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Abstract

In this paper, the results of Freedman and So [13] on global stability and persistence of
simple food chains are extended to general diffusive food chains. For global stability of
the unique homogeneous positive steady state, our approach involves an application of
the invariance principle of reaction-diffusion equations and the construction of a Liapunov
functional. For persistence, we use the dynamical system results of Dunbar et al. [11] and
Hutson and Moran [29].

1. Introduction

By a food chain of length n, n > 2, we mean a closed ecosystem (no immigration and
emigration) which contains n interacting populations forming n trophic levels, such
that each population except the lowest eats the ones on the lower trophic levels. In the
following we simply call it a food chain. The other standard name for it is a food web.

The study of food chains dates back to 1926 when Volterra [49] first introduced
the so-called Lotka-Volterra predator-prey system, which is a food chain of length
two. A large number of food-chain models that have appeared since are of Lotka-
Volterra type, that is, the per capita growth rates are linear functions. For example,
models considered in [12,21,25,28,31,47,48] include the Lotka-Volterra food chain
as special cases. Most discussions of more general food chains have been restricted
to chains of length two or three (see [7,12,14—17,45]). For general food chains of
arbitrary length, the reader is referred to [8,9,13,20].

Global stability of a feasible steady state or limit cycle is certainly very desirable
(see [6]) in real ecosystems. However, it is generally difficult to establish. In fact,
even for predator-prey systems such a task is far from trivial (see [7,22,32,33]).
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Although there have been results for n -dimensional systems, they are valid only for
Lotka-Volterra type food chains (see, for example, [25,28,47]). The only exception
is the recent work of Freedman and So [13].

One of the most fundamental questions in mathematical biology concerns the long
term survival of each component. This is equivalent to the persistence analysis of
the related mathematical models. Persistence has been defined by various authors
in a variety of different contexts. If the model consists of only ordinary differential
equations, the following definitions are well adopted in the literature (see [4,5]):
A vector of x(t) = [xi(t),... ,xn(t)] is said to be weakly persistent if for each
component x,(r), limsup,_>+00A:1(r) > 0 and it is said to be strongly persistent if,
for each component xt(t), liminf ,_>+<„ *,•(/) > 0. A system of ordinary differential
equations is said to be uniformly persistent if there exists a a > 0 such that for each
component ^,(0, liminf,_+00 *,-(*) > o > 0 for all X = [xx(t),... ,xn(t)] e Int /?£.
The other analogous terms used in the literature are cooperativeness [28], permanence
[30] and permanent coexistence [31]. Similar terms also exist for reaction-diffusion
systems (see, for example, [11,29]) and for delay differentiation systems (see [3]).
More general and abstract (in terms of semigroup theory) definitions of persistence are
given in [24]. Clearly, global stability of a steady state or a limit cycle is much more
appealing than persistence in an ecosystem. Intuitively, one may think persistence is
easy to establish. Unfortunately, this is not true in the sense that establishing uniform
persistence for an n-dimensional system is generally just as hard as (if not harder)
than showing the global stability of an (n — l)-dimensional system (see [4,13,30]).

This work is motivated by that of Freedman and So [ 13]. We will consider questions
of global stability and persistence of a diffusive food chain. Our system is more
general than that considered in [13] even when there is no diffusion. Basically, we
extend the results of [13] to this more realistic diffusive food chain. Our approach
involves an application of the invariance principle of reaction-diffusion equations [1],
the construction of a Liapunov functional [13,26], and applications of the dynamical
system results established in [11] and [29].

The paper is organized as follows. In Section 2, we will present our model and state
some preliminary results. Section 3 will be devoted to discussing the global stability
of the unique positive homogeneous steady state of the system. Section 4 deals with
persistence aspects of the system. The paper concludes with a brief discussion.

2. Preliminaries

In this paper we propose to study the global stability and persistence aspects of the
following system of reaction-diffusion equations which may be viewed as a diffusive
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food chain model:

iii = d,Aui + / , ( « ) , (x, ( ) e S x R+, (2.1)

diti/dv = 0, on dQ x R+, (2.2)

u-,{x, 0) = ui0(x) > 0, x e £2, (2.3)

where 1 < i < «, 0 < dx < d2 < •• • < dn, and u = (ui, u2, • • • "„). Here Q
is a bounded and connected domain in Rm with smooth boundary, 3/3 v denotes
differentiation along the normal to dQ and A is the Laplacian. The function u,(x, t)
is the density distribution of the ith population at time t. The boundary condition
(2.2) implies that the system is closed (that is, no immigration and emigration). It is
assumed that M,0(*) is continuous. The functions/,(M), i = 1 , . . . , n, are assumed to
take the form

(2.4)

i(ui), i = 2,... , n - 1, (2.5)

We will always assume that functions appearing in (2.4)-(2.6) are continuously differ-
entiable with respect to their arguments. In order to ensure that (2.1)—(2.3) constitute
a model for a food chain, we assume further that the following conditions are satis-
fied:

(Al) #I (MI) , the specific growth rate of the bottom prey, is assumed to satisfy
gi : [0. oo) - • R, gi(0) > 0, S' ,(HI) < 0; there exists K > 0 such that g,(K) = 0.
(A2) Pji(Uj) is the predator functional response of they th species on the ith species.

We assume Pji : [0, oo) -> [0, oo), Pjl(0) = 0, p;,.(u,) > 0.
(A3) qtj (Uj) is the conversion (or assimilation) function of the Jth species from the
j th species. Also, we assume g^ : [0, oo) —> [0, oo), ^ ( 0 ) = 0, q'^iiij) > 0.

(A4) gi(Uj), i > 2, is the death rate function of the ith species. It is assumed that

S,(0) = -8, < 0, g',(u,) < 0.

When d, = 0, #,(«,) = -S,, qU-t(«,_,) = c,/?,,,_,(«,_,), c,- > 0, / > 2, and ,̂y (uy) =

Pu(.uj) = 0 wheny ^ i — 1, system (2.1) reduces to the so-called simple food chain
considered by Freedman and So in [13].

Clearly, our system (2.1)—(2.3) satisfies the so-called food pyramid condition (see
[1]), that is, there exists a positive constant b\ such that MJ~' / I ( U ) < b\ for M, > 0;
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also, given that Ui > 0 , . . . , u,_i > 0 are in a bounded set Uj in /?'"', there exists a
positive constant £, = bi(Ui) such that

uTxMu)<bh i = 2 n.

Thus, Theorem 2.1 in [1] implies that system (2.1)-(2.3) has a unique classical non-
negative solution u(x, t) = (ux(x,t),... , nn{x, t)) that exists for all time. Moreover,
if ui0(x) # 0, then u,(x, t) > 0 for t > 0, x e J2.

We call system (2.1) persistent if, for ui0(x) ^ 0, 1 < i < n,

infliminf «,(/,;<:) > 0, (2.7)

and uniformly persistent, if for M,O(*) ^ 0, 1 < i < n,

liminffmaxu,(x, t)) > a, (2.8)

where a is a positive constant independent of ui0, x and i.
Intuitively, the persistence notion requires the existence of a positive constant, say

b, such that at any location x, the liminf of the solution is larger than b. In other
words, eventually, the solution stays away from the boundary by a distance of at least
b. The notion of uniform persistence, on the other hand, requires only that there is
a a > 0, such that the maximum values of the solution over the domain at large
times are no less than a. This indicates that our persistence notion in fact implies that
of uniform persistence. It is not clear at this moment whether uniform persistence
implies persistence here.

It should be mentioned that the above definition for uniform persistence is consistent
with that in Hale and Waltman [24]. However, our requirement for persistence is
stronger than that in [24]. When dt = 0, these definitions coincide with those for
strong persistence and uniform persistence, respectively.

LEMMA 2.1. In system (2.1)-(2.3), assume that (A1)-(A4) hold. Then, for any
e > 0, there is a To = T0(e, u10), such that for t > To, U\(x, t) < K + e, x € Ci.

PROOF. Let u(x, t) = (MI(;C, / ) , . . . , «„(*, t)) be the solution of (2.1M2.3). De-
note

«o = maxMioOc). (2.9)
.ten

Let U\ (0 be the solution of the initial value problem (constant in x)

(2.10)

(2.11)
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Clearly, dux(t)/dv = 0 on dQ x R+, Aiii(t) = 0, and for (x, t) € f2 x R+,

M, - rf,A«, - / , ( « , , H2(JC, 0 , • • • , «»(*, (0) > 0 = «, - d, An, - / , ( « ) . (2.12)

Thus, by Theorem 10.1 in [46], we have

K i ( * , 0 < « i ( 0 . f > 0 . (2.13)

It is easy to see that, for any e > 0, there is a To = To(€, M)0) such that, for t > To,

Ul(t)<K + e. (2.14)

This, together with (2.13), completes the proof.

LEMMA 2.2. In system (2.1)-(2.3), assume that (A1)-(A4) hold, and

(A5) there is a constant a > 1, such that

ij > qi}, i > j , j = 1 , . . . , w - 1. (2.15)

Denote S = min{|g,(0)|, i = 2,... ,n), M = 8-la"-l(K + 1)[& + gi(0)]m(Q).
where m(Q.) is the measure o/fi, and

Q(O = f^ f a"-iui(x,t)dx. (2.16)
1=1 J n

Then lim^+oo sup Q(t) < M.

PROOF. By a direct computation, we have

(2(0 = V / a-'uiix, t)dx =Y\ / a'-'diAusdx +V] / a"-'f ,{u) dx. (2.17)
,=i Ja i=1 Jn 1=1 Jn

Since (2.2) must be satisfied, we have

/ a'-'di;A«( dx = a'-'d, j (du,/dv) ds = 0. (2.18)
Jn Jan

From Lemma 2.1, we see that there is a To > 0 such that, for t > To, «i (x, t) < U\ =
K + 1. Thus, for/ > r0,

1=1 (=2

n i - l

; = 2 ; = i
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i=2

a'-'ui + a^udt + gi(Ui)]
i=\
n

< -8 J]«""'«, + «""' UdS + *,(0)].
1 = 1

Therefore

6(0 < SQ(t) + a"-1Ul[S + gd0)]m(Xi), (2.19)

where m(£2) is the measure of £2. Let G = a"'1 f/,[5 + gi(0)]m(ft), then (2.19)
implies

Q(t) < e~" Q(0) + G I e~H'-s) ds. (2.20)

Therefore

f
Jo

lim sup (2(0 <
t-*+OO

This proves the lemma.

If di — 0 for some i > 1, then the above lemma alone indicates that uj(x, t),
j < i, are bounded. In this case, the above lemma, together with Theorem 3.1 in [1],
yields the boundedness of ut(x, t), I > i, in the sense of LM. Clearly, Theorem 2.1
in [1] implies Ui(x,t), I > i, are classical which in turn means that ut(x, t), I > i,
are bounded. If dx > 0, we see that the above lemma implies that solutions of system
(2.1)-(2.3) are L\ bounded. Again, by [1, Theorem 3.1], we conclude that they are
Loo bounded. Since solutions of (2.1)—(2.3) are classical, this indeed means that all
solutions of (2.1)-(2.3) are bounded. Thus, in both cases, solutions of (2.1)—(2.3) are
bounded. By an argument similar to the proof of Lemma 2.1 in Hutson and Moran
[29], we can show that solutions of (2.1)—(2.3) are bounded in C\Ci x R+, R+)
fort > 1.

We can now state and prove our main theorem in this section.

THEOREM 2.1. In system (2.1)-(2.3), assume (A1)-(A5) hold. Then solutions exist
for t > 0 and they are nonnegative, classical and bounded in C[(Q x R+, #"), for
t > 1. Further, there exists a positive constant U, which is independent of initial
value, such that

n

lim sup / M,(x,t) < U.
<->+00 *—>
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PROOF. The first statement is just a summary of the previous discussion. In order
to prove the second statement, we once more need Theorem 3.1 in [1], which says
that for an equation of the form

ii = dAu + uB(x,t), xeSlcR"1, (2.21)

with boundary and initial conditions of the form (2.2)-(2.3), if B(x, t) < a, a is a
constant, B(x,t) is locally Lipschitz in (x, t), and

sup / u(x, t)dx < L,

where L is a positive constant. Then

sup||«(-,Olli.00ffi) <2m+4aL. (2.22)
<>o

Since our system (2.1 )-(2.3) satisfies the food pyramid condition and for / > To,
U\(,x, t) < K + 1, we see that there exists ax > 0 such that, for t > To, u2(x, t)
satisfies (2.21), where B(x, t) is replaced by/2(«), and/2(w) < a\. By Lemma 2.2,
we see there exists Lx > 0, T\ > To, such that for t > T\,

I u2(x,t)dx < Lu
Jn

where L i is independent of initial value. Hence, Theorem 3.1 in [ 1 ] implies for t > Tu

4 (2.23)

Since u(x, t) is classical, (2.23) is equivalent to

«2 (*, 0 < L2 = 2m+4a, L i, t > 7,. (2.24)

By repeating this argument, we arrive at the conclusion that there exists a U, indepen-
dent of initial value, such that

lim sup 7 Ui(x, t) < U.

This completes the proof.

The above theorem implies that eventually all nonnegative solutions of (2.1)—(2.3)
will assume their values in a compact set in Rn

+. This fact will be used in a discussion
of uniform persistence in Section 4.

In the rest of this paper we will assume that (A1)-(A5) hold in system (2.1)—(2.3).
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3. Global stability

[8]

Clearly, system (2.1M2.2) has (0,0, . . . , 0) and (K, 0, 0 , . . . 0) as two of its spa-
tially homogeneous steady state solutions. It can certainly have many more such
solutions. To obtain all these solutions will be difficult and tedious, if it is not im-
possible. For convenience, we assume that system (2.1)-(2.2) has a unique spatially
homogeneous equilibrium u* — (M*, U*2, ... , «*) such that u* > 0, / = 1, 2 , . . . n.
The objective of this section is to derive criteria for u* to be globally asymptotically
stable with respect to initial condition (2.3), such that ui0(x) ^ 0, i = 1, . . . , n. For
this purpose, we adopt the approach of Freedman and So [13]. We consider first the
so-called simple food chain as discussed by Freedman and So [13]. We assume for
i = 1,2,... ,n,

qijiuj) = Pij(uj) = 0,

and denote for i = 1, 2 , . . . ,n — 1,

if; i - (",) = -<5,

Assume further, for i = 1, 2 , . . . , n — 1,

<7;(«.) = 9.-+i./(«i) = CiPi(Ui), ct > 0.

Thus (2.1) reduces to

M, = rf,AUi + "igl(Ml) - U2pdul),

M, = diAuj + Uil-Sj + c,p,_,(M,_i)] - ui+ipi(ui),

iin = dnAun + un[—Sn + cnpn_i(«n_i)].

For i = I,... ,n, i ̂  n — 1, we define

i) = u,-u*lnui.

(3.1)

(3.2)

(3.3)

(3.4)

(3.5)

It is easy to see V/(M,) is bounded below by u* - u* In u* and tends to +oo as M, -> 0+

or M, -> +oo.
For i = n — 1, we define (see Freedman and So [13])

K,-, («„.,)= ["
Ju'_,

-8n (3.6)
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From the assumed properties of pn_i(un_i), one can see that Vn_t has properties
similar to those of the other V;'s listed above.

Finally, we define on the space of C(£2 x R+, /?+),

W(u)(t)= fY^Vtiuddx. (3.7)
Ja .-=i

The derivative of W(t) along any positive solution of (3.4) with (2.2M2.3) takes
the form

W(u)(t) = / 2^ VHu,)d^Uidx + / 2^ v;(Ui)Mu)dx. (3.8)

By using the boundary condition (2.2), we have

I V Vliudd,AUi dx = -Y f dt V;"(U,)|VM,|2 dx,
Jn ~[ ~[ Jn

where

~~* ' (3.9)

For i' ^ n — 1, we have

v;'(Ui) = u'iu;1)2 > o, (3.10)

and for i = n — 1, we have

C . ( K » - I ) = *»(p-i(««-i)r2ri-.(«-i) > °- (3-11)

Thus, we have shown that

C "
W(u)(t)< / Y,Vi^fMdx- <3-12)

Jn ,=i

As in Freedman and So [13, p. 76], we define the functions 0,, TA;, ' = 1»• • • ,n — l,
as follows:

Un-\
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Pi(Uj) - Pi(u*) = (w , - u*)4>i(Uj), i = 1 , . . . , n - 2 ,

-Sn + cnpn_,(«„_,) = («„_, - M*_,)0n_i(«„_,).

We denote

Vi = Ui -u*, i = 1 , . . . , n . (3.13)

By the same algebraic manipulations as documented in [13, p. 74-76], we can write

n n—\

1=1 i.j = l

where ay («) = a/,(w), a,y = 0 if \i — j | > 1, and

a«+i(«) = -z [Pi(m)u;1 - C / + , ^ ( I I , ) ] , i = 1 , . . . , n - 3, (3.16)

M n _ 2

(3.17)

Finally, we denote A to be the (n — l ) x ( n — 1) matrix A = (a,y).
Now we are ready to state and prove the main result of this section, which reduces

to Theorem 3.1 in [13] when dt = 0, i = 1,... ,n.

THEOREM 3.1. Consider system (3.4) with boundary condition (2.2). Assume (A 1 ) -
(A4) hold and A is positive definite for all u e Int /?". Then u* is uniformly globally
asymptotically stable (in the norm of C(fl x R+, /?+)) with respect to a nonnegative
initial function uo(x), such that ui0(x) ^ 0, i = 1 , . . . , n, x € S2.

PROOF. We define a Liapunov functional W(u)(t) as in (3.7). Thus, from (3.12),
we have

W(u)(t) < - / J2 au(u)v,Vj dx, (3.18)
Jnu=i

where u, is denned as in (3.13). Since A is assumed to be definite, we see that if
W(u)(t) = 0, then (since u is a classical solution)

vi = v2 = • • • = va-i = 0 ,

that is,

M, = « ; , . . . , « „ _ , = «;_,. (3.19)
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Thus, in the space of C(ft x R+, Rn
+), we have

E = [u: W(u)(t) = 0} C S = [u : «, = • • • = «„_, = 0, Vwn = 0}. (3.20)

Let / be the largest invariant set (with respect to (3.4)) in E. We see that u e I implies

M = (wj, . . . , «*_,, «„), iin is a constant. (3.21)

Thus

o =«;_ , = </„_!AH;_, + «;_,[-<5n-i +cn_,pn_2(«:_2)] - ^ - , ( 0 , (3.22)

which implies

un = «;. (3.23)

By the invariance principle, Theorem 4.3.4 in Henry [27], we conclude that for an
initial function uo(x) > 0, such that ui0(x) §£ 0, i = 1 , . . . , n, x e ft, the solution
u{x, t) of (3.4), (2.2H2.3) satisfies

u(x, t) —> u* as t -> +oo in Li norm. (3.24)

By Theorem 2.1 in the previous section, we see that (3.23) is equivalent to

lim u(x, t) = u* uniformly on ft. (3.25)
(-++OO

This completes the proof.

It should be mentioned here that the remarks and corollary following Theorem 3.1
in [13] are equally applicable to the above theorem. They are very useful in the
application of the result. We omit them here just to avoid repetition.

It is easy to see that, in general, one can try to use

W(u)(t) = f J2 c, Vi(u,) dx (3.26)

as a trial Liapunov functional, where c,, / = 1, . . . , n, are positive constants. This
may give better results than Theorem 3.1.

The next theorem deals with the general model (2.1 )-(2.3). Note that the proof uses
a slightly different Liapunov functional and hence it is independent of Theorem 3.1.
The result may be too general to be applicable.

THEOREM 3.2. In (2.1)—(2.3), assume there exist positive constants c,, i = 1, . . . , n,
such that

n

£>(«*-«>,- ' / .•(«)< 0 (3.27)
/=!
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and the largest invariant set in

E = \u : ̂  *(* - «*)«-'/,(«) = 0

is u*. Then E* is uniformly globally asymptotically stable (in the norm of C(Cl x
/?+, /?" )) with respect to a nonnegative initial function uo(x), such that ui0(x) ^ 0,
i = 1, . . . , n, x e £2.

PROOF. We define a Liapunov functional W(u)(t) for (2.1M2.2) as

c "
W(u)(t) = J2 c'("' ~ u* ln M;) dx- (3>28)

From (3.26), we have

W(u)(t) < f iTci(u, - u*)ujlfi(u) < 0. (3.29)
Jn ,=i

The rest of the proof is the same as that for Theorem 3.1. We omit it here.

In the following, we consider the frequently used diffusive Lotka-Volterra food
chain, that is, u~lfi(u) are linear functions of u,. We may assume

where gx > 0, g,- > 0, / = 2 , . . . , n; pjt > 0, <?;, > 0, i < j are all constants.
For any positive constants c,- > 0, i = 1, . . . , n, we have

:,(«, - u*)u~lfi(u)

= ci(ui - u*) -gi(u, - u\)/K -^Pji(Uj - u*)

i - l n "I

j=i ;=i+i J

+ cn(«n - un) -gn(un - un) +l^qnj(uj - Uj

Let vt be defined as in (3.13), then we can rewrite the above equation as

d(ui - u*)u~lfi(u) = -v(ATC + CA)vT,
, 2
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where v = (i>i,... , vn), C = diag[ci, c2,... , cn] and A = (fity ) n x n is defined as

(i) an = -gi/K,au = -gr,

,.., \qy, j = 1 , . . . , i - l ,
( ) \

Thus we have the following result.

THEOREM 3.3. Assume (3.29) holds in system (2.1)-<2.3). If there exists a positive
diagonal matrix C such that A T C + CA is negative definite, then the conclusion of
Theorem 3.2 holds.

PROOF. This is an immediate corollary of Theorem 3.2.

As an example to the above theorem, consider the simple three level food chain
where

= u2(-2 -u2 + 4M, - M3),

Then we have an = —2, a22 = «33 = —1, al2 = —2, au = 0, a2\ = 4, a23 = —1.
a3) = 0, a32 = 2. This food chain has a homogeneous positive steady state (2, 1/2, 6).
For this particular food chain, we can chose C = diag[l, 1/2, 1/4]. Then it is
easy to see that ATC + CA — diag[-4, - 1 , - 1 / 2 ] . Theorem 3.3 implies that the
homogeneous positive steady state is globally asymptotically stable.

REMARK 3.1. It can be seen from our definition of W(u)(t) in (3.27) that we can
in fact allow u* = 0, for some i € {1, 2, . . . , « } , in our discussions.

4. Persistence

For simplicity, in this section, we will restrict our attention to the diffusive simple
food chain; that is, system (3.4) with boundary and initial conditions (2.2)-(2.3). As
will be seen in the following discussion, a detailed analysis of the persistence aspect of
the full system (2.1 )-(2.3) will be rather complicated, if not impossible. Our objective
is to derive criteria for system (3.4) to be persistent or uniformly persistent. Our
persistence result is a direct extension of the work of Freedman and So [13], while the
uniform persistence result is a direct application of a criterion established in Hutson
and Moran [29].

In order to state and prove our persistence result, we need the following notation
and a lemma from Dunbar etal. [11].
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Let X be a metric space and D an open subset of R+ x X. A mapping n : D -*• X
is called a local semiflow on X if the following properties hold:

(i) n is continuous;
(ii) for every x e X, there exists &>,, 0 < cox < oo, such that (t, x) € D if and

only if 0 < t < <ox;
(iii) TT(O, JC) = x, for all * e X;
(iv) if (r, *) € D and (s, 7r(/, x)) e D, then (f + s, x) € £) and n(t + s,x) =

n(s,Tr(t,x)).

For convenience, in the following we use the convention xnt := n(t,x). Let J be
a real interval and let a : J —*• X be a mapping. We call a a solution of 7r if, for
all r e J, s € [0, oo) for which t + s e 7, it follows that cr(»7rs is defined and
o(t)ns = o{t + s). If J = R, then CT is called a full solution. If Y C X, we define

= {x eX : XTT[0, COX) C Y],

A~(Y) ={x e X : there is a solution u = R~ -> Xwith CT(0) = :̂,

and CT(/?~) C K, where /?~ = (-00,0]},

A(Y) = A+(Y)DA-(Y).

We call Ypositively invariant (with respect to JT) if A+(Y) = Y, negatively invariant
if A~(Y) = Y, and invariant if A(Y) = K. It is important to note that if cox = +00
for all x e Y, then K is invariant if and only if for each x € Y, there exists a full
solution a with cr(O) = x and cr(R) c Y.

We say that the local semiflow n does not explode in Y, if for every * €xn[0, a>x)cY
we have that cox = 00.

If a is a solution on R+ (respectively R~), then we denote its w-limit set (a-limit
set) by co(a)(a(a)).

Next, let K be a closed invariant set, then K is called an isolated invariant set if
there exists a closed set Af such that K c IntAf and AT = A(N). A closed set JV
is called an isolating neighborhood if K = A(N) C intN. Clearly, a hyperbolic
equilibrium point of n is an isolated invariant set.

The following result on semiflows is established in [11, Theorem 2.2].

LEMMA 4.1. Let K be an isolated invariant set and let N be an isolating neighbor-
hood of K. Suppose that n does not explode in N. Let y € X be a point for which
wy = 00 and yn(R+) is precompact. Leta(t) = ynt, t > 0, and suppose that

(o(a)DK ^(j), a)(a)n(X\K) ^<p.

Then

^(j> and co(a)D A~(N) D dN £ <p.

https://doi.org/10.1017/S1446181100013055 Published online by Cambridge University Press

https://doi.org/10.1017/S1446181100013055


[15] Diffusive food chains 261

A+(N)\K and A~(N)\K are called the stable and unstable manifold of K (relative
to N). Intuitively, Lemma 4.1 says that (o(a) contains points from both the stable and
unstable manifolds of K, whenever it contains points of K and its complement.

Finally, for [ix,... , ik] c ( 1 , . . . , n], we define a subspace of C(Q, Rn
+),

Hit ,, = [u : u,, = 0 for all i £ { i , , . . . , i*}}. (4.1)

For a simple food chain (3.4), it is easy to see that its spatial homogeneous steady
states (if they exist) must take the form Ek(u\k\ . . . , u[k\ 0 , . . . , 0), u\k) >0,l<i<k,
and 1 < k < n, or ( 0 , . . . , 0) = Eo. We say £, is hyperbolic if it, as the equilibrium
of M, = / , (« ) , is hyperbolic. We will use the same notation Ek to denote the function
u(x) e C(Q, R1), where «,(*) = uik). This should not cause any confusion.

THEOREM 4.1. For system (3.4), (2.2)-(2-3), assume that £,, i = 1,... ,n — 1,
exist and are hyperbolic. Further, suppose that Et are globally asymptotically stable
with respect to Int Hx ,. Then if

-8n + cnPn^ (wir,") > 0, (4.2)

the system (3.4), (2.2)-(2.3) is persistent with respect to C(f2, Rn
+).

PROOF. Suppose that system (3.4) is not persistent. Then there is a MO(*) €
C(fi, R"+), ui0(x) ^ 0, / = 1 ,2 , . . . , n, such that for some j e { 1 , . . . , n}, there are
sequences tn —>• oo,xn € Cl with «y (xn, tn) —• 0 a s « —>• oo, where u{x, t) = uo(x)jtt.
By our Theorem 2.1, we know u(x, t) is precompact in C(Q, #+), thus we may assume
that u(-, tn) -> u}° € tt)(M0) and^n -> JC0 € fi as n -* +oo. Then IU°(A:O) = 0, which

by the invariance of the cu-limit set, implies that U>°(JC) = 0. That is, w°(x) lies in
R a

+ ~ l .

Clea r ly , t h e r e e x i s t ii < i2 < • • • < it, [i\, • • • , it} C {1 , 2 , . . . , n], s u c h that

w%) 6 H,, ik.
We observe that if u€ H\ ,_i,,+i *, thenct;(M) C Hx X-i- And if « 6 H2,...t, then

u)(u) = Eo. This can be shown by using the comparison principle, [46, Theorem 10.1].
Thus, indeed, there exists a unique / < n, such that a)(w°) C Hi ,, and a>(w°) D

Int Hi / ^ <p, or co(w°) = Eo. In both cases, the above argument indicates that there
are £,, i = 0 , . . . , n — 1, such that £, 6 <y(u;0) C (o{uQ). For convenience, in the
following we denote W+(E,) and W~(£,) as the stable and unstable manifolds of E,
in C(J2, /?"), respectively.

Assume Eo e w(a0). It is easy to see that the unstable manifold of Eo is //, and its
stable manifold is //2.3 n- By Lemma 4.1, there exists a vx, such that

u, e w(MO)n//2,3 n \{£ 0 }-
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Since v{nR C co(u0), this implies vxnR is bounded. Thus the invariance of CD(UQ)

implies that a(vx) is nonempty compact and invariant, and Eo £ cc(vi). However, this
means that for v0 e cx(v{), co(v0) C a(vi), which leads to EQ £ a>(v0). This clearly
contradicts our observation that if vx e H2t3 „, then <o(vi) = Eo. Therefore we have
shown that EQ £ co(uo).

Suppose now that Ex e co(u0). By the hyperbolicity of E\ and Lemma 4.1, there
exists Q\ € W+(Ei)\{Ei] such that Q\ e co{u0). By the hyperbolicity of £, and
the global stability of E2 in HU2, we see that —52 + c2p\(u\l)) > 0. Therefore
W+(E\) — //i,3 n\Hi „ from our previous observation. If Q\ £ Hi, then we can
show that the full solution through QX must be unbounded by considering a{Q\)
as above. This is because the &>-limit set of any solution passing through a point
in <x(QX) must remain in a(Q+), which does not contain Ex. This is impossible,
since H\^ „ is invariant, and a(£?*) will remain in it, which implies that for any
v2 € ct(Ql), a)(v2) C Hi, and since Ex £ co(v2), this leads to co(v2) = Eo; therefore,
Eo e co(v2) C a(Qt) C o)(u0), a contradiction. Now, if Q+ € Hu then it is easy to
see that closure of any orbit in Hi\{Ei} is either unbounded or contains Eo, which in
both cases leads to a desired contradiction. Hence, Ei £ o>(w0).

Similarly, we can show that E2,..., En_2 £ a)(u0). Further, because of the
assumption that £, are globally asymptotically stable in Hi, .,,, i = 1,... ,n — 2, no
point of Hx , can be in co(u0). Therefore no point of Hi ,_i,,+i „ can be in co(u0).

Finally, if £„_! € <w(M0),then by(4.2)and the global stability of En_x inlnt//i n_l t

we claim that W+(En-X) = Int H{ n-X\{En_i}. Otherwise, arbitrarily close to £„_!,
there is a solution u(x, t), lim^+oo u(x, t) = £„_, uniformly on Q and un(x, t) > 0
for t > 0. Clearly, there is an e > 0, T > 0, such that for t > T, x € J2,

-<$„ + cnpn^(un_i(x, 0) > * (4.3)

and

^ * , i ) < e - (4.4)
i=l

Denote

fj. = min un(x, T) > 0. (4.5)
xeil

Let a (t) be the solution of

a(t) = €*«), a(T) = fi. (4.6)

Denoting a(x, t) = cr(t), we have

a — dnAo — e<7 = 0,

iin - dnAun - €un >itn- dnAun - un[Sn + cn/?n_,(«„_,)] = 0.
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Then the comparison result [46, Theorem 10.1] implies that

un(x, t) > o(t) = fiee('~T), x e ft, t > T.

Therefore

lim un(x, t) = +oo,
r->+oo

a contradiction to (4.4).
Now, since W+(En_i) = Int Hx n_i\{£n_,}, by Lemma 4.1, there exist Q+_, €

W+(En_x), such that <2*_, € co(uQ). But the closed orbit through ££_, either is
unbounded or contains points of H{ ,_i,,+i n_i for some i < n — 2. This again
leads to a contradiction, proving the theorem.

In the rest of this section we assume that in the growth process of every species w,
of system (3.4), a self crowding effect takes place, and

lim gj(uj) = —oo. (4.7)

We hereafter replace —<5, by g,(w,) in (3.4) and denote the resulting system by (3.4').
We assume further that

(HI) £2 is a connected and bounded open domain in Rm with C2 boundary. For each
i € {1 n),fi € C2(Rn

+, R), 4 > (U = 1 n.

LEMMA 4.2. Assume (4.7) holds in system (3.4'), then it has an arbitrary large
invariant set of the form

n

X = f > \ { u : 0 < u i < I,). (4.8)

By an invariant set, we mean that f («) points strictly into S on 3E.

PROOF. Since lim,,^.*,gt(ui) = — co, we can choose a positive constant U, such
that g\ (/[) < 0. Clearly/ (M) points strictly into the space between u\ = 0 and u\ = l\
in /?" from the side of ut = l\.

Since limU2_oo ̂ 2(^2) = - co . we can choose a positive constant /2, such that

Intuitively, this ensures that / (M) points strictly into the space between u2 = 0 and
u2 = h in Rn+ from the side of u2 = h-

By repeating the above process, we can choose /,, 1 > 3, inductively, so that

giVd + CiPi-dli-i) <0.
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One can see that

n

£ = n < " : ° - ui ± '•}

is the desired invariant set. Clearly, it can be made as large as one wants.

It is easy to see from the above argument that Lemma 4.2 is valid for system (2.1),
provided that (4.7) holds.

In order to state and prove our next result we need the following notation from
Hutson and Moran [29].

For Y C Rn
+, define

X0 = [ue C(Ci, R") : u(x) € Y, for* € £2},

So = {u e Xo : for some i, M,-(JC) = 0, for x e Q},

X = X07r[l,oo), S = SOTT[1, OO),

co(V) = UveVco(v), where V C C(S2, R").

The following result is essentially contained in the proof of Lemma 5.1 in [29]. For
completeness, we will sketch the proof.

LEMMA 4.3. Assume (HI) holds in system (2.1)—(2.3) and the system has an invari-
ant set Xo attracting all nonnegative solutions. Suppose that o)(S) consists of a finite
number of spatially homogeneous steady states, ii\,... ,iik, say. Then system (2.1) is
uniformly persistent if and only if there exist a\,... ,an > 0, such that

i=n

2 > i F , ( « , ) > 0 , j = l,...,k, (4.9)
1 = 1

where F;(«) = ujlft{u).

PROOF. Following the proof of Lemma 5.1 in [29], we see all conditions of The-
orem 3.2 in [29] are satisfied. Thus there is a compact set M absorbing for X\S
with

d(M, S) = mind(u, s) = a > 0. (4.10)

This clearly implies that

liminf I maxu,(;c, t) I > o, (4.11)

proving the lemma.
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Now we are ready to state and prove our uniform persistence result.

THEOREM 4.2. Assume (4.7) and (HI) hold in system (3.4'). Assume further that
Eh i = 1 , . . . , n — 1 (as in Theorem 4.1), exist and are hyperbolic and that E-, are
globally asymptotically stable with respect to Int H\ ,. Then if

gn(0) + cB/>(,_,(«i"_-I
1)) > 0, (4.12)

the system (3.4'), (2.2)-(2.3) is uniformly persistent.

PROOF. Clearly, all conditions of Lemma 4.3, except (4.9), are satisfied by (3.4').
We choose a\ = 1. It is easy to see that there exists an e2 satisfying 0 < e2 < 1,

such that if a, < e2, i = 2,... , n, then (4.9) is true for Eo = (0, . . . , 0). We may
thus choose a2 = e2.

We observe that for j > 1,

and F2(Ei) > 0, since E2 exists and is globally stable in Int HU2. This implies there
exists an e3 satisfying 0 < e3 < e2, such that if a, < e3, / = 3 , . . . , n, then (4.9) holds
for E\. Then we define a3 = e3.

Repeating the above argument, we can define a,, i = 1,... ,n — 1, such that

1 = ai > a2 > • • • > an_i

and (4.9) holds for EQ,... , En_3, provided an < an_,. Since Fn_,(«„_,) > 0,
because of the existence and global stability of £ n _ b we see that there exists an en

satisfying 0 < €n < otn_i, such that (4.9) holds for En_2 if orn < en. We thus define

Finally, because of (4.12), we see that (4.9) holds for En_x as well. That is, we
have found a, > 0, i = 1, . . . , n, such that (4.9) holds for £,, i = 0, 1, . . . , n — 1.
By Lemma 4.3, we conclude that (3.4'), (2.2)-(2.3) is uniformly persistent.

REMARK 4.1. In theory, the discussion of this section can be applied to the full
system (2.1) as well. The main difficulty is that we do not know how many spatially
homogeneous steady states the system may have and where they may be located.

5. Discussion

It is not difficult to see that our approach can be applied to systems satisfying
the food pyramid condition, with each trophic level consisting of several competing
species. Of course, the analysis will become more complicated.
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Our main finding in this paper is that if the reaction system of the considered
food chain has a globally asymptotically stable steady state, or the system possesses
some kind of persistence, then the diffusive food chain is also likely to have the same
properties, regardless of the magnitude of diffusion rates. In fact, we can even allow
the diffusion rates to be zero for the lower trophic level species. This is in contrast to
the situation when the reaction system has an unstable positive steady state. In [38],
Mimura and Murray were able to show that when the diffusion of the prey is small
compared with that of the predator, a predator-prey system (a food chain of length two)
may exhibit, asymptotically in time, stable heterogeneity (patchiness) in a bounded
domain with zero flux boundary conditions. The interested reader is referred to [39]
for a systematic discussion of this phenomenon. However, it is well known that if
diffusion rates are large, then a reaction-diffusion system has very similar qualitative
properties to those possessed by its reaction system [23,46]. Our finding is also
consistent with recent works in global stability of diffusive-delay Lotka-Vblterra type
systems [35,37], where the results also indicate that diffusion rates are not important
in the qualitative analysis of the system.

For a delayed food chain with or without a diffusion effect, a detailed qualitative
analysis seems to be difficult to reach. The main difficulty is that even the boundedness
of solutions is not easy to establish, unless we assume that the system has some strong
instant self-crowding effect. Nevertheless, we believe that these systems deserve
future attention.

Finally, we would like to mention that the four-species simple food-chain model
studied in [13] can be adapted to serve as a nice example for this paper. By combining
this work with earlier results on global stability of predator-prey systems and studies of
persistence in three-dimensional models (see, for example, [7,14,15,32]), we should
be able to obtain more specific and sharper results for three- or four-species food
chains with or without diffusion.
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