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Abstract

The notion of quasi-regularity, defined for optimization problems in R”, is extended to the Banach
space setting. Examples are given to show that our definition of quasi-regularity is more natural than
several other possibilities in the general situation. An infinite dimensional version of the Lagrange
multiplier rule is established.
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In a classical situation one is concerned to minimize a real-valued function on R”
subject to

(+) g(x)<0 (i=1,2,...,m).

Let A4 denote the feasible set (consisting of all x satisfying (%)), and let x, € 4.
The tangent cone of A at x, is denoted by TC[4; x,] and is defined to be the
cone (i.e. the positively homogeneous set) generated by all unit vectors # for each
of which there exists a sequence {a,}7; in A4 with a, - x, and
(a, — xo)lla, — Xoll™* = h when g — oo. The (outer) normal cone is denoted by
NC[ 4; x,] and is defined to be the polar of TC[4; x,]:

NC[4;x,] = {£€R™ £-h<O0Vh e TC[4; x,]}.

Thus, if i is active at x in the sense that g,(x,) = 0, then the gradient vg,(x,) is
an outer normal because

gi(a,) — g.(xp) -

vgi(xo)h = lim <0.

q— ”aq - xO“
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This shows that if

m
So = { Y Avg(xo): A, = 0Vi with A\, = O when ; inactive}

i=1
then S; € NC[A4; x,]. We say that x is quasi-regular if the opposite inclusion
holds, that is if each outer normal is of the form XA ¥ g,(x,). It is known that x,
is quasi-regular if either (a) each g, is linear or (b) vg,(xo),...,Vg,.(xo) are
linearly independent. See, for example, Hestenes [6, page 221 and page 241]. In
the sequel, the above is generalized to the Banach space setting. Let then X,Y be
Banach spaces over R and suppose that Y is partially ordered by a closed convex
cone B. We are concerned to minimize a real-valued function f on X subject to
g(x) € B, where g is a given function from X into Y. We shall assume that g is
Fréchet differentiable. Let 4 = g )(B), and let x, € 4. Then one defines
TC[ A, x,] as before, so that NC[4; x,], the polar of TC[4; x;], is a subset of
the Banach dual space X *. Let

Sy = {y*eg'(xo0): y* € ¥*, y*(g(x0)) = 0, y* < Oon B},

In the classical situation described at the beginning, if one lets Y = R™ and
B = R ™ (the natural negative cone) with g(x) = (g(x),..-, g.(x)), then §; = §,,
and it is possible to define quasi-regularity as before. However, the objection
might be raised that this definition should depend on the range g( X), rather than
on all of Y. Accordingly, we let

S, ={y*og'(xy): y* € Y* y*(g(x0)) =0, y* <0on BN g(X)}

Certainly §, € S, € NC[ 4, x,], but examples will show that each inclusion can
be proper.

DEFINITION. We say that x is a quasi-regular point if S, = NC[A4, x,].

In the classical situation outlined previously, it is clear that S, = S, = S,. Thus
Theorems 1 and 2 do generalize the classical results stated in (a), (b) above. More
generally, suppose Y has the property that, for every closed subspace M, every
m* & M* satisfying m* < O on B N M can be extended to a functional y* € Y*
satisfying y* < 0 on B. Then again S, = S,, and the distinction between the two
possible definitions vanishes. This will be the case if Y is finite dimensional and
B is a polyhedral cone. For some discussion of the “positive extension problem”,
we refer the reader to Asimow [1] and Hustad [7].

THEOREM 1. Let Y be general (not necessarily finite dimensional). If G = g'(x,)
maps onto Y, then x is quasi-regular.
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PROOF. Let y, = g(x,), and let f(x) = g(x + x,) — y,. Then f(0) =0, and
£7(0) is onto, so Lemma 1 of Flett [5] is applicable. This states that f’(0)"}(Q) C
TC[f}(Q); 0] whenever Q is a subset of X which is closed under multiplication
by positive scalars. Examination of the proof shows that this is also true whenever
Q is assumed merely to be closed under multiplication by scalars in [0, 1]. So we
may put Q = B — y, and obtain G }(B — y;) € TC[4; x,]. (Bender [2, Lemma
4.1] gives a simpler proof of a similar result but assumes that B has an interior
point.) Now

BCcB-y, and 0, +y,€ B — y,,
and so
G™'(B), G7(0), +G™'(yo) € G7H(B - yp) € TC[4; x,].
Hence, the polars
(67(B))". (60))". (£67(3))" 2 NC[4; x,].

If x* is in the intersection of the three polar sets on the left, then x* vanishes on
G1(0) and so must be of the form x* = y* o G for some y* € Y *. Moreover, if
b € B, and if x € G7Y(b), then x*(x) <0, i.e. y*(b) < 0. Similarly one can
show that y*(y,) = 0.

THEOREM 2. Let g be linear with g(X) closed in Y. Then x is quasi-regular.

PROOF. Write Z for g(X). Then g’(x,) = g maps onto the Banach space Z,
and the admissible set 4 is unchanged when Y is replaced by Z. By Theorem 1,
each outer normal x* of A4 at x, is of the form z* o g with z* € Z*, z*(y,) =0
and z* < 0 on B N Z. By the usual Hahn-Banach theorem there exists y* € Y*
such that y* = z* on Z. Thus x* = y*o g, i.e. x* € §,.

The interest of quasi-regularity lies in the following generalization of Fritz
John’s theorem on the Lagrange multiplier rule.

THEOREM 3. Let f: X > R and g: X = Y be Fréchet differentiable functions,
and let x, be a local minimum point for f subject to the constraint g(x) € B.
Suppose further that x is quasi-regular. Then there exists y* € Y * with y*(g(x,))
=0andy*(b) < 0 forallb € B N g(X) such that f'(x,) + y*° g’(xy) = 0.

PROOF. Let 4 = g"}(B) as before. We need only show that —f'(x,) €
NC[4; x,). Let h € TC[4; x,] be a unit vector, and take a sequence {a } in A
converging to x, such that (a, — x)lla, — x| = h. Then

(f(a,) — f(xo))lla, — xoll™* = £'(xo) ks
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the value of f’(x,) at h. Since f(x,) < f(a,) for all large g, it follows that
f'(xo)h > 0.

Of course the literature already contains a variety of Fritz John type theorems.
They use assumptions and techniques different from ours to establish the ex-
istence of suitable Lagrange multipliers. For example Craven [3, Theorem 1] uses
the hypothesis of “local solvability” [4, page 33] instead of our quasi-regularity.
The sufficient conditions for quasi-regularity in Theorems 1 and 2 are also
sufficient conditions for local solvability. However, the relationship between
quasi-regularity and local solvability remains unclear. An advantage of our
approach is the weakness of the definition of quasi-regularity, which allows
Theorem 3 to hold for a wide variety of cones.

Our first example shows that S, can be a proper subset of S,, and that S, is the
most natural set to use in defining quasi-regularity.

ExaMPLE 1. Let X = R?% and let Y = R? be ordered by the circular cone
B = {(x,y,2): z > {x*+ y*}. Define g: X = Y by g(x, y) = (x, y, x), and let
xo = (0,0). Clearly the feasible set 4 is g~}(B) = {(x,0): x > 0}, and B N g(X)
= g(A)= {(x,0,x): x> 0}. It follows easily that TC[A4; x,] = A, and so
NC[4; x,] is the closed left half-plane {(x, y): x < 0}. (Naturally we identify
X* with R2) Since g is linear, we have g’(xo) =g, and so S, = {y*og:
»*(1,0,1) < 0} is also the closed left half-plane. Thus x, is quasi-regular.
However

S, = {y*°g: y*(cosf,sinf,1) < 0 for all 6}

= {(x+z,y): z< —\/x2+y2}

= {(x,»): x <0} U{(0,0)},
which is not even a closed set.

We remark that circular cones have also served as counterexamples for other
purposes [4, page 25].

Since the range g( X) is generally not a linear subspace of Y, whereas g’(x,) is
always a linear map, it might be considered natural to examine the following set:

Sy = {y*og'(xe): y* € Y*, y*(8(x)) = 0, y* <0on BN g'(x,)(X)}.
When g is linear, it is clear that S; = S,. But even in the classical situation, S,
need not be a subset of NC[A4; x,].

ExaMPLE 2. Let X =R, and give Y = R? the standard cone B = R2. Let
xy = 0, and define g: X = Y by g(x) = (-1 — x, x). Routine calculations show
that S; = S, = NC[4;x,] =R .. Since B N g'(xy)(X) = {0}, it follows that
S; = R. Thus S, is not a very natural set to work with in this context.
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Some examples of points which are not quasi-regular are given by Hestenes [6,
pages 222-223].
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