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. For an element a of a unital Banach algebra A with dual space A’, we define the
numerical range V(a) = {f(a):f € A', ||fl|=f(1) =1}, and the numerical radius v(a) =
sup{|z|:z € V(a)}. An element a is said to be Hermitian if V(a) =R, equivalently
llexp(ita)]] = 1 (t € R). Under the condition V(h) = [—1, 1], any polynomial in A attains its
greatest norm in the algebra Fa[—1, 1], generated by an element i with V(h) =[-1, 1].

In [3] we proved that in Ea[—1, 1] all elements a=(ih)" +§&;, & eR, have
v(a) = ||a||: on pages 39, 44 of [3] we find € V(h™) such that | — ©'| = ||A™ — 1’||. Here
we extend this to any element

a=§y+&jih+...+E&,_ (k)" + (ih)" 6))

where m=1and §,eR (i=0,1,...,m—1). Asin [3,6], we represent Ea[—1, 1] as a
subalgebra of the bounded linear operators on the Banach space X of entire functions f
such that ||f|| =sup{|f(z)|/exp(]Im z|):z € C} exists. If f is entire with f(z)/exp(|z|)
bounded, and f(x) is bounded for x € R, then f € X and ||f|| =sup{|f(x)]:x e R}. Then
Ea[-1, 1] is generated by h = —iD, where Df(z)=f'(z). We show that there is a
function e in X corresponding to a support functional ® of the element a of (1) such that
e'?/(1 — €?) is rational. We have ®(b) = (be)(0)(b € Ea[—1, 1]), and e(z) = ®(exp(izh)),
which indicates how we can identify Ea[—1, 1]’ with X.

We can also consider Ea[—1, 1] as the algebra of functions f on [—1, 1] given by

f(t)= T crexplidet), cxeC, dieR, Tlcil finite, with |[f||=inf ¥ |c,| over such
k=1

representations, i.e. a quotient of /'(R) ([5]). The function h(t) =t corresponds to the
element hA. The element a of (1) has a representation as above Y c, exp(id.h) with
Z |ckl = |la]|, where e(d;)= %1 for all k. This follows from (11), and is valid for this
polynomial in a Hermitian element of norm at most 1 in any Banach algebra ([1, 4]).

Note that f € X; > f' € X;—Bernstein’s inequality, or equivalently, ||| =1. Define
T € X' by Tf = (af)(0), i.e.

Tf = Eof () + E:f'(0) +. . . +f(0). )

By Lemma 4 of [3], [la|| = [IT|| =sup{|Tf|:f € X,}, where X,={feX:||fl[<1}.
This supremum is attained by an extremal function. Hence finding ||a|| is equivalent to
maximizing (2) over f € X;. R. Boas [2, Section 11.4] considers this—his method gives the
extremal function when it is a translate of sin z. In [3] we proved that translates of
cos VzZ + 6%, 0= 6 < /2, were enough for elements (ih)™ + &, ([3], page 39 for m even,
page 41 for m odd). Here we prove the following theorem.

THEOREM 1. Let a, T be as in (1), (2). Then ||a|| =||T|| = Te for a certain e € X,
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which is real on R, and such that there exist u<m —1 and a;, b;eC, a;¢ R, a;, a;# b,
(,k=1,2,..., u) such that for all z € C,

?@) 11 @ -a)e-a)= - [ - b)> ()
(Allow u=0, i.e. e’>*=1—¢2). Further, v(a) = ||a]|.

We expect that the functional T has an extremal function e in X, which oscillates on
R between +1, apart from at a finite number of turning points. A theorem of
Sonin—Polya [7, p. 164] pointed out by J. Duncan suggests that e + @ ~'e’?> =1, where the
function @ is positive on the intervals of R of constant oscillation. Lemma 2 gives a
sequence p, which converges to € P is the extremal of T restricted to a class of
trigonometric polynomials. Then p,2/(1 — p?2) is a trigonometric rational function, and a
variational argument puts a bound on the number of its factors in lowest form. The
Hadamard factorisations in X show that the limit of this sequence, e’*/(1—¢e*) =g, is a
rational function multiplied by an exponential. Using the fact that Te is extremal, we
prove that g is rational. Finally we construct g =e + if € X, with f(R) cR and [g(0)|] =1,
which is enough to give v(a) = ||a||.

For neN, let P, c X be the set of functions z— E a, exp(ikz/n) where a; € C,
andlet P=|J P,. k==n

neN

LEMMA 2. Let f € X,. Then there exists a sequence (f,)n-; < P N X, such that f,— f as

n— o uniformly on compact sets.

Proof. For 0< 8 <%, define f;, g5 € X by
f5(2) =f((1 = 26)2)(8z)?sin® 8z = g5(z)/z>

Then fs;—f as 6—0 uniformly on compact sets. Since |f;(x)|<1 (x €R), we have

fs€X;,. Thus it is enough to prove the lemma for a function feX, given by

f(z)=g(z)/z?, where geX. Given such a function, define f,(z)= ¥ f(z + 2knx).
keZ

(n €N). Since g is bounded on lines Im z = constant, the series converges. For |Re z| <nx
we have

f(2) = f()I <2ligll exp(lIm z]) 3, (n7(2k —1))72 = an 2 exp(|Im z]),
k=1
where a = ||g||/4. Since f € X, and f, has period 2nx, we deduce that
If.(2)] < (1 + an"?)exp(/Im z|)(z € C).

Therefore f, € X and f, — f uniformly on compact sets as n— . Since f, has period 2nx,
by [2, Theorem 6. 10.1], f, € P,. Replacing f, by (1+ an™?)~'f,, we get the required
series.

For the sequence of Lemma 2, lim f®(0) = f®(0) (k=0, 1,2, ...), and so lim Tf, =

Tf. Hence ||T|| = sup{|{Tf|:f € P ﬂ)?l}. Let p, € P, N X, be such that n—»oo
Tp, =sup{|Tf|:f € P.N X,}. (4)
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Since for p*(z) = p.(Z), Tp} = Tp, = Tp,, by replacing p, by 3(p, +pZ*) we can assume

that p, is real-valued on R. Since X is a normal family, there is a subsequence (p,) such

that lim 7p, = ||T|| and limp, =e e X;, with uniform convergence on compact sets.
Jj—o j—roo

Therefore lim Tp,, = Te = ||T|}, and e is an extremal function for T.
j—-oo

If e'(0)=¢"(0)=...=¢e""(0)=0, then Te=Te, where e; is a constant function,
which satisfies (3) for 4 =0. Henceforth we assume that one of e’(0), ..., e™™(0) is
non-zero. By taking a further subsequence, we can assume that one of p,(0), . . ., p5(0)

is non-zero for each j.

Lemma 3. If p, +iq,, (resp. e + if ) € X, for some q, € P, (resp. f € X) with q,(R) cR
(resp. f(R) = R), then Tq, =0 (resp. Tf =0).

Proof. By (4), |Tp, +iTq,|=|T(p, +iq,)|<Tp,. Since Tp,, Tq,eR, we get
Tq, = 0. The second part is similar.

LEMMA 4. Let a, e be as in Theorem 1. Suppose that there exists f € X, real on R, such
that g =e +if € X, and |g(0)| = 1. Then v(a) = ||a}|-

Proof. By Lemma 3, Tf =0. Put g,=g(0)g, so that g, e X; and g,(0)=1. By
Lemma 1 of [3], Tg,=(ag,)(0)eV(a). Hence v(a)<||a||=Te=Tg=|Tg,|<v(a),
where the inequalities follow from the definition of v(a).

Proof of Theorem 1. If feP, is real on R, so that for some v, f(z)=

k;} a, exp(ikz/n) with a, # 0, we prove later that we may write

f(z)=4 IZ:VI sin((z — z,)/2n) (z € C),

where AeR and we may assume that —nz <Rez.<nm. For p=p, as in (4), we
factorize p’ and 1+ p: the same ‘v’ appears for each function. Since p'* and 1 — p? are

non-negative on R we get for some A >0, —nw <Re a,, Re B, <na, where we write n
for n;
]}

2v 4v
p2) (1= p*(2)™ =A% [] sin’((z ~ Bi)/2n) / T sin((z — e)/2n). ©)
k=1 k=1
If a; €R, then p(a,)= %1, which gives p'(a;) =0, and we find that p'* has a zero of
order at least that of (1 - p?) at a,. Hence by cancellation we can assume in (5) that

o, ¢ R, and by similar reasoning that «, #f;, for all j, k. The &, are in complex
conjugate pairs. Hence for some g, for all z € C,

pA2)1-pXz))7 =4 lﬁ sin’((z — Be)/2n)[sin((z — ax)/2n)sin((z — &)/2n)] 7" (6)
Write g(z) = ;rlp'(z)/kli[1 sin((z — B,)/2n). Thus

q(z) = (constant) _lz_v[ sin((z — B)/2n),
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from (5). By (6),

pi(z) +q%(2) ]ﬁ sin((z — a&)/2n)sin((z — &)/2n)=1 (z€C). @)

The function x — ﬁ |sin((x — a,)/2n)|* is continuous, periodic and non-zero on R, and
k=1

hence is bounded below by some 8>0. Hence by (7), p*(x) + 6°¢*(x) <1 (x e R), and
so P, N X; contains the function

x— p(x) +idq(x) si'(x/2n)cos*(x/2n), (j=0,1,2,...,u).
Since one of p'(0), ..., p™(0) is non-zero, from the definition of g, (at least) one of
q(0), ¢'(0), . . ., ¢""~V(0) is non-zero.
Suppose if possible that = m. Choose j <m such that ¢**~?(0) #0 and ¢*(0)=0
(k <m —j). By Lemma 3 and (2) we have
0 = T(q(z)sir'(z/2n)cos* (2 /2n)) = mlg™=P(0)/((m — j)!1(2nY):

the function to which T is applied has a leading term in z™. Hence p <m — 1.
By Hadamard’s factorization theorem, any f € X can be written

f(z) = B exp(az)z* ,fll (1 - az'z)exp(z/ay),

where a; are the zeros. By (6) each function p,’, 1-p7 has, counting multiplicity, at
most 2(m — 1) zeros in —n;w <Re z < n;x which the other does not have. Each zero of
e’?, (1—¢?) is a limit of zeros of p,?, (1—p?). Therefore the factorizations of e'> and
1+e, 1—e give, where o, B € R, B >0 (since e'? and 1 — ¢* are non-negative on R) and
Ui Hasm — 1: Ak, bkEC;

131 H2
p(z) =e"(z)(1 - €*(2))™" = B exp(az) kl—[1 (z = bi)? kH (z-a)(z-a)™', (8
= =1
where we are defining @. By the same argument as for p, we can assume that a, ¢ R and
ay, a, #b; for all j, k.
Since e is not constant, there is a disc A = {|z — §| <n}, § e R, on which |e|] <1. On

A, o(z)=sin"'(e(z)) is analytic. For ze ANR, a'(z)=e'(z)(1 —€*z)) = y(2),
where by (8),

vy =2p explaa) [ =00 /[1 16~ a0 - a1

Since (z — a,)(z — a,) >0, we have the usual square root here. Hence on A N R, for some
6 € R we have

e(z)= sin(@ + Lz Y() dt). 9
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The right-hand side of (9) defines a function analytic in a neighbourhood of R, which
must therefore equal e.

Suppose if possible that || > 1 for all ¢ > (or <) some ¢, € R. Then by (9) for certain
x, € R with |x,|— ® as n— », we have e(x,) =0 and, by (8), e'(x.)* = @(x,) = v*(x,) >
1. This contradicts Bernstein’s inequality le’(x)| <1 (x € R). Therefore in (8), a =0 and
to=u,. Hence by (8), (x)<K (xeR) for some K>0, and e*(x)+ K 'e*(x)<1
(x eR).

Equation (9) holds for any z if we integrate along a curve not through any a, or G,
and take the square root continuously in . If || < é <1 for all large |z|, then (9) shows
that e'(z)/exp(d |z|) is bounded on C. Hence if y>0, jeN and é+jy=<1, then
e'(z)sin’ yz € X, and e(z) + iK~"%e'(z)sin’ yz € X,. Choose ¥, j such that e®™7*1(0)#0
and e®(0)=0 (1<sk=<m —j). Then by Lemma 3 and (2), 0= T(e'(z)sit yz) #0. Thus
|| =<6 <1 for all large |z| is not possible, which gives u,=yu, and g=1. Since f>1
would give || >1 for all large real x, we have 8 = 1. Equation (8) now gives us (3).

Define 0,(z) =la;| — lax|™' (Reay)z (ze€C,k=1,2,...,u). For teR, we have
o%(t) < (¢t — a;)(t — G;), with equality when ¢ = 0. Then (3) gives

e*(t) + e'*(1) H ""(b’))z <1 (teR), (10)
with equality when ¢ = 0.

Since in (3) a;, d;# by, it follows that e (z)/fI (z — b)) is entire. Hence f(z)=
e'(z) ﬁ 0i(z)(z — b;) "' € X, since ' € X and lE[ a(z)(z —b;)”" tends to a limit as |z| — .

By (10) and since f(R) c R, [(e +if)(x)| =1 (x €R), and so e +if € X;. The case t =0 in
(10) gives |(e +if)(0)) = 1. By Lemma 4, v(a) = ||a||.

To derive the factorization of a function in P, given, use the Hadamard factorization,
grouping the zeros in subsets of period 2ns. If the function is real on R, there is no factor
exp(Bz) “left over”. This completes the proof of Theorem 1.

Remarks. For each m there exist elements a such that in (3) we have u =m — 1. For
example, let §; € C be such that the element a of (1) has minimum norm. We can show

that in fact & € R. There exists ® € A’ such that ||®|| =1, ®(a)=|a||, and d>(hf)=0
(0<j<m). The function e(z)=®(exp(izh)) is an extremal for a, with e¢?(0)=0
(0<j <m). If we replace e by 3(e + e*), (3) becomes

e(z) ':r;[: (2 — a)(z - &) = 221 - €(2)).
In the case m =3, this a is —i(h®> — &,h), and (9) becomes, for a certain «,
e(z)= sinf Y(t)dt, where (1) =1r/[(t - a)(t + @)(t — &)(t + &)]">
We require [§ ¢ = £n/2, and calculation with elliptic functions gives &, =0-73, a=

097 +i2.10, ||k — &, k|| =0-37.
We can prove (omitted) the following necessary and sufficient condition that a given
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function e € X, real on R, is the extremal for T as in (2): for a, T given, e is in fact
unique, and not constant.

(i) e satisfies an equation of the form of (3), and

(ii) there exist sequences ¢, d; € R such that for any f € X, the contour integral

LT (e (_Wz) Z((Z))d (1)

where T,, denotes T with the differentiations carried out with respect to w, and contours
I'— », gives as the sum of the residues of the integrand (which equals 0) a fixed multiple

of Tf — ¥ ¢, f(d,). Further, c e(d,) =0 for all k.
k

For =1 in (3), e is a translate of cosVz>+ 62, 0=< 6.
The functions found here are also the extremals for operators of the form

If = i Bif (), where «;, B; € R, and we require the maximum over f € X,: this T has
j=1

an extremal e with pu<m —2 in (3). Boas [2, Theorem 11.4.1] gives this result for
Tf =£(8) = f(=9).

From (3), if e'(z) =0 then, with at most (m — 1) exceptions, e(z) = £1. Thus on R,
outside the interval spanned by the b;’s which happen to be real, e oscillates between £1.
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