11

Symplectic invariance of the CCR
on Fock spaces

This chapter is a continuation of Chap. 9, where we studied Fock CCR repre-
sentations. Our goal is to extend the results of Chap. 10 about the symplectic
invariance of canonical commutation relations to the case of Fock CCR repre-
sentations in any dimension.

11.1 Symplectic group on a Kahler space

The basic framework of this section, as well as most other sections of this chapter,
is the same as that of Chap. 9.

In particular, throughout the section, (), -,w,]j) is a complete Kahler space.
We recall that for r € B()), r* denotes the adjoint of r for the Euclidean scalar
product of Y.

Recall that the holomorphic space Z in CY is defined as Ran %(]1 —1ij), so that
CY=Z@Z. Zis a (complex) Hilbert space.

In this section we study the symplectic group in a complete Kahler space of
any dimension. We treat the symplectic form w as the basic structure of the
Kahler space ). However, the additional structure on ) plays an important role.
In particular, it gives ) a Hilbertian topology, which is especially useful when
we consider the infinite-dimensional case.

11.1.1 Basic properties

Definition 11.1 The group of linear transformations on Y that are bounded,
symplectic and have a bounded inverse will be denoted by Sp(Y). Similarly, the
Lie algebra of bounded infinitesimally symplectic transformations on Y will be

denoted by sp(}).

Note that sp()) is the set of generators of norm continuous one-parameter
groups in Sp(Y).

We can use the anti-involution j instead of the symplectic form w to describe
various properties of symplectic and infinitesimally symplectic transformations.

The following proposition can be compared with Prop. 1.37.

Proposition 11.2 (1) r € Sp(Y) iff

a) r*jr =j, and b) rjr* =j.
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11.1 Symplectic group on a Kdhler space 267

(2) r € Sp(Y) iff r* € Sp(Y).
(3) If r € Sp(Y), then r—t = —jr#j.

Proposition 11.3 (1) a € sp(Y) iff a*j + ja = 0.
(2) a € sp(Y) iff a* € sp(}).

11.1.2 Unitary group on a Kdihler space

Recall that a complete Kahler space ) can be viewed as a complex Hilbert
space. It is then denoted by YC, with the imaginary unit given by j and the
scalar product given by (y1|y2) := y1 - y2 + iy1-wys (see (1.37)).

Proposition 11.4 We have the following characterizations of the unitary group
and Lie algebra on a Kdhler space:

U(Y®) =0(Y) N Sp(Y) = O(¥) N GLY) = Sp(¥) N GL(Y°),
w(Y) = o(¥) Nsp(¥) = o(¥) N gl(Y®) = sp(¥) N gl(V°).

It is easy to characterize elements of U()*) and u()*) by their extensions to

Cy=zaZ
Proposition 11.5 (1) r € U(Y°) iff
rc = |:g 2:| )
with p € U(Z).
(2) a e u(V) iff
—h 0
ac 1 0 E s

with h = h*.

11.1.3 Symplectic transformations on Kdhler spaces

We recall that if a € B(Z;, Z;), then a* :=a@* € B(Z3, Z;). We recall also that
B(Z, Z) denotes the set of g € B(Z, Z) such that g* = g, and By,(Z) denotes
the set of h € B(Z) such that h* = h (see Subsect. 2.2.3).

Proposition 11.6 r € Sp(Y) iff its extension to CY equals

re = E Z} : (11.1)

with p € B(Z), q € B(Z,Z), and the following conditions hold:

conditions implied by Prop. 11.2 (1a): p'p—q¢*g=1, p*q—q¢’D=0,

conditions implied by Prop. 11.2 (1b):  pp* —qq* =1, pq* —qp* =0.
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268 Symplectic invariance of the CCR on Fock spaces

Proposition 11.7 a € sp(Y) iff its extension to CY equals

ac =1 [Z Z] , (11.2)

with h € By (Z) and g € By(Z, Z).

We describe now a convenient factorization of a symplectic map. Let r €
Sp(Y), and let p, ¢ be defined as in (11.1). Note that

pp* > 1, p'p>1

Hence p~! and p*~! are bounded operators, and we can set
ci=q" (p*)7, (11.3)
d:=qp ' (11.4)

Recall that, for a,b € By (Z), a < b means a < b and Ker(b — a) = {0}.
Proposition 11.8 (1) We have ¢,d € By(Z, Z) and

cfe<l, dd<l (11.5)

(2) The following equivalent characterizations of ¢, d hold:

c=plq, (11.6)
d=(p*)"'q". (11.7)
(3) One has the following factorization:
(1 d) )t o]l[1 o
o= [1 [ [ 0) "

(4) We have

(rert ~ D(rers + 1) = |2 d} ,
0
c

(rere ~Dzre+ 17 = [0 6. (11.9)
(5) We have the identities

1—cc* =(*p)~', 1-dd=@pEp) " (11.10)
Proof For example, the first inequality of (11.5) follows from the fact that

pp* > qq*, which implies that (p*)~'p~' = (pp*)~! < (¢*)'¢~'. Now c*c=
¢ (p*)~'p g < L. O
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11.1.4 Positive symplectic transformations

Symplectic transformations that are at the same time positive enjoy special prop-
erties. We devote this subsection to a discussion of their basic properties.

Let r € Sp(Y) such that » = r* and r > 0 as an operator on (), -). Recall that
the unitary structure on C) is obtained from the Euclidean structure of ) as in
Subsect. 1.3.4. Hence, r¢ = r¢ and r¢ > 0. We have

r(C:|:p q:|7
q p

where p = p* > 0 and ¢ = ¢* . The conditions in Prop. 11.6 simplify to

p’—qg=1, pg—qp=0.

-1 p  —q
T, = _ _ .
© {—q P ]

In the case of positive symplectic transformations some of the identities of

We have

Prop. 11.8 simplify:

Proposition 11.9 Let r € Sp(Y) such that r =r* andr > 0. Let ¢ € Bs(Z, Z)
be defined as in (11.3). Then c*c < 1,

[ (1—cc*)z (ll—cc*)_ic]

1 1 11.11
(l—cc*)"z2 (I—c*e) 2 ( )

rc =

(2 -2+ =

1 . (11.12)

Conversely, let ¢ € By(Z,Z) satisfy c*c <1, and let v be defined by (11.11).
Then r € Sp(Y), r=r*, r>0.

Proof The properties of ¢ follow directly from the properties of p, ¢ given above.

Next let ¢ € By(Z, Z) with c¢*c < 1. Clearly, cc* = c*¢ < 1, and hence the oper-
ators 1 — cc* and 1 — c*c are invertible. We check that the operator r defined by
(11.11) is a positive symplectic transformation. O

Positive symplectic transformations can be obtained as exponentials of self-
adjoint infinitesimally symplectic transformations:

Proposition 11.10 Let a € sp(Y) such that a = a* . Then ac = af, and hence
there exists g € Bs(Z, Z) such that

ac =i {_Og g] . (11.13)
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270 Symplectic invariance of the CCR on Fock spaces

Moreover, r = e® belongs to Sp(Y) and satisfies r =%, r >0 and

cosh \/gg* jsinh vgg® \/97*9

— V9g*
re = . . sinh - _ , (11.14)
—ig* =L Vg‘Zg cosh \/g*g
tanh /gg*
c=ioV99 (11.15)

99*

11.1.5 Polar decomposition of symplectic maps
Proposition 11.11 (1) Let r € Sp(Y) such that r > 0. Then, for each ¢ € R,
re € Sp(Y).
(2) Let r € Sp(Y). Then there exist unique k € Sp(Y), u € U(Y®) such that
k=k"*, k>0 and r = ku. The operators u, k are given by the polar decom-
position of r as an operator on the real Hilbert space (Y, ).

Proof Let r & Sp(Y) such that r=7r* and 7 >0. Then rj=jr—!, since
r € Sp(Y). This implies that (z—7)"'j=j(z—r"1)"! for z€ C\R, and
hence

f(r)j =if(r~1), for any measurable function f.

In particular, for € € R we have r¢j = jr=¢, and hence r¢ € Sp()’). This proves
(1).

Now let € Sp(Y). Set k = (rr#*)z. By (1), k € Sp(Y). Set u = k~'r. Clearly,
u € Sp(Y). By the properties of the polar decomposition in (), -) we have u €
O(Y). Hence u € U(Y®), which proves (2). |

11.1.6 Restricted symplectic group

In this subsection we introduce a subgroup of the symplectic group on the Kéahler
space that plays an important role in Shale’s theorem, a basic result of the theory
of CCR representations on Fock spaces.

Proposition 11.12 Let r € Sp(Y). Consider p,q,c,d defined by (11.1), (11.8)
and (11.4). The following conditions are equivalent:
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Proof Clearly, (1)< (2).
We have

... [0 -2 C ks o |4g'T O
(rj—jr)c = [2iq 0 } o (ri=ir)e(ri—jr)e = [ 0 dgiql’
Hence
Te(rj —jr)c(rj —jr)e = 4A(Trq* g+ Trq"q) = 8Trq"q = 8Tr (p™p — 1),
using that ¢*§ = p*p — 1. This implies that (2)<(3)<(4). If v € U(Z) and p =
v|p| = |p*|v is the polar decomposition of p, we have pp* = vp*pv*. So (4)<(5).
The identities ¢ = p~'g and d = ¢gp~! and the fact that p is invertible show that
(3)=(6) and (3)=(7). The identities 1 — cc* = (p*p)~! and 1 —d*d = (pp* )"
show that (7)=(4) and (6)=(5). O

Definition 11.13 Let Sp;(Y) be the set of r € Sp(Y) satisfying the conditions of
Prop. 11.12. The set Sp;(Y) is called the restricted symplectic group. We equip
it with the metric

di(ri,7r9) == |lp1 — p2l + lla1 — q2]|2- (11.16)

FEquivalent metrics are ||[j,r1 —ro]e|l + |G,m1 —r2llls and  ||r1 — o] +

10,1 = 7r2]ll2-
We say that a € sp;(Y) if a € sp(Y) and aj — ja € B*(Y), or equivalently g €
B2(Z, Z), where we use the decomposition (11.2).

Proposition 11.14 (1) Sp;(Y) is a topological group.

(2) sp;(Y) is a Lie algebra.

(3) If a € spj(Y) then e* € Sp;(Y).

Proof The fact that Sp;()) is a topological group is clear, since [riry,j] =
r1[r2,j] + [r1,]]r2. To prove (3), we write

o0

. 1 .
e'j —je' = Zﬁ[a”?ﬂ,

n=0 """
and use that ||[a",]]||> < n|lal|"~||[a,]]||2, which yields

le”j — je” 2 < el*laj — jal|o. 0

11.1.7 Anomaly-free symplectic group

In this subsection we introduce another, much smaller subgroup of the symplectic
group on the Kéhler space. Its name is suggested by the well-known terminology
used in quantum field theory.

Definition 11.15 Let Sp;j.i(Y) be the set of r e Sp(Y) such that
2j — (jr +rj) € BYY), or equivalently p— 1z € B'(Z), where we use the
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decomposition (11.1). Sp;at(Y) will be called the anomaly-free symplectic group
and will be equipped with the metric

diat(r1,72) := |lpr — p2ll1 + [[an — @22-

An equivalent metric is ||[j,r1 — 2]+ |1 + |G, 71 — 72]ll2-
We also define spj .¢(Y) to be the set of a € sp;j(Y) such that aj + ja € B (Y),
or equivalently h € B*(Y), where we use the decomposition (11.2).

Proposition 11.16 (1) Sp;.¢(Y) is a topological group.
(2) spjaf(Y) is a Lie algebra.
(3) If a € spjae(Y) then e € Spjas(Y).

Proof Ifr € Spjas(Y), then1—r € B2(Y). It follows that if ry,ry € Spj.at(V),
then riry — (r1 +12) + 1 € B'(Y), which easily implies that riry € Spjae(Y)
and proves (1). To prove (2), note that spj.:(Y) C B*(Y). To prove (3), we
use that if a € spj.¢(Y), then e — (14 a) € BY(Y). O

Proposition 11.17 (1) Let r € Sp()) be positive. Then r € Spij(Y) iff r €
Spj,af(y)'
(2) Let a € sp(Y) be self-adjoint. Then a € sp;(Y) iff a € spj.ar(Y).

Proof (1) We know that r € Sp;(Y) iff c € B%(Z, Z). But (11.11) then implies
that r € Spj.ar (V).

(2) By the decomposition (11.2), a € spj(Y) is self-adjoint iff h =0 and g €
B2(Z,Z2). 0

Proposition 11.18 Let r € B(Y) and let r = rqu be its polar decomposition.
Then

(1) 7 € Sp(Y) iff ro € Sp(Y).
(2) r € Spi(Y) iff ro € Sp; (V).
(3) r € Spj.ar(Y) iff ro € Spjar(YV) and u € Spj A (Y).

11.1.8 Pairs of Kdhler structures on symplectic spaces

In this subsection we study the relationship between two Kéhler anti-involutions
on a given symplectic space. One of them is denoted j and is treated as the basic
one. The other is denoted j; .

In the first proposition, j; is obtained by conjugating j with an arbitrary
symplectic map.

Proposition 11.19 Let r € Sp(Y). Set j1 = r~1jr.

(1) j1 is a Kdhler anti-involution.

(2) reUQY") iff i =]

(3) If r = u|r| is the polar decomposition of r, then j; = |r
(4) jr=jr*r.

=il
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Proof Since r € Sp(Y), we have y-wjy = y-wr—Ljry = (ry)-wjry, which shows
that (w,j;) is Kéhler and proves (1). Clearly, » € U(Y®) iff [r,j] =0, which
is equivalent to j; =j. This proves (2). If r» = ulr|, then [u,j] = 0, hence j; =
|7|~Lj|r|, which proves (3). (4) follows from Prop. 11.2 (1a). O

The next proposition is a partial converse of the previous one. In particular,
we compute a positive symplectic map that transforms j into j;.

Theorem 11.20 (1) Let j; be an anti-involution such that (w,j1) is Kahler.
Then k := —jj1 is a positive symplectic transformation.

(2) Let k € Sp(Y) be positive. Then j; := jk is a Kdhler anti-involution.

(3) Let k,ji be as in (2). Then r =k defined in Subsect. 2.3.2 satisfies

reSpy), r=r", r>0, rljr=j. (11.17)

(r is positive symplectic and intertwines j and j;.)
(4) There exists c € Bs(Z, Z) such that

<H>C = [2 (ﬂ . (11.18)

(5) We have
B (M—ce)™r  (L—cc*) e
T lc*(]l—cc*)é (1 —c*e)~2 ] ’ (11.19)
@+ eer) (@ —ect) 2(1 — cc*) e
he = [ 2¢* (1 — ec*) ™t (1 + c*c)(1 — c*c)l} ’ (11.20)
. [@+eet) (M=)t 2(1 — ec*)te
he =1 { —2¢*(1 — cc*) 7t —(Il—l—c*c)(]l—c*c)_l] - (1121

Proof Since j,j1 € Sp(Y), k = —jj1 € Sp(Y). Since (w, j1) is Kéhler, we have

0= (iy1)wys + y1-wirye = —(G1y1)-jv2 — v1-ij1 2,

i.e. j7j = —jj1- Hence
()" =iti" = =iti =1,

ie. k = k*. Again using that (w,j;) is Kéhler, we get —y - jj1y = y-wj1y > 0, i.e.
k > 0. This proves (1).

Let us prove (3). The fact that » € Sp()) follows from Prop. 11.11 (1). Using
that r = r* and r € Sp()), we obtain that j; = jr? = r~Ljr.

Set b := ZJF;%. We check that jb = —bj. This implies (4). Then using (11.12) we
see that rc equals (11.11), which is repeated as (11.19). Then we use k = 72 and

j1 = jk to obtain (11.20) and (11.21). U
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Proposition 11.21 Let Z and Z, be the holomorphic subspaces of CY ~ Z & Z
for the anti-involutions j and ji. Let ¢ be as above. Then

2z ={(z,—¢2) : z€ Z},
Z1={(-z,%z) : z€ Z}.

Proof Every vector of Z; is of the form (1 — ij; )y; for some y; € ). Since k > 0,
every vector of ) is of the form y; = (1+ k)~ 'y for some y € Y. Now

(T—ij)(@+k) "y = (1 ijk)(D+ k) 'y
=lzy - Iz(F57)y
=z —cCz,

where z = lzy € Z. Hence every vector of Z; is of the form z — ¢z for z € Z.
Applying the canonical conjugation on C) we obtain the corresponding result
for Z;. O

The following proposition will be used to describe the unitary equivalence of
two Fock CCR representations (one of the versions of Shale’s theorem).

Proposition 11.22 Let j,ji,k,c be as above. The following conditions are
equivalent:

(1) §—i e B2Y).

(2) 1—-ke B*Y).

(3) ce B%(Z,2).

(4) There exists a positive r € Sp; .¢(Y) such that j; = rjr—t.
(5) There exists v € Sp;(Y) such that j; = rjr~!.

Proof The identity —j(j —j1) = 1 —k and j € Sp()) imply the equivalence of
(1) and (2).
(11.18) and the boundedness of (14 k)~! show that (2) implies (3).
Since ¢*c¢ < Iz and ¢ = ¢*, we have cc* < 1z, and hence (1z — c*c)~
(1z — cc*)~! are bounded. From (11.20) we obtain that (3) implies (2).
(4) = (5) is obvious. (5) = (1) is obvious. (3)=-(4) follows from (11.19). O

I and

Remark 11.23 The Hilbert-Schmidt property in conditions (1) and (2) uses the
real scalar product on Y that belongs to the Kdhler structure (-,w,j). Therefore,
conditions (1) and (2) may not seem symmetric w.r.t. the anti-involutions j and
j1- Nevertheless, if they are satisfied, then the scalar products - and -k are related
with the operator k, which is bounded with a bounded inverse, hence the set of
Hilbert—Schmidt operators w.r.t. the scalar products - and -k coincide.
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11.1.9 Conjugation adapted to a pair of Kdhler involutions

Generically, a pair of Kahler anti-involutions determines a conjugation for both
Kahler structures, as expressed in the following proposition:

Proposition 11.24 Suppose that j; is an anti-involution such that (w,j1) is
Kihler. Then the following is true:

(1) There exists T € B(Y) such that
=1, 7jT=—j, ThT=—j1.

(T is a conjugation for both j and j;.)
(2) Let k= —jj1. Then Tkt = k.
(3) If Ker(j — j1) = {0}, or equivalently Ker(1l — k) = {0}, then we can take

T 1= ]1]1+OO[<]€) - :ﬂ](),l[(k)'

Proof Recall that k* =k, k > 0.

Assume first that Ker(j —j;) = {0}, and hence Ker(l— k) = {0}. Set 7 =
1 4 oo (k) — Mg 1( (k). We have 72 = 1 and 7 € O(Y). Using that kj = jk~!, we
see that 7j = —j7. Since 7k = k7, we have also 7j; = —j; 7.

If Ker(j — j1) # {0}, we set Vi := g1 (k)Y. The spaces Yy and )y := Vit are
invariant under j since kj = jk~'. We first construct the conjugation 7y on ) as
above. On Y, we have j = j;. We can choose an arbitrary anti-unitary involution
71 of YC. Then weset 7 =7 @ 1o on Y =1 & V. )

Recall that Y+ :={y €Y : 7y = +y}. Set X = Y~". As in Subsect. 1.3.10,
we can identify the Kahler space with conjugation } with X & X by the map

(14 7)y 1 (]lfr)y> EXDX,

1
212 V2
which corresponds to the choice ¢ = 1 in (1.38). We set m := k™', which is a
positive self-adjoint operator on the real Hilbert space X. The symplectic form
onyY~XPXis

yByH(j

(xf,xl_)w(x;,x;) = 5U1+$2_ - xl_x;

Proposition 11.25 We have
1 0 0o -Ii1 0 —(2m)! m 0
= i — 2 - _
4 [0 —11]’ ! {211 0 } N {2m o " F 1o m]

Proof The matrix representation of 7 and j on X & X was shown in Subsect.
1.3.10. To compute k, we note that if y € Y is identified with (ja1,z9) € X & X,
then ky is identified with (kjxi,kxy) = (jma1,m 1xzs) since jk = k~'j. The
formula for j; follows from j; = jk. O
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11.2 Bosonic quadratic Hamiltonians on Fock spaces

The basic framework of this section is the same as that of the previous one. Recall,
in particular, that Z is a Hilbert space and ) := Re(Z @ Z) is the corresponding
Kaéhler space. We consider the Fock CCR representation over ) in I's(Z).

11.2.1 Wick and anti- Wick quantizations of quadratic polynomials

Let us consider various kinds of complex quadratic polynomials on ) and their
quantizations. We recall that B(Z) denotes the set of finite-dimensional oper-
ators on Z.

Let h € B'(Z). Consider the polynomial

Y* 35 (z,2) — Z-hz. (11.22)

The Wick, Weyl-Wigner and anti-Wick quantizations of (11.22) are, respectively,

n Trh
2

Note that the anti-Wick and Weyl-Wigner quantizations of (11.22) can be
extended to the case h € B'(Z), that is, to trace class h. The Wick quantization
of (11.22) can be defined, e.g. for h € B(Z), or even for much more general h.

dr(h), dr(h) 1, dr(h) + (Tr h)1.

al

Suppose that g € Bf(Z, Z) ~ ' (Z). Consider the polynomial
V* 3 (z,2) — Z-gz. (11.23)

The Wick, anti-Wick and Weyl-Wigner quantizations of (11.23) coincide with
the two-particle creation operator a*(g), according to the notation of Subsect.
3.4.4. Following the notation of Def. 9.46, this can be written as Op® (l9))- It
can be defined as a closable operator also if g € B2(Z, Z) ~T2(Z). It will act
on ¥, €I (2) as

a*(g)¥, :=vV(n+2)(n+1)g®V,. (11.24)

(Note that on the right of (11.24) g is treated as an element of I'2(Z).)
The complex conjugate of (11.23) equals

V* 3 (2,2) — z:g%"z = 2Gz. (11.25)

Its Wick, anti-Wick and Weyl-Wigner quantizations coincide with the two-
particle annihilation operator a(g); see again Subsect. 3.4.4. Following the nota-
tion of Def. 9.46, this can be written as Op® ((g]). It is clear that a(g) extends
to a closable operator iff g € B2(Z, Z) ~ T(2), and a(g)* = a*(g).

A general element of CPol?(Y*) is

V¥ 3 (z,2) = 2Zhz+Zq1Z + 2:G5 2, (11.26)
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where h € B'(Z2), g1, 9> € Bi(Z, Z). We can write (11.26) as

(Z,2)-C(Z,2), where (c= [;; ;] EB(Z®Z,Z® 2). (11.27)
2

(Recall that CY ~ Z @ Z, CY* ~ Z @ Z and we use elements of Bid (¥*,Y) for
symbols of bosonic quadratic Hamiltonians, as in Def. 10.15.)
The quantizations of ( are

Op®"*(¢) = 2dT'(h) + a*(g1) + a(gs), (11.28)
Op(¢) =2dT(h) + (Tr W)L+ a*(g1) + alge), (11.29)

Op™"(¢) = 2dT'(h) + (2Tr )1 + a*(g1) + a(gz).

Clearly,

1

0p(¢) = 5 (0" (¢) + 0™ ().

We can extend the definition of Op(¢) and Op“’“*(C) to the case of g1,¢92 €
B(Z,Z) and h € B'(Z). Op® “(¢) is defined under much more general con-
ditions. All these quantizations are Hermitian operators iff h is Hermitian and

g1 = g2-

11.2.2 Bosonic Schwinger term

For simplicity, in this subsection we assume that Z is finite-dimensional. Recall
from Thm. 10.13 that the Weyl-Wigner quantization restricted to quadratic
symbols yields an isomorphism of the Lie algebra sp()’) into quadratic Hamilto-
nians in CCRP°'(). This is no longer true in the case of the Wick quantization,
where the so-called Schwinger term appears. This is described in the following
proposition:

Proposition 11.26 Let (,¢; € Bs(V*,)Y), i =1,2. Then
* 1
Op(C) = Op™*(¢) — £ (Tr ) T (11,30
[0p""(G1), 0p* ™ (G2)] = 20p" " (G2 + GrwCz) — i(Tr [Gow, Guev]) 1.

Proof Let ¢ be as in (11.27). We have w¢ = i[ 0 1

BZ9Z,Z® 2).
_]10]6(69,69)

Therefore,
T-h ¢ . h ¢
(cwe =1 {_92 ht ] » Ceweje = [92 ht |

Therefore, (11.30) follows from (11.29).
Now to compute the Schwinger term we apply Prop. 10.16 (1) and (11.30). O
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11.2.3 Infimum of bosonic quadratic Hamiltonians
For simplicity, in this subsection we again assume that Z is finite-dimensional.
The Wick quantization of a positive quadratic symbol is then bounded from
below. In the following theorem we compute the infimum of the spectrum of
such Hamiltonians.

Theorem 11.27 Let h € By(Z2), g € B%(Z, Z). Suppose that for z € Z

(2,2)C(Z,2) =2Z-hz+ z-g" 2+ Z-gZ > 0. (11.31)
Set
4@{9 h] €B(Z®Z 2e3Z). (11.32)
h* g
Then

1
) ata 1 h? — gg* —hg+gh*]* h O
inf Op® " (g):2Tr<|:g*h_h#g* h#?_g*g “lo A :

g*h—h*g*  h*?* —g'g
inf Op®"*(¢) 4+ Trh = inf Op(¢)

2 _ * o #
Proof We have ({cwc)? = — [ W™ =99 hg + gh ] . Thus, by Thm. 10.17,

1
1 1 h? —gg* —hg+gh*]?
= =T = =T .

11.2.4 Gaussian vectors

Let ¢ € T2(Z). Recall that we can define the two-particle creation operator a*(c)
acting on Tfi"(2) as in Subsect. 3.4.4, and that we can identify ¢ with an oper-
ator ¢ € B2(Z, Z) (see Subsect. 3.3.4). Since ¢ € B*(Z, Z), c¢*c is trace-class, so
det(1 — c¢*¢) is well defined. If we assume also that ¢*c < 1, then det(1 — ¢*¢) > 0.
So we can define

Q. :=det(1 — c*c)i’e;’a*@)(l. (11.33)

Theorem 11.28 (1) Ifc € B2(Z,Z2) and c*c < 1, then . is a normalized vec-
tor in Ts(Z).

(2) Let k be a positive number with k*|c| < 1. Then Q. belongs to Dom k™ and
ENQ. = Qy2., where N is the number operator.

(3) Suppose that c is a densely defined operator from Z to Z such that (z1|czy) =
(22]¢z1), i.e. ¢ C c*. Suppose that there exists U € T's(Z) satisfying

(a(z) —a*(cz))¥ =0, z € Dom c,
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in the weak sense. Then ¢ € B2(Z,2) and c*c < 1. Moreover, ¥ is propor-
tional to €)..

(4) Let ci1,co € BX(Z,2) and cfe; < 1. Then
(Q,|Q,) = det(1 — ctey)T det(1 — cep)7 det(1— ches) 2.

Proof First let U be as in (3), and let z1,29,...be a sequence of vectors in
Dome. For I C {1,2,...} finite, set
M(I) = ( I a*(zi)Q|\I!>.
iel

From
oz( I a*(zi)Q‘(a*(an)—a(cZ,,,H))\I')

we obtain

M({lv e, nt 1}) = Z(zi|czn+l)M({1’ T ,TL}\{Z})
i=1
This yields
(a*('zl) e a*(22m+1)ﬂ|\11) = 07

(@ ()0 (@n)20) = A 30T (oo [ i)
o €Pairgyy i=0
where A := (|¥) and Pairy,, is the set of pairings in {1,...,2m} (see Subsect.
3.6.10).
In particular, for Z;,Zz> € Dom ¢ this gives the following formula for the two-
particle component of W:

\/5(211 s ZQ|\I/) = )\(ZI|CEQ). (1134)

Since ¥ € I'y(Z), the Lh.s. of (11.34) can be extended to a bounded functional
on I'2(Z). This implies that either A =0 or ¢ € I'?(Z), and then the Lh.s. of
(11.34) equals A\(z; ®s 23|c).

We have

1

m—1
(21 ®s -+ ®s 29m [¢®™) = ml Z il:Io (Z0(2i41)[€Z0 2i42))
’ o€Sam -

1

ml2" m— _
= o E his (20 (2i+1)|Zs(2i42) )5
o €Pairg,y,

which implies that

2m)! 1
(m)c®sm7)\

Yo = A g ~ ol

(a*(c))m Qv \Ij2nl,+1 = 07

ie. U= )er? (9Q.
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Let us compute [lez® (©)Q|2. Since ¢*¢ is trace-class, we can by Corollary 2.88
find an o.n. basis {e;, : i € I'} of Z such that ce; = A\;e;, A; > 0. Using this basis,

we can unitarily identify Z with & C. By the exponential law of Subsect. 3.5.4,
il

we unitarily identify I's(Z) with ® (I's(C), Q). Under this identification,
iel

1 *2

eF (O ~ @ eb) 0,
i€l

]
H Z 2;” ::m (11.35)

1

H (1 —)\2) = det (H—c*c)

i€l

’ela*m

I (C)

1
2

This shows that the vector . in (1) is normalized. Moreover, if \; > 1 for some
i € I, then one of the series on the r.h.s. of (11.35) is divergent, which contra-
dicts the fact that the vector ¥ is normalizable. This shows the necessity of the
condition ¢*¢ < 1 and completes the proof of (3).

Let us now prove (2). Since eV a*(c)e " = e?a*(c), we obtain that

™V Q. = det(1 — c*c)%e%“*((‘“)Q7

for ¢; = e*'c. Tt follows that if k'c*c < 1, eV, extends holomorphically in
{z€C: Imz > —logk} and is uniformly bounded on this set. Therefore, Q. €
Dom k¥ and kY Q. = det(1 — ¢*c)/4er® *<)Q which proves (2).

It remains to prove (4). Let us first assume that Z is finite-dimensional. In the
complex-wave representation, ez’ (9 equals e?7% and

(e%"*<"')Q|e%a*(02)Q) = (27Ti)_d/ el er Tz g3 T Tz, (11.36)
Re(Z0Z)

To compute this integral, we use the arguments in Subsect. 4.1.9. We are led to
compute det v, where v is an operator on Re(Z @ Z) given by

ve = det [_]; _Ifl} .

But det v = det vg = det(1l — ¢ ¢2). From (4.10), we obtain that (11.36) equals
(e%“*(“)me%“*(cﬂﬂ) = det(1 — 61C2)_%.

Let us now prove (4) in the general case. For simplicity, we will assume that Z is
separable (the non-separable case can be treated by the same argument, replacing
sequences by nets). Let us fix an increasing sequence of finite rank projections
7y, T2,... such that s — lim m, = 1. For ¢ € B?(Z, Z) we set ¢, = 7,CT,, s0

n—oo
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that ¢,, — ¢ in the Hilbert—Schmidt norm. We claim that

lim Q. =€, (11.37)

n—00

By approximating ¢;, ca by ¢, ¢2,, this implies (4) in the general case.
It remains to prove (11.37). Using (4) in the finite-dimensional case, we get
that

192, — Q,, ||2 =2 — 2Re(Q, |92, ) — 0 when n,m — oo,

Cp

hence the sequence €2, , €, , ... converges to a normalized vector ¥. There exists
k> 1 and kg < 1 such that, for all n, k*c’c, < k1. Using (2), we obtain that
¥ € Dom N and that €2, converges to ¥ in Dom N. Therefore, we can let n — oo
in the identity

(a(z) — a*(cy2))Qe, =0
to get
(a(z) — a*(cz))¥ = 0.
Since (¥|Q2) = lin;o(an |2) > 0, (3) implies that ¥ = (.. O

n—

11.2.5 Gaussian vectors in the real-wave representation

Let ¢ € B2(Z, Z) such that ¢*c < 1. Let k be the positive symplectic transfor-
mation defined in terms of ¢ by formula (11.20), that is,

e — {(]l—i—cc"“)(]l—cc*)1 2(1 — ec*) e }
c- 2¢* (1 — cc*) ™! (1+c*e)(1—c*c)!

As discussed in Subsect. 11.1.9, we can identify ) with X & X, where X is a real
Hilbert space, the symplectic form on ) has the standard form and

0 —31 m 0
L 3 _
) [211 0}’]‘3 {0 m—l]’
where m € By(X), m > 0 and 1 —m € B?(X).
In Sect. 9.3 we described the unitary map 7"V between the Fock space I'y(Z)

and the Gaussian L? space L?(X, ez’ dz) intertwining the Fock and the real-
wave representations such that 7"V = 1.

Proposition 11.29 In the real-wave representation, we have
TYWQC<.’E) — Cve,11.’):.(11—m*1);137
where C' is a “normalizing constant” (see Prop. 5.79). If 1 —m € BY(X) then

TV (z) = (det m)*%e%l"(ﬂ*m_1 ),
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Proof Assume first that ) is finite-dimensional. The proposition can then be
proved by a direct computation, using that
2

L2(X,e 2" dz) = L2(X, (27) " Te 7% da).

In the general case, we use the same approximation argument as in the proofs
of Thm. 11.28 and of Thm. 5.78, given in Subsect. 11.4.6. O

11.2.6 Two-particle creation and annihilation operators

In this subsection we discuss certain properties of two-particle creation and anni-
hilation operators.

Proposition 11.30 Let c € T%(Z) ~ B2(Z, Z). Then

(1) a*(c) and a(c) with domain T (Z) are densely defined closable operators.
(2) a*(c) + a(c) is essentially self-adjoint on T (Z).
(3) ez9"(©) and e2%(¢) are closable on T8 (Z) iff ¢*¢ < 1, and we have
e_%“’*(c)a(z) = (a(z) + a*(c?))e_%“*(")7 z € Z; (11.38)
e%”’(c)a*(z) = (a*(z) + a(c?))e%”’(@, z€Z. (11.39)

Proof We have a(c) C a*(¢)*, a*(¢) C a(c)*, which proves (1).

To prove (2) we will use Nelson’s commutator theorem, Thm. 2.74 (1), with
the comparison operator N + 1. By Prop. 9.50 we get that (N + 1)~!a*(c) and
a(c)(N + 1)~! are bounded. Since

Na*(c) = a*(c)(N + 21), Na(c) = a(c)(N — 21),

we obtain that a*(¢)(N + 1)~! is bounded, so a*(c) + a(c) is bounded on Dom N.
Next, since

[N, a"(¢) + a(e)] = 2(a”(c) — alc)),

we get that =[N, a*(c) + a(c)] < C(N + 1). Applying Nelson’s commutator the-
orem, we see that a*(c) + a(c) is essentially self-adjoint on Dom N, hence on
rfn(2).

It remains to prove (3). Clearly, ez%(¢) is defined on I'i* (Z). We note also that
ez9" () € Ty(Z) iff ¢*¢ < 1, by Thm. 11.28. It remains to prove that if ¢*¢ < 1,
then e29”(¢) is defined on T (Z). This is equivalent to showing that ez% ()0 e

Dom I a*(z;) for all z1,...,2, € Z. But this follows from Thm. 11.28 (2). Since
i=1

ez0(e)  (ex7())* e107(c) < (e2%(¢))* e see that e2(¢) and ez (<) are closable.
Identities (11.38) and (11.39) are direct computations. O
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11.3 Bosonic Bogoliubov transformations on Fock spaces

We use the same framework as in the previous section. (), -, w,]) is a complete
Kahler space. Z is the holomorphic subspace of C), so that we can identify )
with Re(Z & 2).

Yoy Wy e U(T(2)) (11.40)

is the Fock CCR representation.

The central result of this section is the version of Shale’s theorem which
says that a symplectic transformation is implementable in the Fock CCR rep-
resentation iff it belongs to the restricted symplectic group. The corresponding
automorphism of the algebra of operators will be called the Bogoliubov auto-
morphism. Unitary operators implementing Bogoliubov automorphisms (the so-
called Bogoliubov implementers) form a group Mpi()), which can be viewed
as the natural generalization of the group Mp®()) to the case of an infinite
dimension.

We will also describe the group Mp; .()), which is a generalization of the
group Mp(Y) to infinite dimensions. Note that both Mp{(Y) and Mpj ()
depend on the Kéhler structure on ) (which is expressed by putting j as a
subscript).

11.3.1 Symplectic transformations in the Fock representation
Definition 11.31 We define Mp§(Y) to be the set of U € U(Ts(Z)) such that

{UW@)U* : yeY}={W(y) : yeV}.
We equip Mp§ (Y) with the strong operator topology.
Definition 11.32 Let r € Sp(}).
(1) We say that U € B(I's(Z)) intertwines r if
UW)U*=W(ry), ye. (11.41)

(2) If in addition U is unitary, then we say that U implements r.
(3) If there exists U € U(Ts(Z)) that implements r, then we say that r is imple-
mentable on T'x(Z).

We will prove:

Theorem 11.33 (Shale’s theorem about Bogoliubov transformations) (1) Let
r € Sp(Y). Then r is implementable iff r € Sp;(Y).

(2) LetU € Mp§(Y). Then there exists a unique r € Spj(Y) such that r is imple-
mented by U. Mp{(Y) is a group and the map Mp$(Y) — Sp;(Y) obtained
this way is a group homomorphism.
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(3) Let r € Sp;(Y). Let p,d, c be defined as in Subsect. 11.1.3. Define

1

Ul = [det pp*| ez (D((p*) " )erele). (1142)

Then Ul is the unique unitary operator implementing r in the Fock repre-
sentation such that

(QUIQ) > 0. (11.43)

All operators implementing r in the Fock representation are of the form pU,,
where |p] = 1.
(4) We have an exact sequence

1— U(1) — Mpf (V) — Spi(¥) — 1. (11.44)

Proof of Thm. 11.33. Let us prove (3). By Prop. 3.53, we have
T(p* Ha*(z) = a*(p* ') (p*), (11.45)
L(p*Ha(z) = alp2)L(p* ™). (11.46)
Set V:=e 7% (T ((p*)~!)er?). Using (11.45), (11.46), (11.38) and (11.39),
we see that
Va*(z) = (a*(p*~'z + dpez) + a(pcz))V
Va(z) = (a(pz) + a*(dpz))V = (a*(¢gZ) + a(p2))V.

|
—
S
*
—
S
N
~—
_|_
e
—
_
N
~—
~—
=

Therefore,

Voly) = o(ry)V, ye.

Thus V intertwines the representations (11.40) and (11.41). These representa-
tions are irreducible. Hence, by Prop. 8.13, V is proportional to a unitary oper-
ator. Clearly,

By Thm. 11.28,
IVQ? = det(1 — d*d)~% = (det pp*)*.

Hence, Ul = (det pp*)~ 1V is unitary. (QUIQ) = (det pp*)~7 > 0, hence Ui also
satisfies the condition (11.43). The uniqueness is obvious.

Let r € Sp(Y). Suppose that UW (y) = W (ry)U, y € Y. Define the operator
¢ as in (11.3). Then the vector UQ) satisfies the conditions of Thm. 11.28 (3).
Hence, ¢ € B?(Z, Z). By Prop. 11.12, this is equivalent to r € Sp;(}). O
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11.3.2 Omne-parameter groups of Bogoliubov transformations

Let h € By(Z2), g€ B?>(Z, 2). Let ¢ € Bs(Y*,Y) be defined by (¢ = {‘Z Z]
Recall that
Op""*(¢) = 2dT'(h) + a’(9) + alg)

is a self-adjoint operator. If in addition h € B} (Z), then we can use the Weyl-
Wigner quantization to quantize (, obtaining

Op(¢) = 2dT'(h) + a*(g) + a(g) + (Trh)1. (11.47)

Let a € sp(Y) be given by

K =
S
—_

a«:Cccw(ci{

(see (11.2)). Let r; = €' and

rc = {pt 2t }
4 Dy
For t € R we set

di = qp; ', o =qf (pf)"
The following theorem gives the unitary group generated by the Wick and Weyl—-
Wigner quantizations of (:

Theorem 11.34 (1) For any t€R, pe " — 1€ BY(Z), d;,¢; € BX(Z,2)
and

_L
3

Q0P (0) = (det pre™ih) "% =z W (pr—lyeraler)  (11.48)

Besides, (11.48) implements 1.
(2) If in addition h € BL(Z), then p, — 1 € B'(Z) and

etOP(C) — (detpt)_%e_%“*(d"T(pffl)e%“(”). (11.49)

(In both (11.48) and (11.49) the branch of the square root is determined by
continuity.)

11.3.3 Implementation of positive symplectic transformations

Let us consider a positive r € Sp;()). From formula (11.11) we know that there
exists ¢ € B2(Z, Z) such that

S e ]
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By Thm. 11.33, r is then implemented by
Ul = det(1 — cc*)i’e_%“*mf(]l — cc*)Ter(e) (11.50)
We recall also that a € sp;()) is self-adjoint iff
ac =1 {go* _09} : (11.51)
for g € B2(Z, 2).
The following formula is essentially a special case of (11.48) for r; = e®:
Ul = ot (@ () +al9) (11.52)

it % tanh g it tauh\/ui*
= (detcosh(t@))f%ega TEl g)F(COSh(t\/g?))ile fa e g).

Suppose now that 7 is a conjugation as in Thm. 11.24. By Prop. 11.25 we can
identify Y with X @ X, so that for m € Ly(X), m > 0,

TﬁmO
o0 mTt|”

Recall also that we defined the unitary map 7"V between the Fock space I's(Z)
and Gaussian L? space L2(X ,e’%rzdx) intertwining the Fock and real-wave
representations such that 7™V = 1.

*

Proposition 11.35 In the real-wave representation on L*(X, S dz) the oper-
ator U} takes the form

T™VUIT™*F(z) = (det m)%eé’”“_"ﬁ)‘”F(mx).

11.3.4 Metaplectic group in the Fock representation

Spi(Y) 27— U/ is not a representation — it is only a projective representation.
To construct a true representation we need to restrict ourselves to Spj.s()).
Thus we will obtain a generalization of the metaplectic representation to infinite
dimensions.

Definition 11.36 For r € Sp;j .;(Y) we define
+U, = i(detp*)_%e_%“*(d)F((p*)_l)e%“(c). (11.53)

(We take both signs of the square root, thus £U, denotes a pair of operators
differing by the sign.)

Definition 11.37 We denote by Mp; .¢()) the set of operators of the form +U,
for some r € Sp; At (V). We equip it with the strong operator topology.

Theorem 11.38 Mp; .;(Y) is a topological group. We have the exact sequence
1 — Zy — Mpj o (Y) — Spjac(Y) — 1. (11.54)
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If Y is finite-dimensional, then Mpj .¢(Y) coincides with Mp(Y) introduced in
Def. 10.28.

The proof of this theorem is based on the following lemma:

Lemma 11.39 (1) +U, are unitary.

2) UW @)U = W(ry).

(3) Ur Uy, = £Up, -

(4) If Y is finite-dimensional, then £U, coincides with U, introduced in Def.
10.27.

Proof The operators U, differ by a phase factor from U} from Thm. 11.33.
Therefore, they are unitary and implement r. This proves (1) and (2).
Let us prove (3). We know that

o=

(QU,,,, Q) = +(det p*) 7 = +(det(pip2 + 13,)*) *- (11.55)

Moreover,
QU Uy, Q) = £(ex D Qe 70" (=) Q) (det p})~ 7 (det pj) =
= £ det(1 + dyct) "2 (det pi) =2 (det p}) ™7,
using Thm. 11.28 (4) and the fact that ¢;,ds are symmetric. Using the formulas
in Subsect. 11.1.3, we see that
(P1p2 + 1Gs)" = p3 (1 + dac)py,

which implies that

QU,, U, Q) =+(Q|U,,,, Q). (11.56)

We know that U,,,, and U, U,, differ by a phase factor. This phase factor must
be equal to 1 by (11.56), which completes the proof of (3). O

The following theorem gives an alternative definition of the group Mp; .r(Y):

Theorem 11.40 Mp; .¢()) is the subgroup of U(FS(Z)) generated by eOP(©)
where Op(¢) are defined as in (11.47) with g € BX(Z, Z) and h € B (2).

11.4 Fock sector of a CCR representation

The main result of this section is a necessary and sufficient criterion for two Fock
CCR representations to be unitarily equivalent. This result goes under the name
Shale’s theorem and is closely related to Thm. 11.33 about the implementability
of bosonic Bogoliubov transformations, which we also call Shale’s theorem.
Another, closely related, subject of this chapter can be described as follows.
Consider a symplectic space ) and a CCR representation in a Hilbert space H.
Suppose that we are given a Kahler anti-involution j. We will describe how to
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find a subspace of H on which this representation is unitarily equivalent to a
multiple of the Fock representation associated with j.

The basic framework of this section is slightly different from that of the preced-
ing sections of this chapter. As previously, in this section (Y, w) is a symplectic
space and j € L(}) is a Kéhler anti-involution. We do not, however, assume that
Y is complete.

The notation and terminology of this section is based on Subsects. 1.3.6 and
1.3.8, 1.3.9, and was also recalled at the beginning of Chap. 9. Recall, in par-
ticular, that y; - y2 := —y;-wjys is the corresponding symmetric form, so that
(Y, -,w,]j) is a Kéhler space (not necessarily complete). Z := I‘Qﬂcy is the cor-
responding holomorphic space. We have identifications CY ~ Z & Z and

1

yaye (30— 50+i) € Rz 0 2) (11.57)

We recall also that Z inherits a unitary structure. If (z;,%;) = y;, then
Y1 - Y2 = 2Re(z1]22), (11.58)
y1-wys = 2Im(z1]22).

Recall that the completion of ) is denoted J°P. Clearly, 2Pl ig the holomor-
phic subspace of the complete Kéhler space J°PL.

11.4.1 Vacua of CCR representations
Suppose that

Yoy Wi(y) = W cU(Ty(2)) (11.59)

is a regular CCR representation. As in Subsect. 8.2.4, we introduce the creation,
resp. annihilation operators a™*(z), resp. a” (z) by

a"*(z) = ¢"(2), d"(2):=¢"(2), z€2Z. (11.60)

Note that these operators depend not only on the representation m, but also
on the Kéhler anti-involution j, so in some situations it is natural to call them
j-creation, resp. j-annihilation operators.

Definition 11.41 The space of j-vacua is defined as

Kr:={VeH : a(2)V=0,z€ Z}.

Proposition 11.42 (1) K™ is a closed subspace of H.
(2) Let ¥ € H. Then

VeK™ & (YW (yVv) = ||\1;||2e—%\|y\|27 ye.
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(3) Elements of K™ are analytic vectors of ¢™ (y), y € V.
(4) If 2, ¥ € K™, then

(@IW™ (y)¥) = (@[L)e TV y ey,

(o™ (y1)d" (y2)¥) = %(<I>I\I’)(y1 Yo +Hiyiwye), yi,y2 € V.

Proof Let us suppress the superscript 7 to simplify notation.
(1). The space of vacua K is closed as an intersection of kernels of closed

operators. ‘
Let us prove (2) <=. Let ¥ € H such that (V|W (y)¥) = ||\Il||2e’%“y“2 . Without
loss of generality we can assume that ||¥|| = 1. Taking the first two terms of the

Taylor expansion of

Rt (U[W(ty)W) = |[@|2e T
we obtain

(o)) =0, (Vo) ¥) = 5ol (11.61)
In particular, ¥ € Dom ¢(y), y € V. Let 2 =y —ijy € Z. Then

a*(z)a(z) = ¢(2)¢(2)
= (¢(y) — i) (D(y) +18(y)) = ¢(v)* + 6(jy)* — llyl>.
Hence,
la(z)@[* = (T]o(y)* ) + (¥6(iy)*¥) — [ly]* = 0.

To prove (2) =, note that if ¥ € K, then ¥ € Dom ¢(y), y € V. In particular,
the function

RSt F(t) = (U|W(ty)D)
is C'. Let y € Y, z = $(y — ijy) € Z. Using Thm. 8.25 (1), we get
oY)W (ty) = a* (z)W(ty) + W(ty)a(z) + igtl\yllr‘)W(ty)- (11.62)
This yields
G F () =i(Y]e(y)W(ty)¥)
= 5 (a(2) VW (ty)¥) + 5 (P[W (ty)a(2)P) — Fllyl* (¥, W (ty)¥)
= —5llyllPF(t).

Since F(0) = |||, we get that F(t) = ||[@|]2e ¥l

From (2) we know that F(¢) is analytic, hence by the spectral theorem ¥ € K
is an analytic vector for ¢(y), y € Y, which proves (3). Finally, (4) follows from
(11.61) by polarization. O
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11.4.2 Fock CCR representations

As in Sect. 3.4, for z € Z°°! we introduce creation, resp. annihilation operators
a*(2), resp. a(z) acting on the bosonic Fock space T'(Z!).

Definition 11.43 The reqular CCR representation
Y3y Wy = DM e U(T(2P), y = (2,2), (11.63)

is called the Fock representation over the Kahler space ).

This is a slight generalization of the definition used in Subsect. 9.1.1, since
we allow for a non-complete space ). Clearly, the representation (11.63) can be
extended to a representation over VP! in an obvious way.

Note that j-creation, resp. j-annihilation operators defined for the CCR. repre-
sentation (11.63) coincide with the usual creation, resp. annihilation operators
a*(z), resp. a(z). Likewise, a vector ¥ € T\(Z°?!) is a j-vacuum for (11.63) iff it
is proportional to €.

We can also consider another Kéhler anti-involution j;, not necessarily equal
to j. The following theorem describes the vacua inside 'y (Z°P!) corresponding to
j1- It is essentially a restatement of parts of Thm. 11.28.

—cpl

Theorem 11.44 (1) Let c € B2(Z 7, 2Z°PY), cc* < 1, and let j, be the Kihler
anti-involution determined by c as in Subsect. 11.1.8. Then ). is the unique
vector in I's(ZP!) satisfying the following conditions:

() 9] = 1.
(i) (2.19) > 0,
(iii) Q. is a ji-vacuum.
(2) The statement (1)(iii) is equivalent to

(a(z) —a*(2))Q. =0, z€Z. (11.64)

11.4.3 Unitary equivalence of Fock CCR representations

Suppose that we are given a symplectic space (), w) endowed with two Kéhler
structures, defined e.g. by two Kahler anti-involutions. Each Kéhler structure
determines a Fock representation. In this subsection we will prove a necessary
and sufficient condition for the equivalence of these two representations.

Theorem 11.45 (Shale’s theorem about Fock representations) Let Z, Z; be the
holomorphic subspaces of CY corresponding to Kdhler anti-involutions j and j; .
Let

Yoy W e U (2)), (11.65)
Yoy W eU(Iy(2)) (11.66)
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be the corresponding Fock CCR representations. Then the following statements
are equivalent:

(1) There exists a unitary operator W : I'\(Z) — I's(21) such that

Woly) = ¢1(y)W. (11.67)

(2) j —j1 is Hilbert-Schmidt (or any of the equivalent conditions of Prop. 11.22
hold).

Proof Let al,ai,§2; denote the creation and annihilation operators and the
vacuum for the representation (11.66).

(2)=(1). Assume that j —j; € B?(}). We know by Prop. 11.22 that there
exists r € Sp;j(Y) such that j; = rjr*. Thus, by Thm. 11.33 there exists U, €
U(Ts(Z)) such that U,¢(y)U; = ¢(ry).

Note that r¢ is a unitary operator on CY and r¢Z = Z;. Set u := r¢ ’Z. Then
u € U(Z,Z), hence I'(u) € U(Ts(Z),T5(21)) and

T(w)a* (z)T(u)* = aj(uz), T(u)a(z)l'(uw)* =ai(uz), z€ Z.

Consequently, T'(u)¢(y)T'(u)* = ¢1(ry). Therefore, W :=T(u)U} satisfies
(11.67).

(1)=-(2). Suppose that the representations (11.65) and (11.66) are equivalent
with the help of the operator W € U(I's(Z1),Ts(Z)). Then ¥ := W, satisfies

(a(z) —a*(cz))¥ =0, z€ Z.
By Thm. 11.28, this implies that ¢ € B*(Z, Z). Hence, j — j; € B*()). a

11.4.4 Fock sector of CCR representations

Let us go back to an arbitrary regular CCR representation (11.59) over a Kéihler
space Y. We will describe how to determine the largest sub-representation of
(11.59) unitarily equivalent to a multiple of the j-Fock representation over ) in
I (ZePh.

Theorem 11.46 Set
H™ := Span {W™(y)¥ : TeKk", yel}. (11.68)

(1) H™ is invariant under W™ (y), y € ).
(2) There exists a unique unitary operator

U™ : K™ @T (2P — H™
satisfying
U™ UW(y)Q=W"(y)¥, TeK', ye),

where W (y) denote Weyl operators in the Fock representation on T'y(ZP).
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3)
U 1eW(y) =W"(y)U", ye. (11.69)

(4) If there exists an operator U : Ty(ZPY) — H such that UW (y) = W™ (y)U,
y €Y, then RanU C H".
(5) H™ depends on j only through the equivalence class of j w.r.t. the relation

i1~ € j1—j2 € BX(Y). (11.70)

Definition 11.47 Introduce the equivalence relation (11.70) in the set of Kahler
anti-involutions on Y. Let [j| denote the equivalence class w.r.t. this relation.
Then the subspace H™ defined in (11.68) is called the [j]-Fock sector of a CCR
representation W™.

Proof of Thm. 11.46. Clearly, H™ is invariant under W7 (y), y € Y. Now let
U, e K™, y; € Y for i = 1,2. We have

(W™ (1)U W7 (3) Us) = 002 (U [W7 (o — 1) T>)

= (T, |\Ilg)e%3’” wys g1 (W2 —y1)(y2—y1)

Similarly, if (z;,%;) = y;, we have

(21 @ W ()2 W @ W (1)) = (W1 [Bp)ed (17w Femrlamazama),
using (9.13). Using (11.58), we obtain that
(W™ (y1) T [WT (y2)W3) = (¥ @ W(y1)Q T2 @ W (12)92). (11.71)
Let us set
U QW (y)Q:= W™ (y)¥

and extend U™ to K™ ® af‘s(ZCPl) by linearity. By the identity (11.71), we see
that U™ is well defined and isometric. It extends as a unitary operator between
K™ @ Is(2¢P!) and ‘H™. Property (3) follows from the definition of U™.

Finally, let U : T\(Z°°!) — H be an operator such that UW (y) = W™ (y)U.
Then, by the argument leading to (11.71), we see that UCQ C K™. Therefore,
RanU C RanUT™.

Let us prove (5). For ¢ = 1,2 denote by H;, K; the spaces H™, K™ corres-
ponding to the anti-involution j;. It suffices to prove that Hy C H;. We first
claim that

Ko N'Hy # {0}. (11.72)

In fact, by Thm. 11.46 (1) we know that H; is invariant under W(y), y € V.
Besides, y +— W(y)’Hl is unitarily equivalent to a multiple of the Fock rep-
resentation on I'y(Z;). Since j; — j» € B%()), it follows from Thm. 11.45 that
y W(y)le contains vacua for jo, hence (11.72) holds.
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We claim now that Ko C H;, which implies that Hy C Hy. If Ko ¢ H;, then
KCy N'Hi- is the non-trivial space of jy-vacua for y — W(y)|HL.
1
Applying the analog of (11.72) to Hi-, we see that Hi- should contain vacua
for j;, which is absurd. Hence, Ky C H;, which completes the proof. O

Proposition 11.48 If the CCR representation (11.59) is irreducible and K™ #
{0}, then it is unitarily equivalent to the [j|-Fock representation.

Proof Since (11.59) is irreducible, we have H™ = {0} or H™ = H, which proves
the proposition. O

11.4.5 Number operator of regular CCR representations

In this subsection we consider an arbitrary regular CCR representation (11.59)
over a Kahler space ) with a Kahler anti-involution j. We now discuss the notion
of the number operator N™ associated with (11.59). The number operator N7
allows for a direct description of the Fock sector H™. In some cases this descrip-
tion can be used to show that H™ = H. This is in particular the case for a finite-
dimensional ), when Thm. 11.52 gives an alternative proof of the Stone—von
Neumann theorem (Thm. 8.49).
Here is the first definition of N™.

Definition 11.49 Let N be the usual number operator on the bosonic Fock space.
Let U™ be defined as in Thm. 11.46. Define Dom N™ := U™ K™ ® Dom N, which
is a dense subspace of H™. The number operator in the representation 7 is the
operator on 'H with the domain Dom N7 defined by

N™ :=U"(1® N)U™.

(Note that N™ need not be densely defined.)

Before we give an alternative definition of N™, let us recall some facts about
quadratic forms. We will assume that a positive quadratic form is defined on the
whole space H and takes values in [0, 00]. The domain of a positive quadratic
form b is defined as

Domb:={® € H : b(®) < oo}.

If the form b is closed, then there exists a unique positive self-adjoint operator
B such that

Domb = Dom B7, b(®) = (®|Bd).

If A is a closed operator, then ||A®|* is a closed form. The sum of closed forms
is a closed form, and the supremum of a family of closed forms is a closed
form.
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Definition 11.50 For each finite-dimensional subspace V C Z, set

dimV

np(®) = 3l (@),

where {v; }Y is an o.n. basis of V. (If ® ¢ Dom a™ (v;) for some i, set nf,(®) =
00.)

The quadratic form n}, does not depend on the choice of the basis {v; }{%V

of V. Moreover, by Thm. 8.29, nj, is densely defined.
Definition 11.51 7The number quadratic form n™ is defined by

n™(®) :==supni(®), P cH.
v

The following theorem says that the number quadratic form of Def. 11.51 gives
the number operator introduced in Def. 11.49.

Theorem 11.52 Let n™ be the number quadratic form associated with W™ and
j. Then Domn™ = Dom(N™)? and

n"(®) = (P|N"®), &€ DomN".
In particular, H* = (Domn™ ).

To prepare for the proof of the above theorem, note that n™ defines a positive
operator (with a possibly non-dense domain), which we temporarily denote N7,
such that Domn™ = Dom(N™)? and

n"™(®) = (P|N"®), & € DomN™. (11.73)

Our aim is to show that N™ = N7.
Note also that

Domn™ C Dom¢™ (y), y € Y. (11.74)

Lemma 11.53 If ¢ € Dom(]\?”)é’ and F is a Borel function, then
a" (2)F(N™ — 1)® = F(N™)a" (2)®. (11.75)

Proof Let us suppress the superscript « to simplify notation. First we note
that W (y) maps Dom N7 into itself and have

n(W (5)®) = n(®) + (16 (i9)®) + L ][9] (11.76)

In fact, using (8.21) we see that (11.76) is true if we replace n with ny, where V
is a finite-dimensional subspace of ) containing y. Then (11.76) follows immedi-
ately.
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By the polarization identity, (11.76) has the following consequence for ®, ¥ €
Dom Nz:

(NZW (y)®|NZW ()W) (11.77)
= (NERINEW) + (Blo()¥) + 5 o] (@]0).

Replacing ® by W (y)*® and using the invariance of Dom Nz under W(y), we
can rewrite (11.77) as follows:

(N2®|NTW (y)W) (11.78)
= (NEW () BINE0) + (W () Bl (i9)¥) + 5 Iol]* (W ()" 2|).
Next assume in addition that ®, ¥ € Dom N. Then we can rewrite (11.78) as
(N®|W (y)¥) (11.79)
= (W) e|Nw) + (W (y) 2l (y) V) + %IIyIIQ(W(y)*‘?\‘I’)

We replace y by ty and differentiate (11.79) w.r.t. ¢. (Differentiating is allowed
by (11.74).) We obtain

(N®|p(y)¥) = (¢(y) BN D) —i([¢(jy) D). (11.80)
Substituting jy for y in (11.80), we obtain
(N@[6(jy)¥) = — (o (jy)PINT) +i(P|¢(y)T). (11.81)
Adding up (11.80) and (11.81), we get
(N®la(2)P) = (a*(2)®|NT) — (P|a(2)T). (11.82)

Next let us assume that ® € Dom N?. Then N® € Dom Nz C Doma(z).
Hence, (11.82) implies

(N®|a(2)T) = (Dla(z)(N — 1)T). (11.83)
Therefore, a(z)¥ € Dom N, and we have
Na(2)¥ = a(z)(N — 1)¥, (11.84)
or equivalently
(N + Ma(2)¥ = a(z)(N + A — 1)¥. (11.85)

Now let ® € Dom Nz and A > 1. Then (N + A — 1)~'® € Dom N 2. Therefore,
by (11.85),

(N + Ma(2)(N + M — 1) "tv = a(2)®. (11.86)
Multiplying this by (N + A1)~!, we obtain
a(2)(N + M —1)7'® = (N 4+ A1) a(2)®. (11.87)

https://doi.org/10.1017/9781009290876.012 Published online by Cambridge University Press


https://doi.org/10.1017/9781009290876.012

296 Symplectic invariance of the CCR on Fock spaces

Since linear combinations of functions (N + A1)~! with A > 0 are strongly
dense in the von Neumann algebra of bounded Borel functions of N, and a(z) is
closed, (11.87) implies

a(z)F(N —1)® = F(N)a(2)®, ® € Dom N?,

for any bounded Borel function F'. O

Lemma 11.54 K™ = {0} implies Dom N™ = {0}.

Proof Again we suppress the superscript 7 to simplify notation. Suppose that
Dom N # {0}. We know that N > 0. Therefore, spec N is non-degenerate and
bounded from below. Hence, Ay := inf spec NV is a finite number, and

Ran 1y, ,+1((V) # {0}.
By Lemma 11.53, for any z € Z

a” (2) T ag +1((N) = Tpp, 1 [(V)a™ (2). (11.88)
But
Ly, 10, (V) = 0.
Therefore, (11.88) is zero and

Ran lljy, 5, +1((V) C K = {0},

which is a contradiction. |

The following lemma is immediate:

Lemma 11.55 Suppose that H = H® © H'. Suppose that
Yoy—=Wi(y) eH

is a CCR representation and W™ (y), y € Y, leaves H® invariant. Then W™ (y)
also leaves H' invariant. Thus we have two CCR representations,

V3y=W Wl Y3yu—W (),

Let K', N denote the corresponding spaces of vacua and the operators defined
by (11.73) for the representations i = 0,1. Then

K=K'@K', N=N"@N. (11.89)

Proof of Thm. 11.52. We are in the situation of Lemma 11.55: we have two
CCR representations, in H” = H™ and in H! = (H°)*.
By the definition of N™, we have

N™ =N"@ N*,
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where Dom N' = {0}. From UT1® W(y)=W"(y)U", ye€Y, we get
Ul ®a(z) = a™ (2)U7, z € Z, and hence N* = N°,

We know that K C ‘H?, hence K!' = {0}. By Lemma 11.54, this implies
Dom N' = {0}. Therefore, N™ = N, O

11.4.6 Relative continuity of Gaussian measures

In this subsection we prove Thm. 5.78, the Feldman—Hajek theorem, which says
that the Gaussian measures with covariances Ay, A, are relatively continuous iff

AT A, ATF — 1 is Hilbert Schmidt.

Proof of Thm. 5.78. To conform with the notation used in this chapter we
denote the covariances A, Ay of Thm. 5.78 by ay, as.

Without loss of generality we can assume that a; = 1. In fact, note that

(€lar&)a = (f|§)a;§x7 (€laz€)a = (f\bf)a;%x,

for b= a; 'ay. Since a% is unitary from al_%X to X, we see that 1 —aj'ay €
Bz(al_%/'\,’) iff 1— al_%agal_% € B%(X). Hence, replacing X by al_%/'\,’ and as by
a; lag, we may assume that a; = 1 and denote ay simply by a.

Let us consider the real-wave representations for the covariances 1 and a, as
in Sect. 9.3. From Prop. 9.16 we know that they are unitarily equivalent to
the Fock representations for the symplectic space (X @ X,w) with the Kéhler

1= B 0%}’ = {2()@ (2(()1)1]

.. a 0
k=—jji= [O a_l]'

It is easy to see that 1 — k is Hilbert—Schmidt for the real scalar product on
X @ X coming from the Kéahler structure (w,j) iff 1 — a is Hilbert—Schmidt on
X.
Proof of =. Assume that 1 —a € B?(X). For simplicity let us denote the two
Gaussian L? spaces by L?(X,du) and L*(X,df).

By Thm. 11.45, we know that the two real-wave representations above are

anti-involutions

We set

unitarily equivalent. In particular, there exists a unitary operator U intertwining
these representations. By restriction to the position operators, we deduce that

U:L*X,dy) — L*(X,dp), UF(x)U™' = F(x),

for all cylinder continuous functions F' on X. By monotone convergence, this
identity extends first to all bounded By -measurable functions, and then to all
measurable functions (see Subsect. 5.2.1). We note then that if A € 9B,
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then p(A) =0, resp. u1(A) =0 iff 14(x) =0 as a multiplication operator on
L?*(X,dp), resp. L?(X,dfi), which shows that y and g; are mutually absolutely
continuous.

Proof of <. Assume now that y and i1 are mutually absolutely continuous. Then
we have

diit = Fdp, for FF>0 a.e., and /Fd,uzl.
X

Clearly, U := F7 is a unit vector in L2(X,du). We will show that

Ay ()T — ar, ()P =0, weCx, (11.90)
in the weak sense, where ¢ = ZI% and a’ (+), a;w(-) are the creation and annihi-

lation operators in the real-wave representation on L? (X, du) defined in Subsect.
9.3.1.

We claim that (11.90) implies that 1 —a € B*(X). In fact, by Prop. 9.16,
the real-wave representation on L*(X,du) with the anti-involution j above is
unitarily equivalent to the Fock representation on I's(CX’). Applying Thm. 11.28,
we deduce from (11.90) that ¢ € B*(CX), i.e. 1 —a € B*(X).

Note that if X is finite-dimensional, then

Dtk (11.91)

Hence,

which is equivalent to (11.90). In the general case we will approximate X’ by an
increasing family of finite-dimensional subspaces A,, on which (11.91) is valid,
and pass to the limit n — +oo.

We choose an increasing sequence (7, ), en of rank n orthogonal projections in
X such that s — 711er;0 7w, = 1. We set

X, =X, ap:=mam,, B, =B,

where we recall from Sect. 5.2.1 that B is the o-algebra of cylinder sets based
on Y.

We note that B is generated by |J, <y 8. This follows from the fact that the
polynomials based on J, oy &, are dense in L?(X,dp), which is a consequence
of Thm. 5.56.

We denote by u,, resp. fi, the Gaussian measures on X, with covariances 1,
resp. a,. For £ € X, we have

/ ei@zdﬂn:/ eig-xdﬂ’ / eig-zdﬁn:/ eig-zdﬂ’
Xn X X, X

n
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which by a density argument implies that

/Xn u(z)dp, Z/XU(x)dM, /X w(z)dfiy, z/Xu(x)d/l, (11.92)

n

if u is a B,,-measurable integrable function.

We denote by F, := Eg, (F) the conditional expectation of F w.r.t. B,. We
recall that if (Q,B, u) is a probability space and By C B is a o-algebra, then
Eg, is defined on L*(Q,du) as the orthogonal projection on the subspace of
By-measurable L? functions. Eg, extends to a contraction on L!'(Q,du) with
Jo B, (w)dp = [, udp. In our case, since B is generated by |
that

nen Bn, we know

F, = F pae. and in L' (X,dp). (11.93)

If @ is %B,,-measurable, we have, using (11.92),

/X” (x)dfin :/X@(w)dﬂ:/X<I>(x)qu:/X<I>(x)E,,du:/ O(z)F, dpy,

X

which shows that
dg, = F,dp,, neN. (11.94)
For P € CPols(X,,) and w € CX,,, we have
| eV P@F @, = [ oV Padn.
X X
which we can rewrite as
(w- Vo P|F)r2(x, ap,) = (W VaP1)r2(x, dz,)-
On L2(X,du,), we have
(wVy) =—-wV, +wz, (11.95)

and on L?(X,dji,), we have

(wV,)* = —wV, +a, @z (11.96)
This yields
/ w -V, PF,du, :/ a;1w~xPFndun. (11.97)
X, X,

Since X, is n-dimensional, u, and fi, can be realized on &, with

dp, = (27‘()771/267%@‘1)(117, dfin, = (27)7"/?(det an)f%efé(z‘a;lz)dx,

so that

F, (l‘) _ (detan)—%e—%(m|a;1m)+%(z\m).
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It follows from (11.97) that F,, satisfies in the usual sense the identity
w- V. F,(z) = (1—a, Yw-2F,(z).

Let us set

1

. 2
‘I’n B Fn )

_L
so that ¥, € L*(X,,dp,), |V, || = 1. From V, ¥, = 3F, *V,F,, we get that

1
- VoW () = S (- a; Y- oW, (2), w e CX,.

Considering now ¥,, as a function on X, using (11.95) we can rewrite this identity
as

1 _
/ (—w-V, + 5(]1 +a,"Yw-z)P¥,dp =0, PeCPol(X,), weCA,,
X
or equivalently

1 _
/(—anﬁ-vx+§(11+an)ﬁ~x)P\Ilndu:O, P € CPols(&X,), weCA,.
X

(11.98)
We note now that if w € X and w,, := m,w, then for all P € CPols(&X)

lim (a,w, —aw)-V,P =0,

n—00

lim ((a, + Dw, -z — (a+ Dw-2)P =0 in L*(X, p).

n—oo

Since ¥, is uniformly bounded in L*(X,du), we deduce from (11.98) that

1
lim (—aﬁ~ V. + 5(]1 +a)w - x)P\Ilndp =0, P e CPol(&X,), weCX

n—oo X

for some m. (11.99)
We claim now that

w — lim ¥, = 0. (11.100)

n—oo

In fact, since ¥, is uniformly bounded in L?, it suffices to show that, for all
G € L>(X,du),

lim (U, — ¥)Gdp = 0. (11.101)
n—oo X
Let @, = (¥, — ¥)G € L? C L'. We know from (11.93) that ®, — 0 u a.e..
Moreover the sequence (®,,) is bounded in L?, since G € L*°. It follows from
Subsect. 5.1.9 that the sequence (®,) is equi-integrable, which using the fact
that ®, — 0 p a.e. implies (11.101).
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Passing to the limit in (11.99) and using (11.100), we finally get
1
/(—a@-vx+§(]1+a)w-x)P\IJd,u:07 we X, (11.102)
X

first for P € CPols(&X,;,) for some m, and then by density for all P € CPol(X).
Using the definition of a,y (w), af, (w) on L*(X,du), we see that (11.102)
implies (11.90), which completes the proof of the < part of the theorem. O

Proof of Prop. 5.79. We use the notation of the proof of Thm. 5.78. We have
seen that W, resp. ¥,, are the bosonic Gaussian vectors for ¢ = (@ — 1)(a + 1)1,
resp. ¢, = m,cm,. Since ¢, — ¢ in B?(X), it follows from Thm. 11.28 that
U, — W in L2, hence F, — F in L. This proves (1) and (3). (2) is left to the
reader. O

11.5 Coherent sector of CCR representations
This section is devoted to coherent representations, that is, translations of Fock
CCR representations. It is to a large extent parallel to the previous section about
Fock CCR representations.
We keep the same notation as in the previous section. In particular, (), w) is
a symplectic space,

Yoy—W"(y) € U(H)

is a regular representation of CCR and j € L(Y) is a Kahler anti-involution, so
that we obtain a Kéhler space (), -,w,]j).

Z is the holomorphic subspace of CY. As usual, we identify C) with Z & Z.
We do not assume that ), or equivalently Z, is complete.

Y# denotes the algebraic dual of ). Similarly, Z* denotes the algebraic anti-
dual of Z. We have the identification Y* = Re(Z* ® Z ).

11.5.1 Coherent vectors in a CCR representation

Let f € Z2*, that is, f is an anti-linear functional on Z, possibly unbounded.
We also introduce a symbol for the corresponding (possibly unbounded) linear
functional on Y, v = (f, f)|y € Y*. Clearly,

v (2,%) = (fl2) + (2I)-
Definition 11.56 We define the space of j, f-coherent vectors
T:={¥eH : VeDoma (z), a"(2)¥ = (2|f)¥, z € £},

where the j-creation, resp. j-annihilation operators a™*(z), resp. a™ (z) are defined
in Subsect. 8.2.4.
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Proposition 11.57 (1) IC? is a closed subspace of 'H.
(2) W € K] iff (W7 (y)¥) =e 10409 ye .
(3) Elements of K are analytic vectors for ¢" (y), y € V.
(4) If D,V € K%, then
(PIWT™ (y)¥) = ((I)|\IJ)e74LZ}2+iv-y,
(207 (y) V) = (2[¥)v -y,
1 .
(@67 (y1)9" (y2) V) = 3 (Y1-y2 +iy1-wy2) (R[¥) + (v-y1)(v-y2) (V).

Proof We will suppress the superscript 7 to simplify notation.

(1) Ky is closed as an intersection of kernels of closed operators.

Let us prove (2) <. Let U € H such that (¥|W (y)¥) = || ¥|[2e= ¥ vy With-
out loss of generality we can assume that || U] = 1. Taking the first two terms in
the Taylor expansion of

tr (U[W (1) W) = o5V,
we obtain
(Wlo)T) = vy, (Vo)1) = 29>+ (wy)’.  (11103)
If z = $(y — ijy) € Z, we have
(a"(2) ~(F12)1) (a(2) - (z1)1)
= 16w + 16(v)* + H6(v), 6(y)]

—5E1NBW) + 3106 GY) = F(F12)6) — F(F12)8(y) + (F12) (1)L

Using (11.103), we obtain that
I (a(2) = (=1)m) @) =o.

Let us prove (2) =. Consider y € ). Note that if ¥ € Ky, then ¥ € Dom ¢(y).
We consider the function

RS>t (¥[W(ty)¥),
as in the proof of Prop. 11.42. For z = §(y — ijy) € Z, we get
W F(t) =i(T]o(y)W (ty)¥)
= 5 (al2) YW (ty)¥) + 5 (VW (ty)a(2)¥) — §y° (T|W (ty)¥)
=i((fl2) + (2|)) F(t) = 59°F(t),

which yields F(t) = || W||2e= v Fitvy,
(2) immediately implies (3).
(4) follows from (2) and (11.103) by polarization. O
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11.5.2 Coherent vectors in Fock spaces

We consider the bosonic Fock space I';(Z°P!) and the usual creation and annihi-
lation operators a*(2), a(z).

Theorem 11.58 Let ¥ € I',(Z?!) be an f-coherent vector for the Fock repre-
sentation over Y, that is, for any z € Z, ¥ € Dom a(z) and

a(z)¥ = (z|f)¥.
Then the following is true:
(1) If f is continuous, i.e. f € ZP', then U is proportional to W (—if,if)Q.
(2) If f is not continuous, then ¥ = 0.

Proof By induction we show that, for z,. .., 2, € Z,
a(zn_1)---a(21)¥ € Doma(z,), a(z,) - a(z)® = (z1|f) - (za|f)©.
This implies
(a"(z1) - a”(2)QY) = (21f) - - (2| £)(Q ). (11.104)
In particular,
(2|¥) = (a”(2)Q¥) = (2 /)(QUY), z€ Z.

Using the fact that Z is dense in Z°P!, we see that (Q|¥)f is a bounded functional
on Z, hence it belongs to Z°°!. Thus either f € Z%! or (Q|¥) = 0. In the latter
case, (11.104) implies that ¥ = 0. O

11.5.3 Coherent representations

Consider the usual Weyl operators W (y), y € ), on the bosonic Fock space
[ (Z°P). Set

Y3y Wi(y) = W(y)etfell?) e U (T, (2)). (11.105)
Clearly, (11.105) is a regular CCR representation,

Definition 11.59 (11.105) is called the j, f-coherent CCR representation.

Theorem 11.60 (1) (11.105) is the translation of the Fock representation by

the vector (f, f) € Y* (see Def. 8.21).
(2) If f € Z°! (equivalently, v € Y°P), then

Wy(y) = W(Qif, =)W ()W (=if,if).

(3) If f & Z°P! then (11.105) is not unitarily equivalent to the Fock representa-
tion Y 3y +— W(y).
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Proof (3) Let U € U(H) intertwining Wy (-) and W (-). Since US) satisfies the
assumptions of Thm. 11.58 we obtain that U2 = 0, which is a contradiction. [J

11.5.4 Coherent sector

Let us go back to an arbitrary CCR representation (11.59) over a Kéhler space
Y. We will describe how to determine the largest sub-representation of (11.59)
unitarily equivalent to a multiple of a coherent representation over ) in T'y(Z¢P!).

Definition 11.61 Introduce the equivalence relation on the set of Kdahler anti-
involutions on Y and anti-linear functionals on the corresponding holomorphic
space Z:

(i, f1) ~ (a2, fo) & j1 —jo € BA(Y), fi— f2 € 2PN

Let [j, f] denote the equivalence class of (j, f) w.r.t. this relation.
The [j, f]-coherent sector of the representation W7 is the subspace of H defined
as

Hiyy = Spand{W”(y)\I/ : eKF, yel}
The CCR representation W™ is [j, f]-coherent if Hly =M.

Theorem 11.62 (1) N[} is invariant under W™ (y), y € V.
(2) There exists a unique unitary operator

UF K7 @ T.(27) — 1
satisfying
U YW (y)Q=W"(y)¥, Weki, yel.
3)
Uf 1eW;(y) =W"(y)Uf, ye . (11.106)

(4) If there exists an operator U : I's(Z°°Y) — H such that UW;(y) = W™ (y)U
fory e, then RanU C 'Hfrf],

11.6 van Hove Hamiltonians

In this section we will study self-adjoint operators on bosonic Fock spaces of the
form

H= / £)de + / W(E)a(€)de + / w(€)a* (€)dE + ¢
=dI'(h) + a(w) + a*(w) + cl (11.107)

(first written in the “physicist’s notation” and then in the “mathematician’s
notation”). Note that this expression may have only a formal meaning. In some
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cases, the constant c¢ is actually infinite. Following Schweber (1962), we call
(11.107) van Hove Hamiltonians. We will see that in the case of an infinite num-
ber of degrees of freedom these Hamiltonians have a surprisingly rich theory. We
will discuss both classical and quantum van Hove Hamiltonians. Their theories
are parallel to one another.

Throughout this section, Z is a Hilbert space and h is a positive operator on
Z with Kerh = {0}. (It is, however, easy to generalize the theory of van Hove
Hamiltonians to non-positive h.)

In addition to h, van Hove Hamiltonians depend on the choice of w. The choice
w € Z turns out to be too narrow.

In order to explain the nature of w, it will be convenient to use the notation
introduced in Subsect. 2.3.4. In particular, we will consider the spaces (h® +
h?)Z for 0 < a < . Note that

we (h*+h")Z & Lo hwehZ, Ay o(h)weh’Z.  (11.108)

For w € (h® + h%)Z, the behavior of w near h =0 (resp. h = +00), i.e. at low
(resp. high) energies, is encoded by the exponent « (resp. 8) and connected
with the so-called infrared (resp. ultraviolet ) problem. We will always assume
that

we (1+h)Z. (11.109)

Note that if w € (14 h)Z, then (e!'" — 1)h~'w € Z for any ¢t € R.

11.6.1 Classical van Hove dynamics
Definition 11.63 The classical van Hove dynamics is defined fort € R as

ith

ol (z) ="z 4 (" —h~'w, 2€2Z, teR.

It is easy to see that R >t~ o' is a one-parameter group of affine transfor-

mations of Z preserving the scalar product.

Let us note the following property of the dynamics a. Let p1, po be two comple-
mentary orthogonal projections commuting with h. For ¢ = 1,2, let Z; := Ranp;.
Thus we have a direct sum decomposition Z = Z; @ Z,.

Set h; := p;h, treated as a self-adjoint operator on Z;. Let ; be the dynamics
on Z; defined by h;, w;. Then the dynamics « splits as

a'(21,22) = (ol (21), a5 (22))-
In particular, we can take
p1 = Njo17(h), p2 = Ty o(h)- (11.110)

Then h; is bounded and hs > 1. In the case of h; the ultraviolet problem is
absent, but the infrared problem can show up. In the case of hy we have the
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opposite situation: the infrared problem is absent, but we can face the ultraviolet
problem.

Assume for a moment that w € hZ. Then the van Hove dynamics is equivalent
to the free van Hove dynamics:

o =7"'oalor, (11.111)
where

7(2) =z +h7 w, al(z) ="z (11.112)

11.6.2 Classical van Hove Hamiltonians

Z can be interpreted as a charged symplectic space with the form Z;-wzs :=
i(z1]|22). In the case of finite dimensions we know that for every charged sym-
plectic dynamics ¢ — «; there exists a real function H on Z satisfying

%at(z) =iV-H(a'(2)). (11.113)
This function is called a Hamiltonian of «. It is unique up to an additive constant.

In the case of an infinite number of degrees of freedom the situation is more
complicated. It is even unclear how to give a general definition of a Hamiltonian
of an arbitrary charged symplectic dynamics. It may, for instance, turn out that
natural candidates for a Hamiltonian are defined only on a subset of Z, and
differentiable on a smaller subset.

The classical van Hove dynamics is an example of a charged symplectic dynam-
ics. If the dimension is finite, it is easy to see that its Hamiltonian is

H(z) = (z|hz) + (z|w) + (w]z) + ¢,

where c is an arbitrary real constant.

In infinite dimensions we will see that the van Hove dynamics possesses natural
Hamiltonians. Clearly, these Hamiltonians will be defined only up to an arbitrary
additive constant. One can ask whether it is possible to fix this constant in a
natural way. We will argue that there are two ways to do so, both under some
additional assumptions on w in addition to (11.109).

Definition 11.64 Assume
we (14 h7)Z. (11.114)
Set D; := Dom h%, and
Hi(z) := (z]hz) + (z|w) + (w|z), =z € Dy.

We will say that Hy is the classical van Hove Hamiltonian of the first kind.
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Definition 11.65 Assume
weh'?Z+hzZ, (11.115)
Set Dy :={2€ 2 : W22+ h 2we 2}, and
Hii(z) == (B2 4 b=V 2w|hY %2 + hY%w), 2 € Dy
We will say that Hyy is the classical van Hove Hamiltonian of the second kind.
Clearly, both Hy and Hy; are well defined iff
weh'?Z=0+h7)ZN (k7 +h)Z,
and then
Hy = Hy + (w|h ™ w).

Definition 11.66 Let w be a functional satisfying (11.109). We split the dynam-
ics a into ay @ g, the functional w into wy ® wy as explained in Subsect. 11.6.1,
with the splitting given by (11.110). Then, by (11.108), wy € 2, = (1+ hl%)Zl
and wy € hoZy = (h; + h2)Z5. So we can define the Hamiltonian Hyy for the
dynamics aq on the domain Dy 1, and the Hamiltonian Hs 11 for the dynamics
o on the domain Ds 1.

Set D:=D;1 ®@Dy. A function H on D will be called a classical van Hove
Hamiltonian if it is of the form

H(Zl,ZQ) = H171(21) + HQ’H(ZQ) +c, (21722) €D,
where ¢ € R is arbitrary.

Note that, in general, there exist w € (14 h)Z that do not belong to
(14 h'/?)Z U (hY/? 4 h)Z. For such w, the dynamics « is well defined but nei-
ther Hy nor Hyp are well defined.

The following proposition says that van Hove Hamiltonians are in a certain
sense Hamiltonians of the van Hove dynamics. Recall that the Gateaux differen-
tiability was defined in Def. 2.50.

Proposition 11.67 Let w € (1+ h)Z. Let H be the corresponding van Hove
Hamiltonian with the domain D. Then

(1) The function H is Gateaux differentiable at z € Z iff hz + w belongs to Z,
and then
VzH(z) = hz + w.

(2) The dynamics t — o'(z) is differentiable w.r.t. t iff ha!(z) +w € Z, and
then
d , ot
T (z) =i(ha'(2) + w),
which can be written in the form (11.113).
(3) o' leaves D invariant and H is constant along the trajectories.
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The following theorem discusses various special features of van Hove
Hamiltonians.

Theorem 11.68 Let H be a van Hove Hamiltonian.

(1) 0 belongs to D iff w € (1+ h'/?)Z. If this is the case, then H = Hy + H(0).

(2) H is bounded from below iff w € (h'/?> + h)Z. If this is the case, then H =
Hy +inf H.

(3) H has a minimum iff w € hZ. This minimum is at —h~'w, and then

Hi(z) = (7(2)|h7(2)) ,
where T was defined in (11.112).
Proof We split the dynamics, the functional and the vectors in Z. Then the
proofs are immediate. O

Formally,
Hii(z) = (2|hz) + (w]2) + (z|w) + (w]h ™ w).

11.6.3 Quantum van Hove dynamics

We again assume w € (1+ h)Z. Many quantum objects are analogous to their
classical counterparts. Typically, in such cases we will use the same symbols in
the classical and quantum case, which should not lead to any confusion.

Definition 11.69 For B € B(I'\(Z)), we set
o' (B) :=V(t)BV(t)*,
where V (t) is a family of unitary operators on T's(Z)
V(t) :=T(")exp (a* (1 — e )h'w) —a((1—e ") w)).

t — o will be called a quantum van Hove dynamics.

It is easy to check that V(¢) is strongly continuous and, for any t1,t, € R,
V(t1)V(t2) = c(t1,t2)V (81 + ta),

for some c(ty,t2) € C, |c(t1,t2)] = 1. Hence, a is a one-parameter group of
x-automorphisms of B(FS(Z)), continuous in the strong operator topology.

In order to make the relationship with the classical dynamics clearer, one can
note that

o (a*(2)) = ((€" — Dh~ w|2) +a*(e""2), z€ Z.
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Let Z2=2,® 25, as in Subsect. 11.6.1. Then we have the identification
Is(2) =Ts(2,) ® T's(Z23). The dynamics « factorizes as

a'(B) ® By) = o (B)) @ ab(By), B; € B(Ts(Z))), i =1,2. (11.116)

11.6.4 Quantum van Hove Hamiltonians

Definition 11.70 We say that a self-adjoint operator H is a quantum van Hove
Hamiltonian for the dynamics t — o if

o (B) = €'l Be~ it (11.117)

By Prop. 6.68, such a Hamiltonian always exists and is unique up to an additive
real constant.

Assume for a moment that w € hZ. Then, up to a constant, van Hove Hamil-
tonians are unitarily equivalent to the free van Hove Hamiltonian:

H :=Udl'(h)U* + 1,
where U is the “dressing operator”
U := exp(—a*(h™'w) + a(h™'w)). (11.118)

In the general case, (11.118) can be ill defined, and the construction of van Hove
Hamiltonians is more complicated.

Definition 11.71 Let w € (1 + h'/?)Z. Define
Ul(t) — eilm(hflw|e"h hflw)—it(w\hflw)v(t).

We easily check that Ui(t) is a one-parameter strongly continuous unitary group.
Therefore, by the Stone theorem there exists a unique self-adjoint operator Hy
such that

Ur(t) = 1,
We will say that Hy is the quantum van Hove Hamiltonian of the first kind.
Definition 11.72 Let w € (h!/? + h)Z. Define
Up(t) = e wle™ i)y gy

We easily check that Uy (t) is a one-parameter strongly continuous unitary group.
Therefore, by the Stone theorem there exists a unique self-adjoint operator Hiy
such that

UH (t) = eitH” .

We will say that Hyy is the quantum van Hove Hamiltonian of the second kind.
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Clearly, both Hy and Hyy are well defined iff w € hl/ZZ, and then

Hy = Hp + (w|h71w)

Theorem 11.73 Let H be a quantum van Hove Hamiltonian of a dynamics
t — o. Then the following statements are true:

(1) Q belongs to Dom |H|'/? (the form domain of H) iff w € (14 h'/?)Z. Under
this condition H = Hy + (Q|HQ).

(2) The operator H is bounded from below iff w € (R'/? + h)Z. Under this con-
dition H = Hyy + inf H, where inf H denotes the infimum of the spectrum of
H.

(3) The operator H has a ground state (inf H is an eigenvalue of H) iff w € hZ.
Then, using the dressing operator defined in (11.118), we can write

Hyp = UdT(h)U*. (11.119)

Proof We write a as a1 ® as, w as w; @ we, with w; € Z1, we € hy Zy; see
(11.116).

The operator dI'(hy) + a*(wy) 4+ a(wy) is essentially self-adjoint on Dom Ny,
by Nelson’s commutator theorem with the comparison operator Nj; see Thm.
2.74 (1). We set

Hy 1= (dT(hy) + a* (wy) + a(w)) .

Clearly, H; 1 is a Hamiltonian of a;.
Next we set

Hy g1 := UpdD'(ho)Us, Uy := exp(—a*(hy 'ws) + a(hy ' ws)),
which is a Hamiltonian of af. Hence, any Hamiltonian of « is of the form
H=H;1+1® Hy11 + cl.

We drop the subscripts I, II in the rest of the proof. Since 2; € Dom H; we see
that

Q=020 EDom|H|% & Oy EDomHé
& U;Q e Domdl(hy)F < ws € h Z».

This proves (1).
Let us now prove (2). Since Hy > 0, H is bounded below iff H; is bounded
below. Since Dom N is a core for Hy, we have

inf spec H; = inf (U1 |H,0y).

¥, €DomNy, ||¥,]=1
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Set wi = ¢ 1j(h)wy, Ue = exp(—a*(hy 'w) + a(hy 'wf)). Then
(W3 | H ) = T (0| (A0 () + 0 (wf) + a(wf)) U )

- 1im((U:\1/1|dr(h1)U:m1) . (w;|h;1w;)||\p1||2).

e—0

1
It follows that if wy € hi 21, then H; > —(wy |h1_1w1).
Conversely, assume that H; is bounded below. Then, for

Q., =exp(a®(z1) — a(z1)),
we have, by Subsect. 9.1.4,
(s [H1Q:,)) = (21|l 21) + (wi]z1) + (21|w1).

By Thm. 11.68 (2), this implies that w; € hl% Z;. This completes the proof of (2).
To prove (3), we note that H, has the ground state UsQy. Hence, H has
a ground state iff Hy has one. If wy € hy 21, then Hy = U;dl(hy)UT for Uy =
exp(—a*(hy 'w1) + a(hy " )wy), hence it has a ground state.
Assume now that H; has a ground state U. We again split Z; into Z{ @ Z{+,
for Zf = 1jy(h)Z;. Then H; splits into Hf ® 1+ 1® H{*, w; into w§ & wi*
and ¥ into ¢ ® Uk, Since wi+ € hi' Z{+, we have

gl = exp(—a*(hflw?) — a(hflwiL))Q7
and therefore
a(2)V = (z|h '), ze Z0t
We apply Thm. 11.58 with Z = Uo ZtL | so that ZP! = Z;, and we obtain that
e

w; € h1 Z;. O

Formally,

11.6.5 Nine classes of van Hove Hamiltonians

We can sum up the theory of van Hove Hamiltonians by dividing them into three
classes based on the infrared behavior and three classes based on the ultraviolet
behavior. Altogether we obtain 3 x 3 = 9 classes.

Infrared regularity

1. (w\]l[o,l](h)h_Qw) < 00.
In the classical case, H has a minimum; and in the quantum case, H has a ground
state.
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2. (w[ly,1)(h)h ™ w) < oo, (w[Lj,1)(h)h~*w) = oo .

H is bounded from below and Hyp is well defined, but in the classical case H has
no minimum, and in the quantum case H has no ground state.

3. (wllj,1)(h)w) < oo, (w|lj 1) (h)h ™ w) = oco.

H is unbounded from below; Hyp is ill defined.

Ultraviolet regularity

1. (w|]1[1oo[(h)w) < Q.

In the classical case the perturbation is bounded; in the quantum case the per-
turbation is a closable operator.

2. (wllp o[ (R)h ™ w) < 00, (w11 s0f(h)w) = 0.

Hj is well defined, but in the classical case the perturbation is not bounded, and
in the quantum case the perturbation is not a closable operator.

3. (w]lj o) (R)h2w) < 00, (w11 o0)(h)h ™ w) = 0.

The constant ¢ in (11.107) is infinite; Hj is ill defined.

11.7 Notes

The existence of many inequivalent representations of CCR was noticed in the
1950s, e.g. by Segal (1963) and Garding-Wightman (1954). Shale’s theorem was
first proven in Shale (1962). Among early works describing implementations of
symplectic transformations on Fock spaces let us mention the books by Friedrichs
(1953) and by Berezin (1966). They give concrete formulas for the implemen-
tation of Bogoliubov transformations in bosonic Fock spaces. Related problems
were discussed, often independently, by other researchers, such as Ruijsenaars
(1976, 1978) and Segal (1959, 1963).

Infinite-dimensional analogs of the metaplectic representation seem to have
been first noted by Lundberg (1976).

The book by Neretin (1996) and the review article by Varilly—-Gracia-Bondia
(1992) describe the infinite-dimensional metaplectic group.

The Fock sector of a CCR representation is discussed e.g. in Bratteli-Robinson
(1996). It is, in particular, useful in the context of scattering theory; see Chap.
22 and Dereziniski-Gérard (1999, 2000, 2004).

Coherent representations appeared already in the book by Friedrichs (1953),
and were used by Roepstorff (1970). Our presentation follows Dereziriski-Gérard
(2004).

The ultraviolet problem of van Hove Hamiltonians is discussed e.g. in the
books of Berezin (1966), Sect. II1.7.4, and of Schweber (1962), following earlier
papers by van Hove (1952), Edwards—Peierls (1954) and Tomonaga (1946). The
name “van Hove model” is used in Schweber (1962).

The understanding of the infrared problem of van Hove Hamiltonians can be
traced back to the papers by Bloch—Nordsieck (1937) and by Kibble (1968).

Our presentation of the theory of van Hove Hamiltonians follows Derezinski
(2003).
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