The Relativistic Beaming Model and Superluminal Motions¹

J. H. Fan

Center for Astrophysics, Guangzhou Normal University, Guangzhou 510400, China

G.Z. Xie, Y.H. Zhang, and Y.P. Qin

Yunnan Observatory, The Chinese Academy of Science, Kunming, China

1. Introduction

In this paper, we consider a compilation of 55 objects with known superluminal motions (SM), and whose flux density (X-ray, optical, radio), core dominance parameter (R), superluminal velocity, and radio Doppler factor (δ_R) are known. Our study shows that SM is consistent with the beaming model, and the relation

$$\delta_{\gamma} = \delta_{\mathrm{o}}^{1 + \frac{1}{8} \log(\nu_{\mathrm{o}}/\nu_{\gamma})}$$

is reasonable. The statistical correlation between superluminal velocity and redshift is a result of selection and the statistical correlation between R and brightness temperature (T_{ob}) is actually a reflection of the correlations between δ , R, and T_{ob} for objects with SM. Up to now, 59 objects have been reported to have SM, but for reasons discussed elsewhere (Vermeulen & Cohen 1994), only 55 are considered here.

2. Acceleration Model

We proposed a formula between Doppler factor and frequency (the 'acceleration model', as we call it),

$$\delta_{\gamma} = \delta_{o}^{1+\frac{1}{8}\log(\nu_{o}/\nu_{\gamma})},\tag{1}$$

which is true for BL Lac objects (Fan et al. 1993, 1994) and Seyfert galaxies (Xie et al. 1995), and has been confirmed (Fan & Xie 1996). Here, we give another confirmation of SM.

From our previous paper (Fan et al. 1996), we have

$$\delta_R = \delta_0^{1.93 \pm 0.22},$$

which is consistent with the theoretical result $\delta_R = \delta_o^{1.67}$ obtained from eq. (1) with $\nu_R = 5 \text{ GHz}$, and $\nu_o = 10^{14.74} \text{ Hz}$. So, the acceleration model is reasonable.

¹This work is supported by the National Natural Science Foundation of China and the Natural Science Foundation of Guangdong Province.

3. Statistical Results

When linear regression analysis is applied to the data, following statistical results are obtained at a confidence level of greater than 99%: $\log R - \log \delta$, $\log R - \log T_{ob}$, $\log S_r - \log \delta$, and $\log \beta - \log z$. However, when the method of Padovani (1992) is used, we find that there are no longer correlations for $\log R - \log T_{ob}$ and $\log \beta - \log z$; these statistical correlations are actually a reflection of the correlations between δ , R and T_{ob} , and a result of selection, respectively.

References

Fan, J. H., et al. 1993, ApJ, 415, 113.
Fan, J. H., et al. 1994, ApSS, 213, 305.
Fan, J. H., et al. 1996, A&AS, 116, in press.
Fan, J. H., & Xie, G. Z. 1996, A&A, 306, 55.
Padovani, P. 1992, A&A, 256, 399.
Vermeulen, R. C., & Cohen, M. H. 1994, ApJ, 430, 467.
Xie, G. Z., et al. 1995, ApJ, 454, 50.