
Proceedings of the Edinburgh Mathematical Society (2010) 53, 619–631 c©
DOI:10.1017/S0013091508000886 Printed in the United Kingdom

MORE LOCALIZED AUTOMORPHISMS OF
THE CUNTZ ALGEBRAS

ROBERTO CONTI1∗, JASON KIMBERLEY1 AND WOJCIECH SZYMAŃSKI1,2
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Abstract We completely determine the localized automorphisms of the Cuntz algebras On correspond-
ing to permutation matrices in Mn ⊗ Mn for n = 3 and n = 4. This result is obtained through a
combination of general combinatorial techniques and large scale computer calculations. Our analysis
proceeds according to the general scheme proposed in a previous paper, where we analysed in detail
the case of O2 using labelled rooted trees. We also discuss those proper endomorphisms of these Cuntz
algebras which restrict to automorphisms of their respective diagonals. In the case of O3 we compute
the number of automorphisms of the diagonal induced by permutation matrices in M3 ⊗ M3 ⊗ M3.
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1. Introduction and preliminaries

In [9], Cuntz noticed that the automorphism group of On [8] has a rich structure resem-
bling that of semisimple Lie groups and suggested an intriguing definition of the Weyl
group in this context. However, despite the fact that the Cuntz algebras On have been
intensively studied over the past 30 years, to date precious little is known about the
structure of these Weyl groups. In [7], we opened a new and promising line of investiga-
tion of this problem. We also discussed at length the case of O2 therein. In the present
paper we follow it up with an analysis focused on the cases of O3 and O4, the main
result being the complete classification of all the permutation automorphisms of On for
n = 3, 4 arising at level 2 (i.e. induced by a permutation matrix in Mn ⊗ Mn).

∗ Present address: Dipartimento di Scienze Università di Chieti-Pescara ‘G. D’Annunzio’ Viale Pin-
daro 42, 65127 Pescara, Italy (conti@sci.unich.it).
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Until now, only a few such automorphisms were known: for example, Archbold’s flip-
flop automorphism of O2 [2] and more generally Bogolubov (permutation) automor-
phisms of On [1,10–12,17]. The Matsumoto–Tomiyama automorphism of O4 [14] was
somewhat more complicated; it was only recently recognized that it fits into a more
general pattern (see [16] and § 3 of the present paper). However, all such known auto-
morphisms were, in some sense, isolated examples and there was no general or systematic
understanding of the overall situation. Finding all automorphisms through a case-by-case
examination is unfeasible due to the exceedingly large scale of the problem, so an efficient
reduction process is necessary. One could exploit the action of inner automorphisms and
Bogolubov automorphisms in this process, but this is insufficient to significantly reduce
the computation.

In [7] we discovered a powerful algorithm to construct those permutations leading
to automorphisms; surprisingly, it relies on a certain combinatorial analysis of labelled
rooted trees. This fact appears vaguely reminiscent of quantum field theory, although our
set-up has nothing to do with perturbation theory. The aforementioned reduction is a
result of purely theoretical analysis of the problem and has deep theoretical implications.
However, in order to perform the subsequent massive computations that emerged, we
employed the Magma [3] computational algebra system.

In particular, as a result of these computations, we have obtained a complete classi-
fication of automorphisms of On arising from permutations of the set of multi-indices
{1, . . . , n}k for small values of n and k. As a by-product, by a similar method we can
also access those endomorphisms of the Cuntz algebra that provide automorphisms of
the diagonal.

We now briefly describe our notation and the set-up. For any integer n � 2, the
Cuntz algebra On is the C∗-algebra generated by n isometries S1, . . . , Sn with mutually
orthogonal ranges summing up to 1. One has the unital inclusions

On ⊃ Fn ⊃ Dn,

where Fn is the uniformly hyperfinite algebra of type n∞ and the diagonal Dn is maximal
abelian in both Fn and On. Fn is the closure in norm of the union

⋃
k∈N

Fk
n of an

increasing family of matrix algebras where, for each k ∈ N, the C∗-subalgebra Fk
n is

isomorphic to the algebra Mnk of nk × nk complex matrices. Similarly, Dn is the norm-
closure of the union of the increasing sequence of C∗-algebras Dk

n, each isomorphic to the
diagonal matrices in Mnk .

There is a well-known one-to-one correspondence, u �→ λu, between U(On), the group
of unitary elements in On and End(On), the semigroup of unital ∗-endomorphisms of
On, where λu is uniquely determined by λu(Si) = u∗Si, i = 1, . . . , n (here, we follow the
convention in [9]). As in [5], endomorphisms λu corresponding to unitaries u in

⋃
k∈N

Fk
n

are called localized.
Cuntz showed that the automorphisms of On that restrict to automorphisms of the

diagonal Dn are exactly the automorphisms induced by elements in the (unitary) nor-
malizer

NOn(Dn) = {z ∈ U(On) | zDnz∗ = Dn}.
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Later, Power [15] described in detail the structure of such normalizers, showing that any
element in NOn(Dn) is the product of a unitary in Dn and a unitary that can be written
as a finite sum of words in the Sis and their adjoints. In particular,

Aut(On,Dn) = λ(NOn(Dn))−1

and

Aut(On,Dn) ∩ Aut(On,Fn) = λ(NFn(Dn))−1,

where for a subset E ∈ U(On) we define

λ(E)−1 = {λu | u ∈ E} ∩ Aut(On).

In this paper, and in [7], we are only concerned with the structure of Aut(On,Dn) ∩
Aut(On,Fn), which gives rise (after taking the quotient) to the restricted Weyl group.

Let P k
n be the group of permutations of the set W k

n = {1, . . . , n}k. Clearly, P k
n is iso-

morphic to Pnk , the permutation group over nk elements. To any σ ∈ W k
n one associates

a unitary uσ ∈ Fk
n by

uσ =
∑

α∈W k
n

Sσ(α)S
∗
α.

Then σ �→ uσ is a group isomorphism of P k
n onto its image, denoted Pk

n, that can be
further identified with the group of permutation matrices in Mnk .

Now, it follows from the above that

NFn
(Dn) = NOn

(Dn) ∩ Fn = U(Dn) · Pn � U(Dn) � Pn,

where Pn =
⋃

k Pk
n [7]. Thus, as Cuntz has already shown that every unitary in U(Dn)

induces an automorphism of On, the problem that we are facing is to determine for which
permutation matrices w ∈ Pk

n, k = 1, 2, 3, . . . , one has λw ∈ Aut(On). This is exactly the
point where (rooted labelled) trees come to the rescue. For a detailed discussion, see [7];
throughout the next section, we repeatedly use results from that paper.

For the reader’s benefit we include the following elementary yet useful observation
valid for all n � 2.

Proposition 1.1. Let w be a unitary in On.

(a) If w ∈ Fn, then λw ∈ Aut(On) if and only if λw(Fn) = Fn.

(b) If λw ∈ Aut(On), then λw(Dn) = Dn if and only if w ∈ NOn(Dn).

(c) If λw(Dn) = Dn, then λw is an irreducible endomorphism of On, i.e. λw(On)′ ∩
On = C.
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Proof. (a) Necessity has been proved in [16, Lemma 2]. On the other hand, λw(Fn) =
Fn implies that λw ∈ Aut(On) since then w∗ ∈ λw(On).

(b) This is part of the statement in [9, Proposition 1.5].

(c) Using the assumption and the fact that Dn is maximal abelian in On, one obtains
that

λw(On)′ ∩ On ⊂ λw(Dn)′ ∩ On = D′
n ∩ On ⊂ Dn = λw(Dn) ⊂ λw(On)

and the conclusion readily follows from On being simple. �

As the endomorphisms of On (with n � 4) considered in this paper and in [7] are all
induced by unitaries w in

⋃
k Pk

n ⊂ NFn
(Dn) = NOn

(Dn) ∩ Fn, when they are automor-
phisms they also provide, by restriction, automorphisms of Dn and Fn; when they only
satisfy the weaker condition λw(Dn) = Dn they still act irreducibly on On. For example,
there are four such irreducible endomorphisms of O2 corresponding to permutations in
P 2

2 [6,13].

2. Classification results

According to the analysis in [7], the search for automorphisms of On induced by permu-
tations in P k

n involves the following two main steps:

(b) finding n-tuples of rooted trees with vertices suitably labelled by elements of W k−1
n

that satisfy [7, Lemma 4.5] (or equivalently [7, Proposition 4.7]);

(d) verifying which of the n-tuples satisfying (b) above also satisfy [7, Lemma 4.10] (or
equivalently [7, Proposition 4.11]).

In turn, the solutions to condition (b) alone provide by restriction automorphisms of
the diagonal Dn.

2.1. The case of P2
3

In this case, there are only two rooted trees with three vertices. Condition (b) can only
be satisfied for the following 3-tuples of unlabelled trees:

and the three distinct 3-tuples arising by permuting
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Thus, we have four different 3-tuples. For each such 3-tuple, there are precisely
3!(3!3) = 6 · 216 permutations in P 2

3 satisfying condition (b) and among them 3!24
permutations also satisfying condition (d). These figures have been obtained through
computer computations.

The corresponding labelled trees are of the form

a b

c

c a

b

b c

a

and

b c

a

a

c

b

a

b

c

where a, b and c are distinct elements in {1, 2, 3}.
In particular, for each fixed set of labels on a 3-tuple (and there are 3! of them) there

are 24 permutations satisfying both the conditions (b) and (d).

Example 2.1. Bogolubov automorphisms always give rise to 3-tuples of the first
type [7, Example 4.4]. An example of a 3-tuple of the second type (with labels a = 1,
b = 2, c = 3) is provided by the transposition (2, 3), where we identify elements of
W 2

2 = {1, 2, 3}2 = {11, 21, 31, 12, 22, 32, 13, 23, 33} with {1, 2, . . . , 9}.

All in all, we see that the numbers of automorphisms arising from P 3
2 are as follows.

Theorem 2.2. One has

#{σ ∈ P 2
3 : λuσ |D3 ∈ Aut(D3)} = 4 · 3! · 216 = 5184,

#{σ ∈ P 2
3 : λuσ ∈ Aut(O3)} = 4 · 3! · 24 = 576.

In particular, there are 4 · 24 = 96 distinct classes of automorphisms in Out(O3) corre-
sponding to permutations in P 2

3 .

The latter number has been independently verified by solving the equations in [7, § 6.1].

2.2. The case of P3
3

In this case, there are 286 rooted trees with nk−1 = 9 vertices, of which 171 satisfy our
basic conditions: each vertex has in-degree at most n = 3 (recall that there is a loop at
the root, adding 1 to its in-degree). Let us define the in-degree type of a rooted tree to
be the multiset of the in-degrees of its vertices.

We list the 171 rooted trees in Figure 1; they are classified by the 11 in-degree types
{A . . . K} listed in Table 1.
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Table 1. The in-degree types for P3
3 .

multiplicities
in-degree:︷ ︸︸ ︷ number

type 0 1 2 3 of trees

A 6 0 0 3 2
B 5 1 1 2 18
C 5 0 3 1 8
D 4 3 0 2 14
E 4 2 2 1 46
F 4 1 4 0 9
G 3 4 1 1 33
H 3 3 3 0 24
I 2 6 0 1 4
J 2 5 2 0 12
K 1 7 1 0 1

We wish to find 3-tuples f of labelled trees such that

for all j ∈ {1 . . . 9}, f1(j) + f2(j) + f3(j) = 3.

For such an f we define the in-degree alignment matrix M , where Mij is the in-degree
of the vertex labelled j in the tree fi. Every in-degree alignment matrix has each row
adding to nk−1 = 9 and each column adding to n = 3. In order to find all the required
f we first determine the possible in-degree alignments of our 11 types.

Now the number of size-3 multisets with elements chosen from a set of 11 is 286
(the eleventh tetrahedral number∗). Of the 286 size-3 multisets of in-degree types, we
compute that 100 have at least one alignment. The number of alignments (up to consistent
relabelling) is 133.

After about 200 processor days we report that condition (b) is satisfied for a set F
of 7390 3-tuples of labelled trees, up to permutation of tree position (action of S3) and
consistent relabelling of all trees (action of S9). Only 110 of the 171 unlabelled trees
appear in F (those which do not appear in F are marked in Figure 1 with a dotted
backslash); they have the first eight, {A . . . H}, of the 11 in-degree types. In these F there
occur 474 multisets of three unlabelled trees; they have the six distinct three-element
multisets of in-degree types listed in the first column of Table 2. The second column
contains the number of three-element multisets of unlabelled trees having the respective
types; the third column, Ftypes, is the partition of F according to the respective types;
the fourth column of each row in Table 2, #f covered, is the inner product of the last
two columns of the corresponding table in the appendix to this article [4].

∗ Is it just a combinatorial accident that the eleventh tetrahedral number is the same as the number
of all (unordered) rooted trees on 9-vertices?
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A

B

C

D

E

F

G

H

I

J

K

Figure 1. In-degree types and trees.

In total, we have
44 172 × 9! = 16 029 135 360

3-tuples of labelled trees satisfying condition (b). Therefore, we have

44 172 × 9! × n!n
k−1

= 44 172 × 9! × 69 = 161 536 753 300 930 560

permutations σ ∈ P 3
3 satisfying condition (b).
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Table 2. Three-element multisets of in-degree types.

ID types # tree triples #Ftypes #f covered

A A A 4 2 168 12 924 · 9!
A B B 176 2 782 16 650 · 9!
A C D 75 950 5 700 · 9!
A E E 180 1 072 6 396 · 9!
A F G 31 392 2 352 · 9!
A H H 8 26 150 · 9!

total 474 7 390 44 172 · 9!

Unfortunately, at this stage we cannot provide the precise number of permutations
satisfying condition (d) as this job exceeds our computational resources: it would take
about 32 processor years to compute.

Some examples of 3-tuples of labelled trees satisfying condition (b) are listed in the
first column of Figure 2; the second column contains the size of the orbit of the combined
actions of S3 and S9 on the first entry of each row; the third column is a count of the
number of permutations corresponding to f that satisfy condition (d); the last column
contains (when one exists) an example permutation satisfying condition (d) with labels
(a, b, c, . . . , i) chosen to be (1, 2, 3, . . . , 9) = ((1, 1), (2, 1), (3, 1), . . . , (3, 3)).

2.3. The case of P2
4

In this case, there are four (unlabelled) rooted trees with four vertices, namely

One verifies that only eight types of 4-tuples of such trees admit labellings satisfying
condition (b). By a type we mean an unordered set of four trees making up a 4-tuple
(two different 4-tuples belong to the same type if one can be obtained from the other
by a permutation of the unlabelled trees). These types are listed in the first column of
Table 3. The second column of this table gives the number of distinct labellings satisfying
condition (b) and corresponding to each type. These numbers are factorized as X ·Y ·Z,
where X is the number of distinct 4-tuples of unlabelled trees of the given type, Y = 4!
is the number of permutations of labels (it corresponds to action of inner automorphisms
arising from P 1

4 [7, § 4.2]) and Z is the number of orbits under this action. The last
column contains the number of all permutations in P 2

4 satisfying both conditions (b) and
(d) whose corresponding trees are of the given type.

The number of permutations satisfying condition (d) depends both on the type of
the corresponding 4-tuple of trees and on the specific labelling. However, as it turns
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labelled trees # (b) # (d) example

A F

1·9!

6·9!

312
(1,6,26,7,22,17)

(2,12,24,20,18,13,14)
(3,27,16,25,19,9,10)

(4,11,15,23,8)

0

6·9! 0

6·9! 0

6·9! 0

6·9! 0

6·9! 0

6·9! 240

3·9! 216

(1,25,24,23,2,19)
(3,16,27,15,26)

(4,17,9,18,12,10)
(6,20,22,14,8)
(7,21,13,11)

(1,3,27,4,26,10,9)
(2,18,7,16,19,6)
(5,20,12,21,24)
(8,25,22,11,15)

(13,14,17)

Figure 2. Examples for P3
3 .

out, it does not depend on the permutation of unlabelled trees within the type. Precise
information to this effect is provided in Figure 3. There is a natural action of S4 × S4 on
4-tuples of labelled trees with four vertices, by permutation of the labels (simultaneously
on all four trees) and permutation of the four trees. Labellings satisfying condition (b)
give rise to 19 orbits for this action, and representatives of these 19 orbits are listed in
the first column. They are further grouped according to their types. The second column
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Table 3. Tree types for P 2
4 .

type # (b) #σ (d)

αααα 24 = 1 · 24 · 1 51 840
ααββ 576 = 6 · 24 · 4 787 968
ααγγ 288 = 6 · 24 · 2 311 040
αβββ 768 = 4 · 24 · 8 746 496
αββδ 1152 = 12 · 24 · 4 1 575 936
αβγδ 1152 = 24 · 24 · 2 1 244 160
ββγγ 1152 = 6 · 24 · 8 787 968
γγγγ 288 = 1 · 24 · 12 266 112

total 5 400 5 771 520

describes the partition of each orbit of the S4 × S4-action into orbits of an action of
S4 by permutation of labels. For example, 144 = 6 × 4! indicates that the corresponding
S4 × S4-orbit has 144 elements, partitioned into six S4-orbits with 4! = 24 elements each.
The total number of permutations satisfying condition (b) corresponding to each row is
thus obtained by multiplying the number in the second column by the combinatorial
factor 4!4 = 331 776 [7, § 4.2]. The third column contains the number of permutations
satisfying condition (d) for each element in the S4 × S4-orbit. The total number of
permutations satisfying condition (d) corresponding to a given row is thus obtained by
multiplying the numbers in the second and third columns. The last column of Figure 3
contains an example of a permutation satisfying condition (d) (if it exists) with the choice
of labels a = 1, b = 2, c = 3, d = 4 and order of trees as given in Table 3.

As a consequence of the above, we obtain the following result.

Theorem 2.3. One has

#{σ ∈ P 2
4 : λuσ |D4 ∈ Aut(D4)} = 5400 · 4!4 = 1 791 590 400,

#{σ ∈ P 2
4 : λuσ ∈ Aut(O4)} = 5 771 520.

In particular, there are 240 480 distinct classes of automorphisms in Out(O4) correspond-
ing to permutations in P 2

4 .

3. Additional examples

We wish to relate the above analysis to the automorphisms constructed in [16], namely
Examples 8 and 9 therein.

Example 3.1. Consider a non-trivial partition W 1
n = R1 ∪ · · · ∪ Rr of W 1

n into a
union of r disjoint subsets, 1 < r � n. Let σi ∈ P 1

n , i = 1, . . . , r, be permutations
of W 1

n such that σiσ
−1
j (Rm) = Rm for all i, j, m ∈ {1, . . . , r}. We define ψ ∈ P 2

n as
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labelled trees # (b) # (d) example

24 = 1·4!

72 = 3·4!

72 = 3·4!

288 = 12·4!

288 = 12·4!

288 = 12·4!

288 = 12·4!

288 = 12·4!

288 = 12·4!

144 = 6·4!

144 = 6·4!

144 = 6·4!

144 = 6·4!

576 = 24·4!

192 = 8·4!

576 = 24·4!

576 = 24·4!

576 = 24·4!
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Id

(4,7)

(7,8)

(3,4) (7,8)

(3,7,14,10,6,4) (5,13,9) (8,16,12) (11,15)

(2,3,4)

(7,8) (11,12) (14,16,15)

(3,4,7,10,8,11,6) (5,9) (14,16,15)

(2,3) (6,8) (10,12) (14,15,16)

(3,4) (7,8) (10,13)

(3,4) (7,8) (13,14)

(2,9,5) (4,11,7 )(6,10,13) (8,12,15)

(3,4) (7,8) (9,10) (13,14)

Figure 3. Labelled trees for P 2
4 .

ψ(α, β) = (α, σi(β)) for α ∈ Ri, β ∈ W 1
n . So constructed, λψ is invertible, with inverse

λψ̄, where ψ̄ ∈ P 3
n is given by

ψ̄(α, β, γ) = (α, σ−1
i (β), σjσ

−1
k (γ))

for α ∈ Ri, β ∈ Rk, σ−1
i (β) ∈ Rj . Moreover, it is easy to see that λψ ∈ Inn(On) if and

only if ψ = id.

If n = 4, r = 2, R1 = {1, 2}, R2 = {3, 4}, σ1 = (23)(= σ−1
1 ), σ2 = (1243), ψ is

constructed from these data as above and w = S1S
∗
1 + S3S

∗
2 + S2S

∗
3 + S4S

∗
4 ∼ σ1, then

Ad(w)λψ is the outer automorphism of O4 constructed and discussed in [14]. For this
specific example, it is not difficult to verify that the corresponding 4-tuple of rooted trees
is of type αααα according to Table 3.
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More generally, for any λψ ∈ Aut(On) constructed as in Example 3.1, the correspond-
ing n-tuple of rooted trees can easily be described as follows. Each tree has n vertices
labelled by the elements in W 1

n = {1, . . . , n}, and the ith tree has root i and all the other
vertices are connected to the root. This readily follows from the fact that the defining
relation [7, § 4.1]

(i, α) = ψ(β, m), α, β ∈ W 1
n ,

for some m ∈ {i, . . . , n} forces β = i and then it can be solved for all α.

Example 3.2. Let n � 3, φ = (123) ∈ P 1
n and let ψ ∈ P 2

n be constructed as in
Example 3.1 with r = 2 from the data: R1 = {1, 2}, R2 = {3, . . . , n}, σ1 = id, σ2 = (12).
Then one checks that λφ and λψ are outer automorphisms of On of order 3 and 2,
respectively, and the group generated by λφ and λψ in Out(On) is Z3 ∗ Z2 [16].

Since λφ is a Bogolubov automorphism, the trees associated to φ (which can be thought
of as an element in P k

n for k > 1) are computed in [7, Example 4.4]. Also, as discussed
above, the n trees corresponding to ψ ∈ P 2

n are also all identical, with the root receiving
n − 1 edges from the other vertices.
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7. R. Conti and W. Szymański, Labeled trees and localized automorphisms of the Cuntz
algebras, Trans. Amer. Math. Soc., in press.

8. J. Cuntz, Simple C∗-algebras generated by isometries, Commun. Math. Phys. 57 (1977),
173–185.

9. J. Cuntz, Automorphisms of certain simple C∗-algebras, in Quantum fields: algebras,
processes (ed. L. Streit), pp. 187–196 (Springer, 1980).

10. M. Enomoto, M. Fujii, H. Takehana and Y. Watatani, Automorphisms on Cuntz
algebras, II, Math. Japon. 24 (1979), 463–468.

11. M. Enomoto, H. Takehana and Y. Watatani, Automorphisms on Cuntz algebras,
Math. Japon. 24 (1979), 231–234.

12. D. E. Evans, On On, Publ. RIMS Kyoto 16 (1980), 915–927.
13. K. Kawamura, Polynomial endomorphisms of the Cuntz algebras arising from permuta-

tions, I, General theory, Lett. Math. Phys. 71 (2005), 149–158.
14. K. Matsumoto and J. Tomiyama, Outer automorphisms of Cuntz algebras, Bull. Lond.

Math. Soc. 25 (1993), 64–66.

https://doi.org/10.1017/S0013091508000886 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091508000886


More localized automorphisms of the Cuntz algebras 631

15. S. C. Power, Homology for operator algebras, III, Partial isometry homotopy and tri-
angular algebras, New York J. Math. 4 (1998), 35–56.
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