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Abstract

Inf-sup conditions are proven for three finite-difference approximations of the Stokes equa-
tions. The finite-difference approximations use a staggered-mesh scheme and the schemes
resulting from the backward and the forward differencings.

1. Introduction

Inf-sup conditions, which have been introduced independently by BabuSka [3] and
Brezzi [5], are important to study the linear boundary-value problems with a constraint
such as the following.

Find (u, p) e X x M satisfying

Au + B'f = f in X',

Bu = g inM', (1.1)

where X and M are two Hilbert spaces, X' and M' are their corresponding dual spaces,
and A e L(X; X') and B € L(X; M') are two linear operators with B' e L(M; X')
as the dual operator of B.

The linear operators A and B are associated with the bilinear forms

„/ \ . V v, y v ftp !»/ \ , v v \/f v fED
Cl\., .) . A X A —> Lft, "V,*» .^ . A X Ivl — T vf\.

Let {.,.) denote the duality pairing between the spaces X and X1 or M and Mf. Then
(1.1) is equivalent to the following variational problem.
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Given / € X' and g e M', find a pair (u, p) € X x M such that

aO*,v)+b(v,p) = {f,v) VueX,

b(u,q) = (g,q) VqeM. (1.2)

The inf-sup condition related to (1.2) is

3 C > 0 such that inf sup— ( " ' P ) > C. (1.3)

The bilinear form a (.,.) in (1.2) is related to the norm ||. || x in (1.3) for most problems.
The inf-sup conditions in the continuous problems and the finite-element problems

are studied extensively in many places, for example Aziz and BabuSka [2] and Babuska
[3], Brezzi [5] and Girault and Raviart [6]. On the other hand, conditions for three
finite-difference approximations of the Stokes problem are proven for the first time
by Shin in his Ph.D thesis [10]. This result is simplified and shown in this paper.

The finite-difference schemes that we are interested in this paper are a staggered-
mesh scheme and the schemes that come from the backward and the forward differen-
cings. These schemes are rather simple and hence serve well to the theoretical point
of view. The proofs are done by setting a relation between a continuous space and its
finite-difference approximation space and uses the inf-sup condition of the continuous
space.

2. Definitions

Let Q be in a domain in U.d and let F be its boundary. For simplicity, we focus
on the case when d — 2, but the results in this paper will hold for any d > 2. We
denote by L2{Q.) the space of real functions defined on Q which are integrable in the
L2 sense with the usual inner product and norm

(u, v)a •= 11 uvdA, \\u\\l := {u, u)n.

Let
H£(Q) := {u € L2(£2) | ux, uy G L2(fi) and.w|r = 0}

have respectively the inner product and norm

(u,v)Ui2:=lj Vu-VvdA, \\u\\2
isi:= (u,u)UQ

and

L2
0(Q) := {p e L2(fi) | (/>, l ) n = 0}.
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We use the notation u = («,-) for a vector. We shall often be concerned with
two-dimensional vector functions with components in L2{Q) or //0' (J2). The notation
L2(Q)2, Hg (fi)2 will be used for the product spaces. Define, for u and v € L2(Q)2,

(u, v)n := ^ ( u , , v,-)n. l|u||| := (u, u)n
1 = 1

and for u and v e H*(tt)2,

2

(u, v),,n := ^ ( K , - ,
 V>)l-Q> IMIi.n : = ( u - u)i.«-

We also make some definitions analogous to the above on discrete subsets of the
unit square S in R2. Let

S:={(x,y)€K2\0<x,y<l}

and T be a boundary. Let

h := —, for some N e N,
N

R2
h := {(lh,mh) € K2 | l,m e N},

where 5 is the closure of 5. Define

S,,m := {(*, y)eS\(!-l)h<x< Ih, (m - \)h < v < mh]

forl,m = I,..., N. Figure 1 shows 5;m when N = 3.
For an arbitrary discrete set S2A of the form

S2h := {(lh,mh) e Sh \ l0 < I < h andm0 < m < m,},

we define

Q.°h := {(Z/i, 77j/z) € Sh | /0 + 1 < I < /, - 1, m0 + 1 < m < m, - 1},

e(Q.h) :=[(lh,mh) e Sh | /0 + 1 < I < /,, m0 < m < m , ) ,

:= {(/A, mh) e 5A | /0 < / < /, - 1, m0 < m < m,},

:= {('A, m/i) 6 Sh | /0 < / < /,, m0 < m < m, - 1},

:= {(Z/i, m/i) € Sh \ l0 < I < /,, m0 + 1 < m < m,}
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FIGURE 1. 5,,m when N = 3

as the interior, east, west, south and the north sides of £lh and define

se(Qh) :=

ne(S2h) :=n(Qh)ne(Qh),

For the boundary Fh of Qh, we define

e{Th), w(Th),

nw(Qh) := n

s(Yh), n{Th)

w(Qh).

as the east, west, south and north parts of Th including the end points.
In this paper, we want to study both standard and staggered grids. The staggered-

mesh schemes use different grids that are staggered for the pressure and the velocity.
A staggered grid is shown in Figure 2. The points marked by P, I, and / / are where
the pressure and the first and the second components of the velocity are defined,
respectively.

Let

S, := I (lh, (m - )- J h J 6 5 | / = 1, ..., N, m = 0 , . . . , N + 1

- - I h, mh € 5 | / = 0 , . . . , N + 1, m = 1 , . . . , N
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FIGURE 2. Staggered grid

Then these are the sets for P, I, and / / . Figure 2 shows Sp, 5/ and 5// when N = 3.
Staggered-mesh schemes have been used by Amsden and Harlow [1], Brandt and
Dinar [4], Harlow and Welch [7], Patankar and Spalding [8], Raithby and Schneider
[9] and others.

Let L2(Qh) be the space of all discrete functions defined on Qh with inner product
and norm

(U,V)nh:=h2

respectively and let

U(x,y)V(x,y), \\U\\lh := (U,

:= {P e (P, l ) n , = 0}.

Then L2(S2A) and L2
0(Qh) and the discrete analogies of L2(£2) and L2

0(Q,).
For notational convenience, we introduce

U,,m:=U(lh,mh),

and define the forward, backward and central differencings on the x axis and v axis,
respectively, as
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(Sy+t/),,m := -2-
h

(Sy_U)i,m :=

n

Define the discrete gradients as

V+ := (Sx+, Sy+), V_ := (5r_, «,_). ^o := (^o, «*>),

and let V^ be the five-point discrete Laplacian, then VJ; = V_ • V + = V + • V_
The inner product and the norm of

are defined as

(U, V)hQh := (V+U, V+V)swm = (V_£/, V_V)Mn4)) WUf^ := (U, U)X

which are the sums over all points in Q.h where difference quotients are defined. The
inner product and the norm of the product spaces L2(Qh)

2 and HQ(Q/,)2 are defined
naturally from L2(Qh) and H*(Qh).

3. Inf-Sup conditions for finite-difference spaces

To show the inf-sup conditions for finite-difference spaces which come from ap-
proximations of the Stokes problem, we begin with the related theory for partial
differential equations. The steady-state Stokes equations in Rd are

V u = g i n f i c i 1 * ,

where the velocity u is a vector of dimension d and the pressure p is a scalar. Refer
to Aziz and BabuSka [2] for the proof of the next theorem.

THEOREM 1. Let £2 be a bounded domain with a Lipschitz-continuous boundary. Then
there exists a positive constant Cp — CP(Q.) such that any p e L\(Q) has a vector
u e HQ (S2)2 which satisfies

V • u = p in Q and | |u|£0 < Cp\\p\\2
a.
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The above theorem implies the so-called inf-sup condition for the Stokes problem.

THEOREM 2.

. (V • u, P)l ^ __,
inf sup 5 y > C .
j(n)\{0) | | u | l | | p l l

By the next theorem, we will get the inf-sup conditions for finite-difference spaces.

THEOREM 3. There exist positive constant Cf, which is independent ofh, such that

(1) any P e L\{SP) has a vector U 6 H^(Sr) x H^(S,,) which satisfies

(V o • U, P)Sp = IIP fSp, IIt/iII2,S, + IIU2\\
2
USu <Cf\\P\\2

Sp;

(2) any P € L2
0(S%) has a vector U e H*(w(Sh)) x H^(s(Sh)) which satisfies

(V_ • U, P)so = CIIPII^., l l f / . l l^) + llt/2ll?.,(W < OUPII2^;

(3) anj P e Ll(S%) has a vector U e i/JCeCS/,)) x H*(n(Sh)) which satisfies

(V+ • U, J t U V
Setting C := 1/C/, we get the following inf-sup conditions for some finite-

difference spaces.

THEOREM 4. There exists a positive constant C, which is independent of h, such
that

( 1 ) s u p <y. •".<%. > c m l ,
II77 II2 I | | / ' 7 | i 2 — " " J P

Ueff(j(5,)x«t|(5,,) 11^1 111, S, + 11^21

(2) SUP nrrf?~'1
f / | |
^ 1 111,«;(S»)

(3) ^ '
UeW(J(«(S*))xH<!(n(S»)) H^llll.eCi,,) + H ^ l l i ^ S j )

PROOF OF THEOREM 3. We first prove (1). Let P e L^(S,»). Then we define the
piecewise-constant function p e L2(S) by

/>|s,m:=P,-i ,m-i , (3.1)

foTl,m = l,...,N. Note that

(p, l)s = (P, l)s, = 0 and ||p||s = ||P||s,. (3-2)
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Since p e LQ(5), by Theorem 1, there exists a vector u = (uuu2) € HQ(S)2 such
that

n = p in 5 and ||u|
5 <

For t e [0, 1], define the line segments

x,(t) :=
- t)h,

0
N

if 1 = 0;

(m - t)h, ifl<m<N;

0 ifm = O;

N ifm = N + \.

If we define

.m-i := f ux{lh,ym(t))dt,
Jo

for / = 0, . . . , N and m = 0, . . . , N + 1, and

);_i,m:= f u20c,(t),mh)dt,
Jo

= 0,...,N, then

since u e Hj(S)2.
Let's first show that

By (3.2) and (3.3),

Hence it is sufficient to show that

(Vo-U, P)SF = (V-u, /7) s .

Using change of variable and the definitions of U\ and U2, one gets

(3.3)

(3.4)

https://doi.org/10.1017/S0334270000009255 Published online by Cambridge University Press

https://doi.org/10.1017/S0334270000009255


[9] Inf-sup conditions for finite-difference approximations of the Stokes equations 129

and

A' ( 3 - 5 )

for /, m = 1 N. Hence, using (3.1), (3.4) and (3.5),

(Vo • U, P)Sf =h2JT (Vo • U)H,m_i P,_i,
l,m=\

NN , ,

= T (V-u)pdA

Next we show that, for some constant Cf,

H£AIlls,+ 11^,5,, <Cf\\n\r. (3-6)

By (3.4) and the Schwarz inequality, we have

To evaluate HŜ —i/i ||n(j,), we need some definitions. Let

for /, m = 1 , . . . , TV, then D/m is a diagonal line segment in 5(m and generates an
upper and a lower triangles in S,,m, which we denote by Ut,m and L(m, respectively.
Figure 3 shows D/m, t//m and L/m when N = 3. Define

for l,m = I,..., N.
Note that
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FIGURE 3. D/,m, l/,,m and L;,m when ^/ = 3.

for / = 1 , . . . , Af and m = 2, . . . , N. Similarly to (3.4), one gets

(vt/.),,^ = Y2(ll*rdA+ll d-rdA ~ If T- dA) • (3-8)
2 h2 \JJL,Jx J'J\lmVUl,mJy JJL,m.,dy )

By the way that u\ and U\ are defined, for m = 1,

and, for m = N + I,

Hence, for m = 1,

i , 1 x

u,{lh,ym{t))dt- I uM(t),Q)dt\
Jo /

= i / , 0))
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Similarly, form = N + I,

= £ f

Note that, for any real numbers, x, y and 2,

(x + y + z)2 < x2 + y2 + z2 + 2(xy + yz + xz) <3(x2 + y2 + z2). (3.11)

Applying the Schwarz inequality to (3.8) and using (3.11), one gets

+ area(L,,m U (/,,„,) [f (^-) dA

for / = 1 , . . . , N - 1 and m = 2,..., N. Similarly (3.9) implies, for m = 1,

and (3.10) implies, for m = N + 1,

Combining equations (3.12) to (3.14) gives

i ! ? - (3-15)
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By (3.7) and (3.15), one gets

mfus, = W8*-UX(Sl) + WSy-UiWlts.) < 7||«ill?lS.

It is similar to show that

\\U2\\l
Thus,

By (3.1) and (3.3),

\\U2\\lSll <

Taking Cf := 1CP, we get the inequality in (3.6), which completes the proof of
statement (1) in Theorem 3.

Now let's prove the statement (2) in Theorem 3. Let P e LQ(S°) and define

P\st,m '•= Pl.m

forl,m = l,...,N — l, then p e Ll(Ssw). Hence there exists a vector u e HQ(SSW)2

such that

Define

V • u = p in and

x,{t) :=

ym(f) :=

(l-t)h, if ! < / < # - ! ;

1,
\-h

if/ = 0;
if/ = N,

(m-t)h, i f l <m<N - 1;

1,
ifm = AT.

We define

/ •
Jo

.«:= f u2(lh,ym(t))dt
Jo

for / = 0 , . . . , N - 1 and m = 0 N,

,m:= / u2(x,(t),mh)dt
Jo

for Z = 0 , . . . , N and m = 0 , . . . , N - 1, and then

U = (£/,, f/2) e H*(w(Sh)) x H*(.s(Sh)),

since u e WQ1 (5JU,)2. The proof that U satisfies the required properties is similar to the
proof for statement (1). The proof for (3) is similar to the proof of (2).
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4. Conclusion

The inf-sup conditions are proved for three finite-difference approximations of the
Stokes problem. The finite-difference approximations use a staggered-mesh scheme
and the schemes resulting from the backward and the forward differencings.

If Qh is the Schur complement of the linear system generated by one of the finite-
difference approximations that we discussed in this paper, the inf-sup conditions that
we proved in this paper can be used to prove that the condition number ic(Qh) is
independent of mesh size h and to prove the convergence estimation of the solution
generated by Qh, which we report in [12]. These results for Qh support the use of
the pressure equation method, a new fast iterative method introduced by Shin and
Strikwerda [11], and other iterative methods to solve the finite-difference approxim-
ations of the Stokes and the incompressible Navier-Stokes equations, since the Schur
complement Qh plays an important role in studying those equations.

Future research on the inf-sup conditions for other finite-difference approximations
and for other linear boundary-value problems with a constraint needs to be done.
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