 �jPj, where �j
� �

and Pj
� �

satisfy (H1), (H2) and (H3).

(iv) T ¼
P1

j¼1 �jP
�
j þ

P1

j¼1 �jP
þ
j where �j

� �
and �j

� �
are respectively sequences

of negative and positive numbers satisfying (H1), and P�j

n o
[ Pþj

n o
satisfies

(H2) and (H3).

Remark 3.4. We remind the reader that the sums appearing in Theorem 3.3
could be finite or (in condition (iv)) empty.

Proof. (i) ) (ii). This is trivial.
(ii) ) (iii). Suppose that T is a well-bounded Riesz operator. That T can be

written as a sum of the required type and that �j
� �

and Pj
� �

satisfy (H1) and (H2)
can be proved as in [3, Theorem 3.4]. It remains then to prove that the partial sums of
the projections are uniformly bounded (i.e. (H3)). Let g 2 AC½�1; �1� be defined by

gð�Þ ¼

1 ð� < �nÞ;

�� �nþ1

�n � �nþ1
ð� 2 ½�n; �nþ1�Þ;

0 ð� > �nþ1Þ:

8>>><
>>>:

Note that if Fð�Þ
� �

is any decomposition of the identity for T, then Fð�Þ ¼ ðQ�
n Þ

� for
� 2 ½�n; �nþ1Þ. Thus, using Theorem 15.7 of [5], we have that for x 2 X and x� 2 X�,

hgðTÞx; x�i ¼ gð�1Þhx; x
�i �

Z �1

�1

hx;Fð�Þx�ig0ð�Þ d�

¼ �

Z �nþ1

�n

hQ�
n x; x

�i
1

�n � �nþ1

� �
d�

¼ hQ�
n x; x

�i:

Thus Q�
n

�� �� 
 K g
�� ��

BV
¼ K. A similar proof shows that the projections Qþ

n are also
uniformly bounded.

(iii) ) (iv). This follows from Lemmas 3.1 and 3.2.
(iv) ) (i). Since T is the sum of norm limits of finite rank operators, it is clearly

compact. It remains then to show that T admits an AC½�1; �1� functional calculus.
Suppose that g 2 AC½�1; �1�. Then g ¼ g� þ g0 þ g

þ, where g� ¼ 0 on ½0; �1�, g0 is
constant and gþ ¼ 0 on ½�1; 0�. We claim that, for all g 2 AC½�1; �1�,

S1 ¼
X1
j¼1

g�ð�jÞP
�
j and S2 ¼

X1
j¼1

gþð�jÞP
þ
j

converge in norm and that setting

gðTÞ ¼
X1
j¼1

g�ð�jÞP
�
j þ g0ð0ÞIþ

X1
j¼1

gþð�jÞP
þ
j ð1Þ
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defines an algebra homomorphism from AC½�1; �1� to BðXÞ. Note that by rearrang-
ing the sum we get

Xn
j¼1

g�ð�jÞP
�
j ¼ g�ð�nÞQ

�
n þ

Xn�1

j¼1

ðg�ð�jÞ � g
�ð�jþ1ÞÞQ

�
j :

Since g�ð�nÞ ! 0 as n! 1 and
Pn�1
j¼1 g

�ð�jÞ � g
�ð�jþ1Þ

�� �� 
 var½�1;0� g, the series S1

converges. The other series, S2, is dealt with similarly.
The map g 7! gðTÞ is clearly linear and, since

gðTÞ
�� �� 
 K var

½�1;0�
gþ gð0Þ

�� ��þ K var
½0;�1�
g 
 K0 g

�� ��
AC

;

it is also bounded. One readily verifies that if p is a polynomial, then the definition of
pðTÞ given by (1) agrees with the natural polynomial functional calculus. It follows
that the map g 7! gðTÞ is an algebra homomorphism, and hence that T has an
AC½�1; �1� functional calculus.

Theorem 3.3 can clearly be used to construct well-bounded operators. Indeed
this result is the basis for constructions in [4] and [6].

Corollary 3.5. Suppose that �j
� �

and Pj
� �

satisfy hypotheses (H1), (H2) and
(H3). Then the series

P1

j¼1 �jPj converges in norm, and the sum is a compact well-
bounded operator.

Proof. By Lemma 3.2,
P1

j¼1 �jP
�
j and

P1

j¼1 �jP
þ
j converge. Let T ¼

P1

j¼1 �jP
�
j þP1

j¼1 �jP
þ
j . By Theorem 3.3, T ¼

P1

j¼1 �jPj and T is compact and well-bounded.

Remark 3.6. The situation for operators with complex spectrum is rather less
clear. In [8] it was shown that compact operators with an AC functional calculus for
a rectangle in the plane (i.e. compact AC-operators) admit a representation in the
form T ¼

P
�jPj. We do not know if there is any reasonable characterization of

compact AC-operators in terms of such representations.

Proposition 3.7. Suppose that T 2 BðXÞ is a compact well-bounded operator such
that T ¼

P1

j¼1 �jPj, where f�jg ¼ f�jg [ f�jg, fPjg, fQ
�
j g and fQþ

j g satisfy (H1), (H2)

and (H3). Then T is of type (A) if and only if limn!1Q
þ
n exists in the strong operator

topology of BðXÞ. Further, T is of type (B) if and only if both limn!1Q
�
n and

limn!1Q
þ
n exist in the strong operator topology.

Proof. Suppose that T is of type (A). One can check that if fEð�Þg is any family
of projections such that Eð�Þ�

� �
forms a decomposition of the identity for T,

then Eð�Þ ¼ Q�
n for � 2 ½�n; �nþ1Þ and Eð�Þ ¼ Qþ

n for � 2 ½�nþ1; �nÞ. Thus
lim�!0þ Eð�Þ ¼ limn!1Q

þ
n exists in the strong operator topology. Conversely, if

limn!1Q
þ
n exists, define Eð0Þ ¼ limn!1Q

þ
n , Eð�Þ ¼ Q�

n for � 2 ½�n; �nþ1Þ and
Eð�Þ ¼ Qþ

n for � 2 ½�nþ1; �nÞ. Then fEð�Þ�g is a decomposition of the identity for T
and so T is of type (A), by Theorem 3.2 of [1].

Similarly, T has a spectral family if and only if both limn!1Q
�
n and limn!1Q

þ
n

exist.
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4. Well-bounded operators and Schauder decompositions. Let X be a Banach
space. A sequence of projections fPng

1
n¼1 in BðXÞ is said to be a Schauder decom-

position for X if

(1) PnPm ¼ Pminðm;nÞ for all integers m; n � 1;
(2) Pn ! I in the strong operator topology;
(3) Pn 6¼ Pm if m 6¼ n.

A Schauder decomposition fPng
1
n¼1 for X is said to be finite dimensional, if each

Pn is a finite-rank projection, for every n 2 N.
We shall say that a Banach space is a GDP-space if it is a Grothendieck space

with the Dunford-Pettis property. Examples of GDP-spaces are L1 and H1ðDÞ. It
is well known that a GDP-space has no subspaces with a Schauder decomposition.
(See, for example, Remark 15.3.(a) of [16].) Ricker [12] showed, using this fact, that
on a GDP-space, every well-bounded operator of type (B) has a finite spectrum and
hence is a scalar-type operator with real spectrum. The following theorem charac-
terizes the Banach spaces on which every well-bounded operator of type (B) admits
this property as exactly those spaces which do not contain any complemented sub-
space with Schauder decomposition.

Theorem 4.1. Suppose that X is a Banach space. Then the following statements
are equivalent:

(i) X contains no complemented subspace with a Schauder decomposition;
(ii) every well-bounded operator of type (B) on X has a finite spectrum.

Proof. A close examination of the proof of [12, Lemma 12] shows that (i) implies
(ii).

Suppose now that (i) is false, i.e. that there exists a complemented subspace Y of
X with Schauder decomposition fPng

1
n¼1. Suppose also that f�ng

1
n¼1 is a strictly

increasing infinite sequence of real numbers converging to 0. By Theorem 3.1 and
Proposition 4.1 of [3], setting

Eð�Þ ¼
0 ð� < �1Þ;
Pn ð� 2 ½�n; �nþ1�Þ;
I ð� � 0Þ:

8<
:

defines the spectral family of a well-bounded operator of type (B), say T0 2 BðYÞ. It
is easy to see that 	ðT0Þ ¼ f�ng

1
n¼1 [ f0g. Now define an operator T on X by

T ¼ T0 � 0. It follows from Lemma 4.3 of [3] that T is also well-bounded of type (B)
and clearly T has infinite spectrum. It follows that (ii) implies (i).

The following theorem should be compared to Theorem 4.1.

Theorem 4.2. Suppose that X is a Banach space. Then the following statements
are equivalent:

(i) X contains no complemented subspace with a finite dimensional Schauder
decomposition;

(ii) every compact well-bounded operator of type (B) on X has a finite spectrum.
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Proof. Suppose that (i) holds. Let T 2 BðXÞ be a compact well-bounded opera-
tor of type (B). By Theorem 3.3,

T ¼
X1
j¼1

�jP
�
j þ

X1
j¼1

�jP
þ
j ;

where f�jg and f�jg are respectively sequences of negative and positive numbers
satisfying (H1), and fP�j g [ fPþj g satisfies (H2) and (H3). Thus 	ðTÞ ¼ f�jg [ f�jg [ f0g.
We shall show that neither f�jg nor f�jg can be infinite sets. Suppose that f�jg is an
infinite set. For n � 1 letQ�

n ¼
Pn
j¼1 P

�
j . Since T is of type (B), it is easy to check that if

fEð�Þg is a family of projections on X whose adjoints form a decomposition of the
identity for T, then Eð�Þ ¼ Q�

n for � 2 ½�n; �nþ1Þ. Thus the limit

Eð0�Þ ¼ lim
�!0�

Eð�Þ ¼ lim
n!1
Q�
n

exists in the strong operator topology, and Y ¼ Eð0�ÞX is a complemented subspace
of X. It is easy to check that fQ�

n jYg
1
n¼1 forms a finite dimensional Schauder

decomposition for Y, which is infinite dimensional, since f�jg is an infinite set. This is
contrary to (i). Hence f�jg is a finite subset. It can be argued similarly that f�jg is also
a finite subset. Thus (i) implies (ii).

Suppose now that X contains a complemented subspace, say Y, that admits a
finite dimensional Schauder decomposition fQng

1
n¼1. Let P1 ¼ Q1;Pn ¼ Qn �Qn�1

for n � 2 and let f�ng
1
n¼1 be a strictly increasing sequence of real numbers converging

to 0. It is obvious that fPng
1
n¼1 and f�ng

1
n¼1 satisfy (H1), (H2) and (H3). By

Corollary 3.5, the series
P1

n¼1 �nPn converges in norm, and the sum T0 is a compact
well-bounded operator on Y. By Proposition 3.7, T0 is of type (B). As before
T ¼ T0 � 0 is a compact well-bounded operator of type (B) on X with infinite spec-
trum. This shows that (ii) implies (i).

Remark 4.3. We do not know whether Condition (ii) in Theorem 4.2 can be
strengthened in some way. It cannot be replaced by the condition that every com-
pact well-bounded operator of type (A) on X has a finite spectrum.

To see this, note that a Banach space X with a finite dimensional Schauder
decomposition is separable, and that no separable subspace of ‘1 is complemented
in ‘1. Hence ‘1 satisfies (i) of Theorem 4.2. Define a well-bounded operator T on
‘1 by Tðx1; x2; . . .Þ ¼ ð12 x1;

2
3x2; . . . ;

n�1
n xn; . . .Þ. Then T is a compact well-bounded

operator of type (A) with infinite spectrum, by [1, Proposition 6.5].

5. Well-bounded operators on some special spaces. In [10] Pisier gave a con-
struction which showed that there exists a Banach space X with the following
properties:

(1) X is nonreflexive;
(2) there exists a positive constant c such that if P is a projection onto a sub-

space of dimension n, then Pk k � cn
1
2.

We shall say that a Banach space X is a Pisier space if X has these two properties.
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A longstanding open question in the theory of well-bounded operators is whe-
ther there are any nonreflexive Banach spaces on which every well-bounded opera-
tor is of type (B). It was shown in [3] that if X is a Banach space which admits a
complemented nonreflexive subspace with a basis, then there exists a well-bounded
operator on X which is not of type (B). Indeed the proof shows that on such a space
one can always find a compact well-bounded operator which is not of type (B).
Obviously, this theorem does not tell us what happens on Pisier spaces. The fol-
lowing theorem shows that one will need to use quite different methods if one is to
construct a well-bounded operator on a Pisier space that is not of type (B).

Theorem 5.1. Suppose that X is a Pisier space. Every compact well-bounded
operator T 2 BðXÞ has a finite spectrum and hence is of type (B).

Proof. Let T be a compact well-bounded operator on X. By Theorem 3.3, T has
the form

T ¼
X1
j¼1

�jP
�
j þ

X1
j¼1

�jP
þ
j ;

where f�jg and f�jg are respectively sequences of negative and positive numbers
satisfying (H1), and fP�j g [ fPþj g satisfies (H2) and (H3). By (H3) and condition (2)
for Pisier space, both fP�j g and fPþj g are finite sets. Hence T has a finite spectrum
and so T is of type (B).

We shall now discuss well-bounded operators in the class of hereditarily inde-
composable Banach spaces. Recall that a Banach space X is said to be hereditarily
indecomposable (briefly, H.I.) if it has the property that, whenever Y and Z are
closed, infinite dimensional subspaces of X and 
 > 0, then there exist unit vectors
f 2 Y and g 2 Z such that f � g

�� �� < 
. This is equivalent to the condition that no
subspace of X can be written as a topological direct sum of two closed, infinite
dimensional subspaces.

In 1993, Gowers and Maurey [9] gave the first example of a H.I. Banach space
in their solution to the unconditional basis sequence problem. This space is not only
reflexive, but it has a basis. Since then a number of H.I. spaces have been con-
structed (using methods similar to the one of Gowers and Maurey in [9]) for a vari-
ety of purposes. The space of operators on a H.I. space X is very small: every
bounded linear operator on X can be written as �Iþ S, where S is a strictly singular
operator. It is possible that Gowers and Maurey’s space provides an example of a
Banach space on which every bounded linear operator is of the form �Iþ K for a
compact operator K, although this question was left open in [9].

Ricker [13, Theorems 1–5] gave a complete description of the structure and
spectral properties of well-bounded operators of type (B) on H.I. spaces. In parti-
cular, it was proved that every well-bounded operator T of type (B) on such a space
can be written as T ¼ �Iþ K, where � is a scalar and K is a compact operator. In
fact, this result holds not only for well-bounded operators of type (B), but also for
general well-bounded operators.

Theorem 5.2. Suppose that X is a H.I. space and T is a well-bounded operator on
X. Then there exists a compact operator K 2 BðXÞ and a constant � 2 R such that
T ¼ �Iþ K. Furthermore, this representation is unique.
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Proof. By Lemma 2 (ii) of [13], there exists a unique point � 2 	eðTÞ and if
K ¼ T� �I, then K is a Riesz operator. But if T is well-bounded, then so is K. By
Theorem 3.3, K must be compact. The uniqueness is clear.
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