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QUASI-REGULARITY IN OPTIMIZATION
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Abstract

The notion of quasi-regularity, defined for optimization problems in R", is extended to the Banach
space setting. Examples are given to show that our definition of quasi-regularity is more natural than
several other possibilities in the general situation. An infinite dimensional version of the Lagrange
multiplier rule is established.

1980 Mathematics subject classification (Amer. Math. Soc): 49 B 27.

In a classical situation one is concerned to minimize a real-valued function onR"
subject to

(*) &(*) < 0 ( / = 1,2 m) .

Let A denote the feasible set (consisting of all x satisfying (*)), and let x0 e A.
The tangent cone of A at xQ is denoted by TC[^4; x0] and is defined to be the
cone (i.e. the positively homogeneous set) generated by all unit vectors h for each
of which there exists a sequence {a,}^_i in A with aq -* x0 and
{aq — xo)\\aq — xQ\\~l -* h when q -* oo. The {outer) normal cone is denoted by
NC[y4; x0] and is defined to be the polar of TC[^4; x0]:

N C [ ^ ; x 0 ] = { £ e R " : £ • A < 0 VA e TC[A;x0]}.

Thus, if / is active at x0 in the sense that g;(-x0)
 = 0 > t n e n the gradient Vg,-(*o) *s

an outer normal because

i M v Si(aq) ~ g,(x0)Vgi(x0)h = hm " _ < 0.
<7-»oo \\Uq XQ\\
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This shows that if

I m \

So = { £ ^P8i(xo)'- \ > ° v ' w i t n \ = 0 w n e n » inactive)
1 i

then So c NC[v4; x 0 ] . We say that x0 is quasi-regular if the opposite inclusion
holds, that is if each outer normal is of the form £A,Vg,(jc0). It is known that x 0

is quasi-regular if either (a) each g, is linear or (b) Vg,(*o)>•••,Vgm(jc0) are
linearly independent. See, for example, Hestenes [6, page 221 and page 241]. In
the sequel, the above is generalized to the Banach space setting. Let then X, Y be
Banach spaces over R and suppose that Y is partially ordered by a closed convex
cone B. We are concerned to minimize a real-valued function / on X subject to
g(x ) e B, where g is a given function from X into Y. We shall assume that g is
Frechet differentiable. Let A = g'\B), and let x0 e A . Then one defines
TC[A, xQ] as before, so that N C [ ^ ; x0], the polar of TC[,4; x0], is a subset of
the Banach dual space X*. Let

Si= {y* • g'(x0): y * eY*,y*(g(xo)) = 0,y*<0 on B}.

In the classical situation described at the beginning, if one lets Y = Um and
B = U "I (the natural negative cone) with g(x) = (g^x),..., gm(x)), then So = 5l5

and it is possible to define quasi-regularity as before. However, the objection
might be raised that this definition should depend on the range g( X), rather than
on all of Y. Accordingly, we let

S2 = {y* og'(x0): y* e Y*, y*(g(x0)) = 0, y* < 0 on B n g(X)}

Certainly Sl Q S2Q NC[y4,x0], but examples will show that each inclusion can
be proper.

DEFINITION. We say that x0 is a quasi-regular point if 5 2 = NC[^1, x0].

In the classical situation outlined previously, it is clear that So = Sx = S2- Thus
Theorems 1 and 2 do generalize the classical results stated in (a), (b) above. More
generally, suppose Y has the property that, for every closed subspace M, every
m* e M * satisfying m* < Oon B n M can be extended to a functional y * e Y*
satisfying y * ^ 0 on B. Then again Sx = S2, and the distinction between the two
possible definitions vanishes. This will be the case if Y is finite dimensional and
B is a polyhedral cone. For some discussion of the "positive extension problem",
we refer the reader to Asimow [1] and Hustad [7].

THEOREM 1. Let Y be general (not necessarily finite dimensional). If G = g'(x0)
maps onto Y, then x0 is quasi-regular.
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PROOF. Let y0 = g(x0), and let f(x) = g(x + x0) - y0. Then /(0) = 0, and
/'(0) is onto, so Lemma 1 of Flett [5] is applicable. This states that f'(O)~\Q) c
TC [f~\Q)\ 0] whenever Q is a subset of X which is closed under multiplication
by positive scalars. Examination of the proof shows that this is also true whenever
Q is assumed merely to be closed under multiplication by scalars in [0,1]. So we
may put Q = B — y0 and obtain G~l(B — y0) cl TC[A; x0]. (Bender [2, Lemma
4.1] gives a simpler proof of a similar result but assumes that B has an interior
point.) Now

B c B - y0 and 0, ±y0 e B - y0,

and so

G~l(B), G-\0), ±G'1(y0) c G'\B - y0) c TC[A;x0].

Hence, the polars

If x* is in the intersection of the three polar sets on the left, then x* vanishes on
G^iO) and so must be of the form x* = y* °G for some y* e Y*. Moreover, if
b e B, and if x e G'\b), then x*(x) < 0, i.e. y*(b) < 0. Similarly one can
show that y*(y0) = 0.

THEOREM 2. Let g be linear with g(X) closed in Y. Then x0 is quasi-regular.

PROOF. Write Z for g(X). Then g'(x0) = g maps onto the Banach space Z,
and the admissible set A is unchanged when Y is replaced by Z. By Theorem 1,
each outer normal x* of A at xQ is of the form z* ° g with z* e Z*, z*(y0) = 0
and z* < 0 on B n Z. By the usual Hahn-Banach theorem there exists y* e Y*
such that >>* = z* on Z. Thus x* = y* ° g, i.e. x* e 52.

The interest of quasi-regularity lies in the following generalization of Fritz
John's theorem on the Lagrange multiplier rule.

THEOREM 3. Let / : X -* R and g: X -* Y be Frechet differentiable functions,
and let xQ be a local minimum point for f subject to the constraint g(x) e B.
Suppose further that x0 is quasi-regular. Then there exists y* e Y* with y*(g(x0))
= 0 andy*(b) < 0 for all b e B n g(X) such thatf'(xo)+y*°g'(xo) = 0.

PROOF. Let A = g'\B) as before. We need only show that -f'(x0) e
NC[^4; x0]. Let h G TC[^4; x0] be a unit vector, and take a sequence {aq} in 4̂
converging to xQ such that ( a ? - x^Wa^ - xo\\~

l -* h. Then
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the value of f'(x0) at h. Since f(x0) < / ( a ? ) for all large q, it follows that
f'(xo)h > 0.

Of course the literature already contains a variety of Fritz John type theorems.
They use assumptions and techniques different from ours to establish the ex-
istence of suitable Lagrange multipliers. For example Craven [3, Theorem 1] uses
the hypothesis of "local solvability" [4, page 33] instead of our quasi-regularity.
The sufficient conditions for quasi-regularity in Theorems 1 and 2 are also
sufficient conditions for local solvability. However, the relationship between
quasi-regularity and local solvability remains unclear. An advantage of our
approach is the weakness of the definition of quasi-regularity, which allows
Theorem 3 to hold for a wide variety of cones.

Our first example shows that Sx can be a proper subset of S2, and that S2 is the
most natural set to use in defining quasi-regularity.

EXAMPLE 1. Let X = R2, and let Y = R3 be ordered by the circular cone
B = {{x, y, z): z > Jx2 + y2}. Define g: X -» Y by g{x, y) = (x, y, x), and let
x0 = (0,0). Clearly the feasible set A is g'\B) = {(x,0): x > 0}, and B n g(X)
= g(A) = {(JC,O, x): x > 0). It follows easily that TC[A; x0] = A, and so
NC[^4;x0] is the closed left half-plane {(x, y): x < 0}. (Naturally we identify
X* with R2.) Since g is linear, we have g\xQ) = g, and so S2= {y*°g~
y*(l,0,1) < 0} is also the closed left half-plane. Thus xo is quasi-regular.
However

•Si = {y*°g- y*(cos0,sin0, l ) < 0 for all 6}

= {(x + z,y): z < - J x 2 +y2}
= {(x,y):x<0}u{(0,0)},

which is not even a closed set.

We remark that circular cones have also served as counterexamples for other
purposes [4, page 25].

Since the range g(X) is generally not a linear subspace of Y, whereas g'(x0) is
always a linear map, it might be considered natural to examine the following set:

S3 = {y*°g'(x0): y* e Y*, y*{g(x0)) = 0,y*^0onBn g'(xo)(X)}.

When g is linear, it is clear that S^ = S2. But even in the classical situation, 53

need not be a subset of NC [A; x0].

EXAMPLE 2. Let X= R, and give Y = R2 the standard cone B = R2.. Let
x0 = 0, and define g: X -* Y by g(x) = (-1 — x,x). Routine calculations show
that Sx = S2 = NC[^;x0] = R+. Since B n g'(xo)(X) = {0}, it follows that
S3 = R. Thus S3 is not a very natural set to work with in this context.
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Some examples of points which are not quasi-regular are given by Hestenes [6,
pages 222-223].
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