ON MULTIPLY TRANSITIVE PERMUTATION GROUPS

G. P. MONRO and D. E. TAYLOR

(Received 24 August 1977) Communicated by W. D. Wallis

Abstract

We present a direct combinatorial proof of the characterization of the degree of transivity of a finite permutation group in terms of the Bell numbers.

Subject classification (Amer. Math. Soc. (MOS) 1970): 20 B 20.

The kth Bell number B_k is the number of partitions of a set of k elements (Comtet, 1974, p. 210). It has been observed by Merris and Pierce (1971) that if G is a group of permutations of a set X, then G is k-fold transitive if and only if

$$\frac{1}{|G|} \sum_{g \in G} \pi(g)^k = B_k,$$

where $\pi(g)$ denotes the number of elements of X fixed by g. The proof given by Merris and Pierce is by induction on k and uses the recurrence relation $B_{k+1} = \sum_{j=0}^{k} \binom{k}{j} B_j$. In this note we give a proof based directly on the interpretation of B_k as the number of partitions of a set of k elements.

THEOREM. G is k-fold transitive if and only if

$$\frac{1}{|G|}\sum_{g\in G}\pi(g)^k=B_k.$$

PROOF. Let Y be the set of k-tuples of elements of X, and let G act on Y by setting $g(\langle x_1, ..., x_k \rangle) = \langle g(x_1), ..., g(x_k) \rangle$. Note that if $g \in G$, g fixes $\pi(g)^k$ elements of Y. It follows from a theorem of Burnside on the number of orbits of a permutation group (Huppert, 1968, p. 536) that if Y has N orbits under G, then

$$\frac{1}{|G|}\sum_{g\in G}\pi(g)^k=N.$$

Now, let \mathscr{P} be a partition of the set $\{1, ..., k\}$. Let $Y_{\mathscr{P}}$ be the subset of Y consisting of those k-tuples $\langle x_1, ..., x_k \rangle$ such that $x_i = x_j$ if and only if i and j are both in the same block of \mathscr{P} . Clearly $Y_{\mathscr{P}}$ is a union of orbits. If G is k-fold transitive each $Y_{\mathscr{P}}$

is in fact an orbit, so there are B_k orbits. If G is not k-fold transitive, consider $\mathscr{P}_0 = \{\{1\}, \ldots, \{k\}\}$. $Y_{\mathscr{P}_0}$ will be the union of more than one orbit, so altogether there will be more than B_k orbits.

Weaker forms of this theorem are discussed by Huppert (1968, p. 599) and van Lint (1974, p. 31).

References

- L. Comtet (1974), Advanced Combinatorics (Reidel, Dordrecht, 1974).
- B. Huppert (1968), Endliche Gruppen I (Springer-Verlag, Berlin, 1968).
- R. Merris and S. Pierce (1971), "The Bell numbers and r-fold transitivity", J. Combinatorial Theory (A) 12, 155-157.
- J. van Lint (1974), Combinatorial Theory Seminar, Eindhoven University of Technology (Springer-Verlag Lecture Notes in Mathematics, 382, Berlin).

Department of Pure Mathematics University of Sydney N.S.W. 2006 Australia